Supplementary information

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-*Tris*(1-phenyl-1*H*-pyrazol-5yl)benzenes

Marcos A. P. Martins ^{1*}, Alexandre R. Meyer ¹, Paulo R. S. Salbego ¹, Daniel M. dos Santos ¹, Guilherme A. de Moraes ², Helio G. Bonacorso ¹, Nilo Zanatta ¹, Manfredo Hörner ²

- ¹ Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
- ² Núcleo de Investigação de Triazenos e Complexos (NITRICO), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
- * Correspondence: marcos.nuquimhe@gmail.com Tel.: +55 (55) 3220 8756

Figure S1. 1D arrangement for compound 9b.

(c) (d) **Figure S2.** BCPs for the dimers involved in the 1D arrangement for compounds **5** (a), **7** (b), and **9b** (c, d).

Compound	(5)	(7)	(9b)	
Crystal data				
Chemical formula	C33 H24 N6	C33 H18 Cl6 N6	C33 H21 Br3 N6	
CCDC number	1501480	1484377	1484578	
Mr	504.58	711.23	741.26	
Crystal system, space group	Monoclinic, P 21/n	Monoclinic, P 21/n	Triclinic, P1	
Temperature (K)	293	293	293	
a, b, c (Å)	8.811(7), 31.67(2), 9.691(9)	10.3914(2), 31.6622(2), 10.5723(2)	8.7732(3), 10.8040(3), 16.7315(5)	
α, β, γ (°)	90, 97.85, 90	90, 110.8580(10), 90	76.0570(10), 87.256(2), 79.5720(10)	
V (ų)	2679(4)	3250.48(12)	1513.74(8)	
Z	4	4	2	
F(000)	1056	1440	732	
D _x (Mg m ⁻³)	1.251	1.453	1.626	
Radiation type	Μο Κα	Μο Κα	Μο Κα	
μ (mm ⁻¹)	0.076	0.56	4.03	
Crystal size (mm)	0.434 x 0.233 x 0.084	0.520 x 0.490 x 0.220	0.506 x 0.210 x 0.164	
Data collection				
Diffractometer	X8 APEX II	X8 APEX II	X8 APEX II	
Absorption correction (Coppens <i>et al.,</i> 1965)	Gaussian	Gaussian	Gaussian	
Tmin, Tmax	0.980, 0.994	0.873, 0.908	0.435, 0.639	
Reflections collected, unique	44903, 5466	50606, 7215	39956, 6708	
Rint	0.123	0.035	0.052	
$ heta_{\max}$ (°)	26.52	27.16	27.18	
Refinement				
$R[F^2>2\sigma(F^2)],wR(F^2),S$	0.061, 0.110, 1.00	0.082, 0.249, 1.06	0.039, 0.087, 1.02	
N°. of reflections	5466	7215	6708	
N°. of parameters	353	406	379	
$\Delta q_{ ext{max}}, \Delta q_{ ext{min}}$ (e Å ⁻³)	0.173, -0.190	2.563ª, -0.408	0.440,-0.749	

Table S1. Data collection and structure refinement for structures 5, 7 and 9b.

^a Highest peak: 2,536 (e Å⁻³) at 0.6044, -0.0557, 0.8186 [0.761 Å from H16C].

Comp.	Interaction	ρ	$ abla^2 ho$	G	V	BPL		
		(a.u.)	(a.u.)	(a.u.)	(a.u)	(Å)	c	
5	$CH_B \cdots \pi_{ph}$	+0.001709	+0.005703	+0.001064	-0.000703	+7.029502	+1.348943	
	$CH_B \cdots \pi_{ph}$	+0.002334	+0.007711	+0.001482	-0.001036	+6.764544	+0.735388	
	$CH_B \cdots \pi_{bz}$	+0.008895	+0.036788	+0.006966	-0.004735	+5.741479	+0.940599	
7	CH _A Clc	+0.002861	+0.009384	+0.001869	-0.001392	+6.295619	+0.069233	
	$Cl_B \cdots \pi_{phA}$	+0.006076	+0.017295	+0.003573	-0.002822	+6.775708	+1.182899	
	$Cl_{A} \cdots \pi_{phC}$	+0.006672	+0.019205	+0.003951	-0.003100	+6.850917	+1.548697	
	$Cl_{C} \cdots \pi_{phB}$	+0.007134	+0.021533	+0.004408	-0.003432	+6.503711	+1.295082	
9b	СНв… Прыс	+0.002607	+0.008188	+0.001588	-0.001129	+6.239854	+0.810114	
	Br_{C} ···· π_{PhA}	+0.003151	+0.007538	+0.001608	-0.001331	+7.876611	+1.152721	
	$CH_B \cdots \pi_{PhC}$	+0.003635	+0.012417	+0.002331	-0.001559	+5.851308	+0.247889	
	Br_{A} ···· π_{PhB}	+0.004203	+0.010958	+0.002338	-0.001936	+7.214326	+2.528119	

Table S2. QTAIM data of intramolecular interactions of compounds 5, 7, and 9b.

Comp.	Molecular Structure	Intramolecular Interaction	Atom-atom distance (Å)	Interaction angle (°)	Atom- centroid distance (Å)
5		$I \\ CH_B \cdots \pi_{ph}$	3.448	130.56	4.213
		$\underset{CH_B\cdots\pi_{ph}}{II}$	3.362	129.51	3.411
		III CHβ…π _{bz}	2.684	108.43	3.218
7		I CHa…Clc	3.294	156.89	-
		II Clb $\cdots \pi_{phA}$	3.445	131.58	3.609
		III $\mathrm{Cl}_{\mathrm{A}\cdots\pi_{\mathrm{phC}}}$	3.469	141.54	3.688
		IV $\mathrm{Cl}_\mathrm{C}\cdots\pi_\mathrm{phB}$	3.377	142.53	3.456
9b		I $Br_{C}\cdots\pi_{PhA}$	4.006	123.71	4.326
		${ m II} { m Br}_{ m A} \cdots \pi_{ m PhB}$	3.778	151.45	3.789
		III CHB… <i>T</i> PhC	2.993	142.63	3.788
		IV CHB $\cdots \pi$ PhC	3.252	135.12	3.560

Table S3. Geometric data of intramolecular interactions of compounds 5, 7, and 9b.

Comp.	Interaction	ρ	$\nabla 2\rho$	£	K	V	G	BPL
		(au)	(a.u.)		(a.u.)	(a.u.)	(a.u.)	(Å)
5	C13c-H13c-H4c-C4c	0.000625	+0.002109	0.385237	-0.000166	-0.000196	+0.000361	7.917284
	С14с-Н14с…Н13а-С13а	0.001150	+0.003850	10.87582	-0.000286	-0.000391	+0.000677	7.159302
	C4a-H4a····H13a-C13a	0.001691	+0.007862	0.228573	-0.000606	-0.000753	+0.001359	5.405544
	С15в-Н15в…С3в-Н3в	0.001810	+0.008470	0.069926	-0.000649	-0.000820	+0.001469	5.340153
	C3a-H3a····H14a-C14a	0.002610	+0.010479	1.451658	-0.000755	-0.001110	+0.001865	5.903538
	С14с-Н14с…С51в(π)	0.003203	+0.009717	0.835703	-0.000487	-0.001455	+0.001942	6.392775
	С15с-Н15с…Н4в-С4в	0.003941	+0.016360	0.367039	-0.001078	-0.001934	+0.003012	5.003101
	Total	0.015030						
	C4A-H4A····Cl2c	0.002102	+0.007701	0.396783	-0.000507	-0.000912	+0.001418	6.755820
7	C3a-H3a····Cl2a	0.002453	+0.008534	0.872875	-0.000557	-0.001020	+0.001577	7.028604
,	$Cl2_B \cdots C51_A(\pi Bz)$	0.005733	+0.016697	2.503532	-0.000721	-0.002732	+0.003453	7.029595
	Total	0.010288						
	$C14c-H14c\cdots N2_B$	0.001974	+0.008350	0.064986	-0.000589	-0.000909	+0.001498	6.305415
	$C14c-H14c\cdots N2_B$	0.001974	+0.008349	0.065009	-0.000589	-0.000909	+0.001498	6.305415
	С15в-Н15в…N2в	0.003039	+0.012084	0.473979	-0.000777	-0.001467	+0.002244	6.126470
9h (dimer 1)	С15в-Н15в…N2в	0.003039	+0.012084	0.473798	-0.000777	-0.001467	+0.002244	6.126470
90 (diffici 1)	С15с-Н15с…С12в	0.003828	+0.013741	0.602985	-0.000879	-0.001678	+0.002557	6.014947
	С16в…С16в	0.003576	+0.008290	3.038742	-0.000278	-0.001517	+0.001795	7.049161
	С15с-Н15с…С12в	0.003827	+0.013740	0.603086	-0.000879	-0.001678	+0.002556	6.015115
	Total	0.021257						
	C13a-H13a····Br3c	0.004336	+0.015844	0.238205	-0.000914	-0.002133	+0.003047	6.078877
	C13a-H13a····Br3c	0.004336	+0.015844	0.238206	-0.000914	-0.002133	+0.003047	6.078877
9b (dimer 2)	C14A-H14A····Br3C	0.003426	+0.011924	1.270349	-0.000714	-0.001553	+0.002267	6.625252
	C14A-H14A····Br3C	0.003426	+0.011924	1.270401	-0.000714	-0.001553	+0.002267	6.625252
	Total	0.015524						

Table S4. QTAIM data of intermolecular interactions for the dimers involved in the 1D arrangement for compounds **5** (a), **7** (b), and **9b** (c, d).

Figure S3. ¹H NMR spectrum of 1,3,5-tris(1-phenyl-1H-pyrazol-5-yl)benzene **5**.

Figure S4. ¹³C NMR spectrum of 1,3,5-tris(1-phenyl-1H-pyrazol-5-yl)benzene 5.

Figure S5. ¹H NMR spectrum of 1,3,5-tris(1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene 6.

Figure S6. ¹³C NMR spectrum of 1,3,5-tris(1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene 6.

Figure S7. ¹H NMR spectrum of 1,3,5-tris(1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene 7.

Figure S8. ¹³C NMR spectrum of 1,3,5-tris(1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene 7.

Figure S9. ¹H NMR spectrum of 1,3,5-tris(4-chloro-1-phenyl-1H-pyrazol-5-yl)benzene 9a.

Figure S10. ¹³C NMR spectrum of 1,3,5-tris(4-chloro-1-phenyl-1H-pyrazol-5-yl)benzene 9a.

Figure S11. ¹H NMR spectrum of 1,3,5-tris(4-bromo-1-phenyl-1H-pyrazol-5-yl)benzene 9b.

Figure S12. ¹³C NMR spectrum of 1,3,5-tris(4-bromo-1-phenyl-1H-pyrazol-5-yl)benzene 9b.

Figure S13. ¹H NMR spectrum of 1,3,5-tris(4-iodo-1-phenyl-1H-pyrazol-5-yl)benzene 9c.

Figure S14. ¹³C NMR spectrum of 1,3,5-tris(4-iodo-1-phenyl-1H-pyrazol-5-yl)benzene 9c.

Figure S15. ¹H NMR spectrum of 1,3,5-tris(4-chloro-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene **10a**.

Figure S16. ¹³C NMR spectrum of 1,3,5-tris(4-chloro-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene **10a**.

Figure S17. ¹H NMR spectrum of 1,3,5-tris(4-bromo-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene **10b**.

Figure S18. ¹³C NMR spectrum of 1,3,5-tris(4-bromo-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene **10b**.

Figure S19. ¹H NMR spectrum of 1,3,5-tris(4-iodo-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene **10c**.

Figure S20. ¹³C NMR spectrum of 1,3,5-tris(4-iodo-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene **10c**.

Figure S21. ¹H NMR spectrum of 1,3,5-tris(4-chloro-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene **11a**.

Figure S22. ¹³C NMR spectrum of 1,3,5-tris(4-chloro-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene **11a**.

Figure S23. ¹H NMR spectrum of 1,3,5-tris(4-Bromo-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene **11b**.

Figure S24. ¹³C NMR spectrum of 1,3,5-tris(4-Bromo-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene **11b**.

Figure S25. ¹H NMR spectrum of 1,3,5-tris(4-iodo-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene **11c**.

Figure S26. ¹³C NMR spectrum of 1,3,5-tris(4-iodo-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene **11c**.

Figure S27. LCMS spectra NMR spectrum of 1,3,5-tris(1-phenyl-1H-pyrazol-5-yl)benzene 5.

Figure S28. LCMS spectra of 1,3,5-tris(1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene 6.

Figure S29. LCMS spectra of 1,3,5-tris(1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene 7.

Figure S30. LCMS spectra of 1,3,5-tris(4-chloro-1-phenyl-1H-pyrazol-5-yl)benzene 9a.

Figure S31. LCMS spectra of 1,3,5-tris(4-bromo-1-phenyl-1H-pyrazol-5-yl)benzene 9b.

Figure S32. LCMS spectra of 1,3,5-tris(4-iodo-1-phenyl-1H-pyrazol-5-yl)benzene 9c.

Figure S33. LCMS spectra of 1,3,5-tris(4-chloro-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene 10a.

Figure S34. LCMS spectra of 1,3,5-tris(4-bromo-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene **10b**.

Figure S35. LCMS spectra of 1,3,5-tris(4-iodo-1-(2,4-difluorophenyl)-1H-pyrazol-5-yl)benzene 10c.

Figure S36. LCMS spectra of 1,3,5-tris(4-chloro-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene 11a.

Figure S37. LCMS spectra of 1,3,5-tris(4-Bromo-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene **11b**.

Figure S38. LCMS spectra of 1,3,5-tris(4-iodo-1-(2,4-dichlorophenyl)-1H-pyrazol-5-yl)benzene **11c**.