Electronic supplementary information

for

Lithium complexes derived of benzylphosphines: Synthesis, characterization and evaluation in the ROP of *rac*-lactide and ε -caprolactone

Ernesto Rufino-Felipe, Miguel A. Muñoz-Hernández and Virginia Montiel-Palma*

Centro de Investigaciones Qu ínicas, Instituto de Investigación en Ciencias B ásicas y Aplicadas, Universidad Aut ónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 M éxico. Tel.:+ 52 777 3297997

E-mail: vmontielp@uaem.mx

Contents

1. NMR spectroscopic data for all lithium complexes	
Figure S1. ¹ H NMR spectrum (400 MHz, C ₆ D ₆ , 298 K) of complex 1-Li	4
Figure S2. ³¹ P{ ¹ H} NMR spectrum (161.92 MHz, C ₆ D ₆ , 298 K) of complex 1-Li	4
Figure S3. DEPTQ NMR spectrum (100.68 MHz, C ₆ D ₆ , 298 K) of complex 1-Li	5
Figure S4. ⁷ Li NMR spectrum (155.45 MHz, C ₆ D ₆ , 298 K) of complex 1-Li	6
Figure S5. ³¹ P{ ¹ H} NMR spectrum (202.40 MHz, C ₇ D ₈) at variable temperatures of complex 1	- Li 7
Figure S6. ¹ H NMR spectrum (700 MHz, C ₆ D ₆ , 298 K) of complex 2-Li	
Figure S7. ³¹ P{ ¹ H} NMR spectrum (161.92 MHz, C ₆ D ₆ , 298 K) of complex 2-Li	9
Figure S8. ⁷ Li NMR spectrum (155.45 MHz, C ₆ D ₆ , 298 K) of complex 2-Li	9
Figure S9. ¹³ C{ ¹ H} NMR spectrum (700 MHz, C ₆ D ₆ , 298 K) of complex 2-Li	
Figure S10. HSQC ¹ H- ¹³ C NMR spectrum (700 MHz, C ₆ D ₆ , 298 K) of complex 2-Li.	
Figure S11. ¹ H NMR spectrum (400 MHz, C ₆ D ₆ , 298 K) of complex 2-Li ₂	
Figure S12. ³¹ P{ ¹ H} NMR spectrum (161.92 MHz, C ₆ D ₆ , 298 K) of complex 2-Li ₂	
Figure S13 . ³¹ P{ ¹ H} NMR spectra for the titration of [PhP(o-tolyl)2] with excess <i>n</i> BuLi, evide formation of complexes 2Li and 2-Li ₂ (161.92 MHz, C ₆ D ₆ , 25 °C)	ncing the 13
Figure S14. ⁷ Li NMR spectrum (155.45 MHz, C ₆ D ₆ , 298 K) of complex 2-Li ₂	14
Figure S15. ¹³ C{ ¹ H} NMR spectrum (125.72 MHz, C ₆ D ₆ , 25 °C) of complex 2-Li ₂	15
Figure S16. ³¹ P{ ¹ H} NMR spectrum (202.40, toluene-d ₈) of complex 2-Li ₂ at given temperature	res 16
Figure S17. ⁷ Li NMR spectrum at 298 K and 203 K (194.32 MHz, C ₇ D ₈) of complex 2-Li ₂	17
Figure S18 . ¹ H NMR spectrum (400 MHz, C ₆ D ₆ , 25 °C) of complex 3-Li₃	17
Figure S19. ³¹ P{ ¹ H} NMR spectrum (161.92 MHz, C ₆ D ₆ , 298 K) of complex 3-Li ₃	
Figure S20. ⁷ Li NMR spectrum (194.32 MHz, C ₆ D ₆ , 298 K) of complex 3-Li₃	
2. FT IR spectra	
Figure S21. Infrared spectrum of 1-Li (KBr disc)	
Figure S22. Infrared spectrum of 2-Li (KBr disc)	
Figure S23. Infrared spectrum of 2-Li ₂ (KBr disc)	
Figure S24. Infrared spectrum of 2-Li ₃ (KBr disc)	
3. X-ray diffraction data	
3.1 X-ray diffraction data of complex 1-Li	
Table S 1. Crystal data and structure refinement for 1-Li.	
Table S 2 . Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Par(Å2×103) for 1-Li.	rameters
Table S 3. Anisotropic Displacement Parameters (Å2×103) for 1-Li.	
Table S 4. Bond Lengths for 1-Li.	
Table S 5. Bond Angles for 1-Li	
Table S 6. Torsion Angles for MM89a.	
Table S 7. Hydrogen Atom Coordinates ($Å \times 104$) and Isotropic Displacement Parameters ($Å$	2×103) for 1-
Li	

3.2 X-ray diffraction data of complex 2-Li	29
Table S 8. Crystal data and structure refinement for 2-Li.	29
Table S 9. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters(Å2×103) for MM122.	29
Table S 10. Anisotropic Displacement Parameters (Å2×103) for 2-Li.	30
Table S 11. Bond Lengths for 2-Li.	31
Table S 12. Bond Angles for 2-Li	31
Table S 13. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) f Li	or 2- 32
Scheme S1. Synthesis of benzylphosphines ligands 1, 2 and 3	34
4. DFT computations for 1a-Li	34
4.1 Cartesian coordinates	34
5. Polymerization reactions	36
5.1 NMR spectra of selected polymers before purification to determine conversion values	36
Figure S25. ¹ H NMR spectrum of PCL obtained with catalyst 1-Li (Table 1, entry 1)	36
Figure S26. ¹ H NMR spectrum of PCL obtained with catalyst 2-Li (Table 1, entry 2)	37
Figure S27. ¹ H NMR spectrum of PCL obtained with catalyst 2-Li ₂ (Table 1, entry 3)	38
Figure S28. ¹ H NMR spectrum of PCL obtained with catalyst 3-Li ₃ (Table 1, entry 4)	39
Figure S29. ¹ H NMR spectrum of PLA obtained with catalyst 2-Li (Table 2, entry 2)	40
5.2 NMR spectra of selected polymers following purification	41
Figure S30. ¹ H NMR spectrum of PCL obtained with catalyst 2-Li (Table 1, entry 2)	41
Figure S31. ¹ H NMR spectrum of PCL obtained with catalyst 3-Li ₃ (Table 1, entry 4)	42
Figure S32. ¹ H NMR of PLA obtained with catalyst 2-Li (Table 2, entry 2)	43
5.3 Calculation procedure for determining the isotactic probability of the polylactides from the methine region of their ¹ H NMR spectra giving rise to the values shown in Table 2	44
Figure S 33. Deconvolution of the methine region of the homonuclear-decoupled ¹ H NMR spectrum of PLA using 2-Li (Table 2, entry 2).	f 44
5.4 Yields of isolated polymers	45
Table S 14. Polymerization of ε -CL by lithium complexes at 25 °C including observed conversion and yields of isolated polymers. Modified from Table 1 in main text. Cat = catalyst	45
Table S 15. Polymerization of <i>rac</i> -LA by lithium complexes at 140 $^{\circ}$ C including yields of isolated polymers. Modified from Table 2 in main text. Cat= catalyst	45

1. NMR spectroscopic data for all lithium complexes

f1 (ppm) Figure S2. ${}^{31}P{}^{1}H}$ NMR spectrum (161.92 MHz, C₆D₆, 298 K) of complex 1-Li.

Figure S3. DEPTQ NMR spectrum (100.68 MHz, C₆D₆, 298 K) of complex 1-Li.

Figure S4. ⁷Li NMR spectrum (155.45 MHz, C₆D₆, 298 K) of complex 1-Li.

Figure S5. ³¹P{¹H} NMR spectrum (202.40 MHz, C₇D₈) at variable temperatures of complex **1-Li**.

Figure S6. ¹H NMR spectrum (700 MHz, C₆D₆, 298 K) of complex 2-Li.

Figure S7. ³¹P{¹H} NMR spectrum (161.92 MHz, C₆D₆, 298 K) of complex **2-Li**.

Figure S8. ⁷Li NMR spectrum (155.45 MHz, C₆D₆, 298 K) of complex 2-Li.

Figure S9. $^{13}C{^{1}H}$ NMR spectrum (700 MHz, C_6D_6 , 298 K) of complex 2-Li.

Figure S13. ³¹P{¹H} NMR spectra for the titration of [PhP(o-tolyl)2] with excess *n*BuLi, evidencing the formation of complexes **2Li** and **2-Li**₂ (161.92 MHz, C₆D₆, 25 °C).

Figure S14. ⁷Li NMR spectrum (155.45 MHz, C₆D₆, 298 K) of complex 2-Li₂.

Figure S15. ¹³C{¹H} NMR spectrum (125.72 MHz, C₆D₆, 25°C) of complex 2-Li₂.

Figure S16. ${}^{31}P{}^{1}H$ NMR spectrum (202.40, toluene-d₈) of complex **2-Li₂** at given temperatures.

Figure S17. ⁷Li NMR spectrum at 298 K and 203 K (194.32 MHz, C₇D₈) of complex 2-Li₂

Figure S18. ¹H NMR spectrum (400 MHz, C₆D₆, 25 °C) of complex 3-Li₃

2. FT IR spectra

3. X-ray diffraction data

3.1 X-ray diffraction data of complex 1-Li

```
Table S 1. Crystal data and structure refinement for 1-Li.
Identification code MM89a
Empirical formula C<sub>25</sub>H<sub>32</sub>LiN<sub>2</sub>P
Formula weight 398,43
Temperature/K 113(18)
Crystal system monoclinic
Space group C2/c
a/Å 17.0285(9)
b/Å 14.1666(7)
c/Å 19.4268(10)
\alpha/^{\circ}
       90
B/°
       96.613(5)
\gamma/^{\circ}
       90
Volume/Å<sub>3</sub> 4655. 3 (4)
78
\rho calcg/cm<sub>3</sub> 1.137
\mu /mm-1 1.117
F(000) 1712.0
Crvstal size/mm<sub>3</sub> 0.21 \times 0.18 \times 0.08
Radiation CuK \alpha (\lambda = 1.54184)
2\Theta range for data collection/° 8.14 to 145.162
Index ranges -13 \le h \le 20, -15 \le k \le 17, -23 \le l \le 20
Reflections collected 8275
Independent reflections 4529 [Rint = 0.0294, Rsigma = 0.0353]
Data/restraints/parameters 4529/0/261
Goodness-of-fit on F<sub>2</sub> 1.047
Final R indexes [I>=2\sigma (I)] R<sub>1</sub> = 0.0514, wR<sub>2</sub> = 0.1362
Final R indexes [all data] R<sub>1</sub> = 0.0566. wR<sub>2</sub> = 0.1424
Largest diff. peak/hole / e Å-3 0.53/-0.43
```

 Table S 2. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for

1-Li.

Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom x y z U(eq)

- P1 3265.5(2) 4468.8(3) 6618.6(2) 20.68(14)
- **C3** 1266.4(10) 5659.8(12) 5562.8(9) 26.9(4)
- **C1** 2269.9(9) 4669.2(12) 6205.3(8) 21.1(3)
- **C8** 3839.8(9) 5474.2(12) 6356.7(8) 23.7(3)
- N1 1809.5(8) 5389.5(10) 7960.9(7) 25.6(3)
- **C2** 2055(1) 5442.7(12) 5779.5(8) 24.1(3)
- **C5** 875.6(9) 4332.2(12) 6229.2(9) 24.7(3)

```
C19 4345.9(9) 3043.0(12) 6416.9(8) 23.4(3)
C20 2264.5(11) 5648.2(14) 8628.8(9) 32.1(4)
C17 4335.9(10) 2075.1(12) 5399.7(9) 26.0(3)
C13 4225.7(10) 5483.3(12) 5760.8(9) 26.9(4)
C23 1708.9(11) 6213.4(13) 7500.6(9) 31.1(4)
N2 2975.9(9) 4120.5(12) 8648.5(7) 31.8(3)
C18 4681.6(9) 2336.0(12) 6054.0(9) 26.4(4)
C15 3315.8(9) 3236.9(11) 5469.5(8) 22.3(3)
C16 3652.5(9) 2528.8(12) 5107.1(8) 24.4(3)
C14 3661.3(9) 3509.6(11) 6127.5(8) 21.1(3)
C7 1869.4(9) 3241.1(12) 6843.7(8) 24.7(3)
C6 1677.2(9) 4042.9(11) 6428.9(8) 21.7(3)
C4 683.9(9) 5094.3(12) 5808.2(8) 26.6(4)
C25 3788.9(11) 4456.4(17) 8631.4(10) 43.4(5)
C22 1023.9(10) 5019.8(15) 8066.6(10) 34.7(4)
C11 4727.8(12) 7037.7(15) 6031.2(10) 39.3(5)
C21 2534.6(11) 4782.1(14) 9046.9(9) 33.2(4)
C12 4664.7(11) 6259.2(14) 5602.8(9) 32.3(4)
C10 4342.7(14) 7043.6(15) 6623.2(11) 44.3(5)
C9 3912.9(11) 6265.3(14) 6788(1) 35.4(4)
C24 2991.2(16) 3178.5(16) 8958.3(12) 52.4(6)
Li1 2403.6(17) 4221(2) 7648.2(15) 28.2(6)
```

Table S 3. Anisotropic Displacement Parameters (Å₂×10₃) for 1-Li.

The Anisotropic displacement factor exponent takes the form: $-2\pi_2[h_2a^*_2U_{11}+2h_ka^*b^*U_{12}+...]$. Atom U₁₁ U₂₂ U₃₃ U₂₃ U₁₃ U₁₂

P1 16.8(2) 22.6(2) 23.1(2) -1.15(14) 4.36(15) -0.20(13) **C3** 26.6(8) 27.8(9) 26.4(8) 2.0(6) 2.7(6) 7.2(7) C1 18.3(7) 22.9(8) 22.7(7) -2.9(6) 4.8(5) 1.7(6) **C8** 18.8(7) 24.5(8) 27.9(8) -0.3(6) 3.7(6) -1.7(6) N1 20.5(7) 29.0(8) 27.8(7) -4.6(6) 4.5(5) -0.4(5) C2 22.2(8) 25.2(8) 26.1(8) -1.5(6) 7.2(6) 1.0(6) C5 18.1(7) 26.2(8) 30.1(8) -6.7(6) 4.4(6) -1.2(6) **C19** 18.6(7) 25.4(8) 26.3(7) 2.0(6) 3.3(6) -0.8(6) **C20** 30.6(9) 36.2(10) 29.4(9) -11.3(7) 2.5(7) 2.3(7) C17 23.7(8) 23.6(8) 32.8(8) 0.9(6) 12.1(6) 0.9(6) **C13** 24.2(8) 27.6(9) 29.2(8) -3.1(6) 4.8(6) -3.4(6) **C23** 30.3(9) 28.8(9) 34.7(9) -3.8(7) 6.0(7) 5.3(7) N2 31.5(8) 34.2(9) 29.0(7) -1.8(6) 0.8(6) 3.7(6) C18 18.5(7) 26.1(9) 35.2(8) 4.5(7) 5.5(6) 2.7(6) C15 16.1(7) 24.1(8) 27.3(7) 0.5(6) 4.5(5) 0.1(6) C16 22.5(8) 25.9(8) 25.9(7) -2.1(6) 6.8(6) -3.2(6) C14 16.0(7) 21.6(8) 26.9(7) 0.8(6) 6.8(5) -1.1(6) C7 21.0(7) 24.0(8) 29.7(8) -2.0(6) 6.0(6) -1.0(6)

Table S 4. Bond Lengths for 1-Li.

Atom Atom Length/Å Atom Atom Length/Å P1 C1 1.8128(16) C19 C14 1.400(2) P1 C8 1.8325(17) C20 C21 1.513(3) P1 C14 1.8328(16) C17 C18 1.388(2) P1 Li1 2.637(3) C17 C16 1.392(2) C3 C2 1.395(2) C13 C12 1.383(2) C3 C4 1.401(3) N2 C25 1.468(3) C1 C2 1.396(2) N2 C21 1.475(2) C1 C6 1.447(2) N2 C24 1.463(3) C8 C13 1.395(2) N2 Li1 2.076(3) **C8 C9** 1.396(2) **C15 C16** 1.387(2) N1 C20 1.479(2) C15 C14 1.399(2) N1 C23 1.468(2) C7 C6 1.409(2) N1 C22 1.473(2) C7 Li1 2.206(3) N1 Li1 2.068(3) C6 Li1 2.555(3) C5 C6 1.435(2) C11 C12 1.378(3) C5 C4 1.371(2) C11 C10 1.388(3) C19 C18 1.386(2) C10 C9 1.381(3)

Table S 5. Bond Angles for 1-Li.

Atom Atom Atom Angle/° Atom Atom Atom Angle/° C1 P1 C8 104.90(7) C24 N2 Li1 115.58(15) C1 P1 C14 105.48(7) C19 C18 C17 120.14(15) C1 P1 Li1 77.46(8) C16 C15 C14 120.58(14) C8 P1 C14 101.06(7) C15 C16 C17 120.11(15) C8 P1 Li1 132.50(9) C19 C14 P1 118.69(12) C14 P1 Li1 124.48(8) C15 C14 P1 122.64(12) C2 C3 C4 117.79(15) C15 C14 C19 118.66(14) C2 C1 P1 123.59(12) C6 C7 Li1 87.00(12) C2 C1 C6 120.97(14) C1 C6 Li1 86.44(11) C6 C1 P1 114.83(12) C5 C6 C1 114.72(14) C13 C8 P1 123.71(13) C5 C6 Li1 124.49(12) C13 C8 C9 118.18(15) C7 C6 C1 122.80(14)

C9 C8 P1 118.08(13) **C7 C6 C5** 122.39(15) C20 N1 Li1 103.40(13) C7 C6 Li1 59.57(11) C23 N1 C20 110.48(14) C5 C4 C3 121.61(15) C23 N1 C22 108.87(14) C12 C11 C10 119.58(18) C23 N1 Li1 118.96(13) N2 C21 C20 112.04(14) C22 N1 C20 111.00(14) C11 C12 C13 120.55(17) C22 N1 Li1 103.84(14) C9 C10 C11 120.05(18) **C3 C2 C1** 121.97(15) **C10 C9 C8** 120.98(17) C4 C5 C6 122.67(15) N1 Li1 P1 116.74(13) C18 C19 C14 120.67(15) N1 Li1 N2 88.42(12) N1 C20 C21 111.48(15) N1 Li1 C7 122.41(15) C18 C17 C16 119.83(15) N1 Li1 C6 98.64(12) C12 C13 C8 120.64(16) N2 Li1 P1 118.48(13) C25 N2 C21 110.16(15) N2 Li1 C7 136.95(16) C25 N2 Li1 107.39(14) N2 Li1 C6 170.37(16) C21 N2 Li1 103.60(13) C7 Li1 P1 76.51(10) C24 N2 C25 109.45(17) C7 Li1 C6 33.42(7) C24 N2 C21 110.47(17) C6 Li1 P1 64.04(7)

Table S 6. Torsion Angles for MM89a.

A B C D Angle/° A B C D Angle/° P1 C1 C2 C3 -169.24 (13) C14 P1 C1 C6 83.47(12) P1 C1 C6 C5 166.25(11) C14 P1 C8 C13 19.87(15) P1 C1 C6 C7 -10.3(2) C14 P1 C8 C9 -158.29 (14)P1 C1 C6 Li1 39.66(12) C14 C19 C18 C17 -0.7(2) P1 C8 C13 C12 -178.49 (14) C14 C15 C16 C17 0.6(2) P1 C8 C9 C10 179.50(17) C6 C1 C2 C3 1.4(2) C1 P1 C8 C13 -89.60(15) C6 C5 C4 C3 -2.0(2) C1 P1 C8 C9 92.24(15) C4 C3 C2 C1 2.4(2) C1 P1 C14 C19 -164.97 (12) C4 C5 C6 C1 5.5(2) C1 P1 C14 C15 16.30(15) C4 C5 C6 C7 -177.93 (15)C8 P1 C1 C2 0.85(15) C4 C5 C6 Li1 109.03(18) C8 P1 C1 C6 -170.30 (11) C25 N2 C21 C20 78.39(18) C8 P1 C14 C19 86.01(13) C22 N1 C20 C21 71.93(19) C8 P1 C14 C15 -92.71(14) C11 C10 C9 C8 -1.7(3) C8 C13 C12 C11 -0.1(3) C12 C11 C10 C9 1.3(3) N1 C20 C21 N2 53.9(2) C10 C11 C12 C13 -0.4(3) C2 C3 C4 C5 -2.1(2) C9 C8 C13 C12 -0.3(3) C2 C1 C6 C5 -5.1(2) C24 N2 C21 C20 -160.58 (16)

C2 C1 C6 C7 178.33(14) Li1 P1 C1 C2 131.92(15) C2 C1 C6 Li1 -131.73 (15) Li1 P1 C1 C6 -39.22(12) C13 C8 C9 C10 1.2(3) Li1 P1 C8 C13 -176.11 (14)C23 N1 C20 C21 -167.19 (14) Li1 P1 C8 C9 5.7(2) C18 C19 C14 P1 -177.73 (12) Li1 P1 C14 C19 -79.73(15) C18 C19 C14 C15 1.1(2) Li1 P1 C14 C15 101.54(15) C18 C17 C16 C15 -0.3(2) Li1 N1 C20 C21 -38.85(18) C16 C17 C18 C19 0.3(2) Li1 N2 C21 C20 -36.22(19) C16 C15 C14 P1 177.71(12) Li1 C7 C6 C1 62.36(17) C16 C15 C14 C19 -1.0(2) Li1 C7 C6 C5 -113.90 (16)C14 P1 C1 C2 -105.39 (14)Crystal structure determination of [MM89a]

Crystal Data for C₂₅H₃₂LiN₂P (M =398.43 g/mol): monoclinic, space group C₂/c (no. 15), a = 17.0285(9) Å, b = 14.1666(7) Å, c = 19.4268(10) Å, β = 96.613(5)°, V = 4655.3(4) Å₃, Z = 8, T = 113(18) K, μ (CuK α) = 1.117 mm-1,

Table S 7. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for **1-Li**.

H22C 730 5499 8274 52 H11 5026 7556 5924 47 H21A 2869 4976 9461 40 H21B 2077 4462 9191 40 H12 4919 6255 5204 39 H10 4374 7572 6909 53 H9 3669 6268 7192 43 H24A 3276 2755 8691 79 H24B 2460 2954 8963 79 H24C 3248 3208 9424 79 Dcalc = 1.137 g/cm3, 8275 reflections measured (8.14° $\leq 2\Theta \leq 145.162°$), 4529 unique (Rint = 0.0294, Rsigma = 0.0353) which were used in all calculations. The final R₁ was 0.0514 ($I > 2\sigma(I)$) and wR₂ was 0.1424 (all data). Refinement model description Number of restraints - 0, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C20(H20A,H20B), C7(H7A,H7B), C21(H21A,H21B) 2.b Aromatic/amide H refined with riding coordinates: C3(H3), C2(H2), C5(H5), C19(H19), C17(H17), C13(H13), C18(H18), C15(H15), C16(H16), C4(H4), C11(H11), C12(H12), C10(H10), C9(H9) 2.c Idealised Me refined as rotating group:

C23(H23A,H23B,H23C), C25(H25A,H25B,H25C), C22(H22A,H22B,H22C), C24(H24A,H24B,

H24C)

3.2 X-ray diffraction data of complex 2-Li

```
Table S 8. Crystal data and structure refinement for 2-Li.
Identification code MM122
Empirical formula C<sub>26</sub>H<sub>34</sub>LiN<sub>2</sub>P
Formula weight 412,46
Temperature/K 100.0(3)
Crystal system monoclinic
Space group P21/n
a/Å 10.90505(11)
b/Å 18.17218(18)
c/Å 12.49103(13)
\alpha/^{\circ}
       90
\beta/^{\circ}
       103, 7696 (10)
\gamma/^{\circ}
       90
Volume/Å3 2404. 19(4)
Z 4
\rho calcg/cm<sub>3</sub> 1.140
\mu /mm-1 1.097
F(000) 888.0
Crystal size/mm<sub>3</sub> 0.21 \times 0.16 \times 0.12
Radiation CuK \alpha (\lambda = 1.54184)
2\Theta range for data collection/° 8.764 to 145.202
Index ranges -12 \le h \le 13, -22 \le k \le 18, -15 \le l \le 11
Reflections collected 8793
Independent reflections 4677 [R_{int} = 0.0109, R_{sigma} = 0.0153]
Data/restraints/parameters 4677/0/282
Goodness-of-fit on F<sub>2</sub> 1.042
Final R indexes [I \ge 2\sigma (I)] R_1 = 0.0685. wR<sub>2</sub> = 0.1834
Final R indexes [all data] R_1 = 0.0704. wR_2 = 0.1851
Largest diff. peak/hole / e Å-3 1.70/-0.64
MM122
```

Table S 9. Fractional Atomic Coordinates (×10₄) and Equivalent Isotropic Displacement Parameters (Å₂×10₃) for MM122.

 U_{eq} is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom x y z U(eq)

P7 1904.8(5) 1260.4(3) 7728.4(5) 19.44(19)
C1 2642(2) 1248.7(13) 9218.2(19) 21.8(5)
C4 3803(3) 1245.2(18) 11461(2) 38.7(7)
C9 -714(2) 1220.3(13) 6981(2) 25.4(5)
C20 4528(2) 1328.8(13) 7310(2) 23.0(5)
C8 319(2) 922.3(12) 7732.6(18) 20.2(5)

N26 1998(2) 1601.0(12) 4581.7(17) 29.4(5) N23 2786(2) 2975.3(12) 5686.6(19) 32.9(5) **C19** 3872(2) 670.8(13) 6964.7(18) 20.6(5) **C2** 2395(2) 1824.6(13) 9891(2) 27.1(5) C12 -1110(2) 145.6(13) 8438.0(19) 24.8(5) **C18** 4343(2) 127.9(13) 6333.7(19) 23.6(5) **C6** 3448(2) 676.2(15) 9690(2) 29.2(5) **C3** 2987(3) 1813.1(16) 11007(2) 34.6(6) C13 104(2) 385.2(13) 8465.2(19) 23.0(5) **C10** -1931(2) 983.2(15) 6960(2) 29.5(5) C15 2013(2) -143.2(14) 6773(2) 28.5(5) C17 3697(2) -505.6(14) 5965(2) 27.7(5) Li30 2918(4) 1887(2) 6193(3) 25.3(8) C11 -2130(2) 448.6(14) 7688(2) 26.3(5) C14 2645(2) 509.0(13) 7163.2(18) 21.9(5) **C21** 1487(3) 2435.8(15) 9418(2) 39.4(7) **C5** 4021(3) 670.3(18) 10808(2) 37.1(6) **C16** 2522(2) -654.9(15) 6182(2) 32.4(6) C24 2371(4) 2918.9(19) 4474(3) 57.6(10) C25 1567(4) 2287.9(18) 4062(3) 54.2(9) C27 3008(4) 1300(2) 4098(3) 56.1(10) C28 1035(4) 1016(2) 4402(3) 57.9(10) **C22** 1736(4) 3310(2) 6066(4) 70.3(12) **C29** 3929(4) 3397(2) 5974(4) 69.4(12)

Table S 10. Anisotropic Displacement Parameters (Å₂×10₃) for 2-Li.

The Anisotropic displacement factor exponent takes the form: $-2\pi_2[h_2a^*_2U_{11}+2h_ka^*b^*U_{12}+...]$.

Atom U11 U22 U33 U23 U13 U12

P7 19.0(3) 20.5(3) 19.5(3) 0.2(2) 6.0(2) 0.4(2) **C1** 21.1(11) 24.9(12) 20.9(11) -0.6(8) 7.8(9) -3.4(9) C4 33.3(14) 61.2(19) 21.1(12) 0.0(12) 5.8(11) -5.6(13) **C9** 24.9(12) 29.6(12) 22.3(11) 5.5(9) 6.7(9) 4.1(9) **C20** 17.3(11) 26.9(12) 24.2(12) -0.9(9) 4.1(9) 0.8(9) **C8** 20.4(10) 21.8(11) 19.4(10) -2.1(8) 6.7(8) 1.6(8) N26 30.5(11) 36.9(12) 20.4(10) -1.0(8) 4.9(8) -8.0(9) N23 40.9(13) 23.7(10) 33.2(12) 2.1(9) 7.3(10) 3.4(9) **C19** 18.4(10) 25.2(11) 17.2(10) 2.3(8) 2.3(8) 3.1(9) **C2** 32.5(13) 23.6(12) 27.1(12) -2.8(9) 11(1) -6.2(10) C12 27.3(12) 25.3(12) 23.4(11) 0.1(9) 8.9(9) -2.5(9) **C18** 17.9(10) 31.5(12) 21.5(11) 0.0(9) 4.9(9) 3.8(9) **C6** 24.8(12) 38.2(14) 26.0(12) 1.5(10) 8.5(10) 6.4(10) **C3** 41.8(15) 37.7(14) 26.4(13) -7.5(11) 12.4(11) -9.6(12) **C13** 21.8(11) 24.3(11) 22.0(11) 2.0(9) 3.2(9) 2.2(9) **C10** 21.1(11) 37.9(14) 27.8(12) 4.4(11) 2.5(9) 4.8(10) C15 24.3(12) 29.0(13) 34.5(13) -7.6(10) 12(1) -3.8(10)

C17 26.6(12) 30.4(13) 26.8(12) -6.5(10) 7.5(10) 5(1) Li 30 25.5(19) 28(2) 21.6(19) 0.4(16) 3.5(15) 1.5(16) C11 20.6(11) 31.8(13) 27.3(12) -3.8(10) 7.3(9) -2.1(9) C14 20.6(11) 24.6(11) 20.8(11) -1.6(9) 5.6(8) 0.8(9) C21 59.2(19) 24.7(13) 36.6(15) -2.1(11) 16.2(13) 6.1(12) C5 27.5(13) 55.2(18) 28.6(13) 10.4(12) 6.9(11) 9.4(12) C16 29.9(13) 28.7(13) 40.1(14) -12.3(11) 11.4(11) -5.2(10) C24 71(2) 44.4(18) 43.9(18) 21.4(15) -12.1(16) -15.6(17) C25 77(2) 46.5(18) 28.0(14) 0.4(13) -9.7(15) 23.2(17) C27 79(3) 56(2) 35.3(17) -1.4(14) 18.0(17) 21.5(18) C28 60(2) 67(2) 42.7(18) -0.4(17) 2.8(16) -23.6(18)C22 79(3) 49(2) 88(3) -4(2) 30(2) 20(2) C29 71(3) 52(2) 70(3) 9.3(19) -12(2) -30.0(19)

Table S 11. Bond Lengths for 2-Li.

Atom Atom Length/Å Atom Atom Length/Å P7 C1 1.843(2) N23 C24 1.477(4) P7 C8 1.836(2) N23 C22 1.471(4) P7 Li30 2.684(4) N23 C29 1.434(4) P7 C14 1.813(2) C19 C18 1.432(3) C1 C2 1.408(3) C19 Li30 2.533(5) C1 C6 1.399(3) C19 C14 1.448(3) **C4 C3** 1.392(4) **C2 C3** 1.391(4) C4 C5 1.381(4) C2 C21 1.511(4) **C9 C8** 1.393(3) **C12 C13** 1.386(3) **C9** C10 1.389(3) C12 C11 1.387(3) C20 C19 1.407(3) C18 C17 1.371(4) C20 Li30 2.211(5) C6 C5 1.388(4) C8 C13 1.395(3) C10 C11 1.383(4) N26 Li30 2.090(4) C15 C14 1.399(3) N26 C25 1.434(4) C15 C16 1.383(4) N26 C27 1.481(4) C17 C16 1.398(4) N26 C28 1.473(4) C24 C25 1.461(5) N23 Li30 2.071(5)

Table S 12. Bond Angles for 2-Li.

Atom Atom Atom Angle/° Atom Atom Atom Angle/° C1 P7 Li30 124.86(11) C18 C19 C14 114.9(2) C8 P7 C1 100.25(10) C14 C19 Li30 85.97(16) C8 P7 Li30 133.79(11) C1 C2 C21 120.9(2) C14 P7 C1 104.89(11) C3 C2 C1 118.5(2) C14 P7 C8 104.84(10) C3 C2 C21 120.5(2) C14 P7 Li30 75.16(12) C13 C12 C11 120.0(2) C2 C1 P7 119.63(18) C17 C18 C19 122.7(2) C6 C1 P7 120.87(18) C5 C6 C1 121.1(2) C6 C1 C2 119.5(2) C2 C3 C4 121.3(3) C5 C4 C3 120.2(2) C12 C13 C8 120.8(2) C10 C9 C8 120.5(2) C11 C10 C9 120.3(2) C19 C20 Li30 85.82(17) C16 C15 C14 121.9(2) C9 C8 P7 118.65(18) C18 C17 C16 121.3(2) C9 C8 C13 118.6(2) C20 Li30 P7 75.81(13) C13 C8 P7 122.78(17) C20 Li30 C19 33.65(10) C25 N26 Li30 104.5(2) N26 Li30 P7 113.45(18) C25 N26 C27 109.4(3) N26 Li30 C20 128.4(2) C25 N26 C28 114.5(3) N26 Li30 C19 102.08(18) C27 N26 Li30 104.6(2) N23 Li30 P7 127.79(19) C28 N26 Li30 119.2(2) N23 Li30 C20 128.1(2) C28 N26 C27 104.2(3) N23 Li30 N26 87.74(17) C24 N23 Li30 103.2(2) N23 Li30 C19 160.3(2) C22 N23 Li30 107.5(2) C19 Li30 P7 63.88(11) C22 N23 C24 106.7(3) C10 C11 C12 119.8(2) C29 N23 Li30 116.1(2) C19 C14 P7 115.42(17) C29 N23 C24 109.3(3) C15 C14 P7 123.07(18) C29 N23 C22 113.2(3) C15 C14 C19 120.7(2) C20 C19 C18 122.1(2) C4 C5 C6 119.3(3) C20 C19 Li30 60.53(15) C15 C16 C17 118.4(2) C20 C19 C14 122.9(2) C25 C24 N23 115.3(3) C18 C19 Li30 124.06(18) N26 C25 C24 114.8(3)

Table S 13. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for 2-Li.

H24A 1917 3365 4195 69 H24B 3115 2895 4176 69 H25A 726 2385 4161 65 H25B 1503 2241 3277 65 H27A 2673 1204 3328 84 H27B 3324 851 4467 84 H27C 3682 1652 4184 84 H28A 318 1180 4659 87 H28B 1383 583 4801 87 H28C 776 904 3630 87 H22A 1485 3759 5668 105 H22B 2004 3415 6840 105 H22C 1035 2976 5937 105 H29A 4585 3144 5729 104 H29B 4175 3458 6760 104 H29C 3792 3871 5627 104 Crystal Data for C₂₆H₃₄LiN₂P (M = 412.46 g/mol): monoclinic, space group P2₁/n (no. 14), a = 10.90505 (11) Å, b = 18.17218(18) Å, c = 12.49103(13) Å, β = 103.7696(10)°, V = 2404.19(4) Å₃, Z = 4, T = 100.0(3) K, μ $(CuK\alpha) = 1.097 \text{ mm}_{-1}, \text{ Dcalc} = 1.140 \text{ g/cm}_{3}, 8793 \text{ reflections measured} (8.764^{\circ} \le 2\Theta \le 145.202^{\circ}), 4677 \text{ unique}$ (Rint =0.0109, $R_{sigma} = 0.0153$) which were used in all calculations. The final R₁ was 0.0685 (I > 2 σ (I)) and wR₂ was 0.1851 (all data). Refinement model description Number of restraints - 0, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, {H24A,H24B} of C24, {H25A,H25B} of C25 At 1.5 times of: All C(H,H,H) groups, {H20A,H20B} of C20 2.a Secondary CH2 refined with riding coordinates: C24(H24A,H24B), C25(H25A,H25B) 2.b Aromatic/amide H refined with riding coordinates: C4(H4), C9(H9), C12(H12), C18(H18), C6(H6), C3(H3), C13(H13), C10(H10), C15(H15), C17(H17), C11(H11), C5(H5), C16(H16) 2.c Idealised Me refined as rotating group: C21(H21A,H21B,H21C), C27(H27A,H27B,H27C), C28(H28A,H28B,H28C), C22(H22A,H22B,

H22C), C29(H29A,H29B,H29C)

Scheme S1. Synthesis of benzylphosphines ligands 1, 2 and 3.

4. DFT computations for **1a-Li**.

4.1 Cartesian coordinates

15	-0.767531001	-0.186762034	-0.211395927
6	0.047497975	2.083229169	3.114919325
1	-0.155486079	3.085122237	3.477974357
6	-0.280896983	0.344032025	1.455019202
6	-1.528860114	1.307938053	-0.954943982
7	3.161594271	0.615218178	0.121095098
6	-0.523289051	1.628805112	1.941516237
1	-1.159831125	2.301551138	1.370454196
6	1.138855142	-0.054152951	3.370020346
1	1.782146216	-0.716706977	3.947285392
6	-2.771636090	-1.889623243	-1.113166995
1	-2.311150059	-1.727476211	-2.087039070
6	3.770125316	0.587240196	-1.205843003
1	4.730165370	1.136772280	-1.214968003
1	3.099647243	1.123665215	-1.888980054
6	-4.471358176	-2.910847384	0.236447107
1	-5.343720233	-3.551107468	0.325490114
6	-2.836066230	1.713213032	-0.699257965
1	-3.463006256	1.116945961	-0.040569914
6	2.689549184	1.958852263	0.436581122
1	3.518073218	2.688577350	0.422282121
1	2.223651146	1.969013245	1.426007197
1	1.933394112	2.269991256	-0.290492934
7	2.765825327	-1.618835010	-1.683951038
6	-3.887609142	-2.700913344	-1.004705990
1	-4.303168157	-3.174543397	-1.889311054
6	-2.822139105	-1.485820213	1.250511182
1	-2.400116095	-1.006721160	2.130953252
6	-3.934537163	-2.307091317	1.361690195

1	-4.385291190	-2.474285345	2.335461266
6	-2.235833071	-1.265322171	0.010596090
6	0.847008190	-1.882180100	1.724540219
1	0.076127150	-2.428020172	1.179990180
1	1.410780254	-2.512910130	2.411101275
6	0.546907116	-0.576816013	2.184732255
6	0.894855074	1.219757136	3.817792380
1	1.359985096	1.556414183	4.741613453
6	1.924227249	-1.321775017	-2.835852130
1	1.650335186	-0.263506948	-2.855358127
1	0.994956201	-1.894310097	-2.770617122
1	2.434618298	-1.573852018	-3.782005202
6	4.094286355	0.175820180	1.152165178
1	4.402047419	-0.861190887	0.988715164
1	3.598344316	0.225739165	2.125802251
1	4.997169403	0.811504260	1.176656178
6	-2.540115281	3.643035192	-2.100865069
1	-2.935274349	4.551465245	-2.545196107
6	3.995498387	-0.825358898	-1.705701043
1	4.431423418	-0.797091880	-2.720230119
1	4.732157463	-1.327435911	-1.069288993
6	-3.337855312	2.871996100	-1.268794007
1	-4.358159405	3.178401084	-1.058377993
6	-1.239607167	3.247590210	-2.368395094
1	-0.613046144	3.843095281	-3.025618140
6	-0.743786088	2.083760140	-1.802704048
1	0.273188005	1.764215156	-2.028212065
6	3.063763400	-3.043123106	-1.647484037
1	2.130324351	-3.610984186	-1.603926034
1	3.644151455	-3.280395104	-0.751000970
1	3.632062459	-3.367378111	-2.536789105
3	1.746874219	-0.947092997	0.038740092

5. Polymerization reactions

5.1 NMR spectra of selected polymers before purification to determine conversion values

Figure S30. ¹H NMR spectrum of PCL obtained with catalyst 2-Li (Table 1, entry 2).

Figure S31. ¹H NMR spectrum of PCL obtained with catalyst 3-Li₃ (Table 1, entry 4).

Figure S32. ¹H NMR of PLA obtained with catalyst 2-Li (500 MHz, Table 2, entry 2).

5.3 Calculation procedure for determining the isotactic probability of the polylactides from the methine region of their ¹H NMR spectra giving rise to the values shown in Table 2.

The calculation procedure for the determination of the isotactic probability of the polymers was based on the methods reported in the references below:

- Coudane, J., et al. (1997). "More about the stereodependence of DD and LL pair linkages during the ring-opening polymerization of racemic lactide." Journal of Polymer Science Part A: Polymer Chemistry **35**(9): 1651-1658.

- Chamberlain, B. M., et al. (2001). "Polymerization of Lactide with Zinc and Magnesium β -Diiminate Complexes: Stereocontrol and Mechanism." Journal of the American Chemical Society **123**(14): 3229-3238.

- Xiong, J., et al. (2015). "Iso-Selective Ring-Opening Polymerization of rac-Lactide Catalyzed by Crown Ether Complexes of Sodium and Potassium Naphthalenolates." <u>Inorganic Chemistry</u> **54**(4): 1737-1743.

Herein, we show a representative example of the methine region of one of our polymers and of the calculations giving rise to the results presented in Table 2 of the manuscript.

5.4 Yields of isolated polymers

Entry	Cat	[ɛ-CL]º/[Cat]º	Conversion ^a (%)	Yield ^b (%)
1	1-Li	100	99	77
2	2-Li	100	94	80
3	2-Li ₂	100	98	90
4	3-Li ₃	100	98	92

Table S 14. Polymerization of ε -CL by lithium complexes at 25°C including observed conversion and yields of isolated polymers. Modified from Table 1 in main text. Cat = catalyst.

^a Conversion was determined by ¹H NMR of CDCl₃ solutions of the polymers formed after the reaction times indicated in Table 1 and according to the description in the Experimental Part of the main text. ^b The yield was determined from gravimetric analysis of the isolated polymer after purification as described in the Experimental Part.

Table S 15. Polymerization of *rac*-LA by lithium complexes at 140°C including yields of isolated polymers. Modified from Table 2 in main text. Cat= catalyst.

Entry	Cat.	[rac-LA]0/[Cat]0	Conversion ^a (%)	Yield ^ь (%)
1	1-Li	100	93	92
2	2-Li	100	95	89
3	2-Li 2	100	97	90
4	3-Li ₃	100	98	95

^a Conversion was determined by ¹H NMR of CDCl₃ solutions of the polymers formed after the reaction times indicated in Table 2 and according to the description in the Experimental Part of the main text. ^b The yield was determined from gravimetric analysis of the isolated polymer after purification as described in the Experimental Part.