Supplementary Materials:

Polyphenol-Rich Extracts from *Cotoneaster* Leaves Inhibit Pro-Inflammatory Enzymes and Protect Human Plasma Components Against Oxidative Stress in vitro

Agnieszka Kicel, Joanna Kolodziejczyk-Czepas, Aleksandra Owczarek, Anna Marchelak, Malgorzata Sopinska, Pawel Ciszewski, Pawel Nowak, Monika A. Olszewska

Results

Qualitative UHPLC-PDA-ESI-MS³ profiling of Cotoneaster leaf phenolics

The qualitative UHPLC-PDA-ESI-MS³ survey on the *Cotoneaster* leaf extracts revealed the presence of over forty phenolic compounds (Figure 1, Table S1), that were divided into three main groups such as phenolic acids and related quinic acid pseudodepsides, flavonoids, and flavan-3-ol derivatives including procyanidins.

In the group of quinic acid mono- and diesters containing in their structure caffeic and p-coumaroyl moieties (3, 4, 6, 7, 9, 12, 13, 17, 21, 42 and 46), compounds 3, 6, 9, 13, 42 and 46 were identified for the first time in the *Cotoneaster* species. Compound 6 was proposed to be a caffeic acid derivative, because its [M-H]- ion at m/z 451 yielded the MS² peak at m/z 179, typical of caffeic acid moiety. Compounds 9, 13, 42 and 46, eluting after chlorogenic acid (7) displayed the parent [M-H]ions at m/z 515, suggesting that all four analytes were dicaffeoylquinic acids. In the case of compounds 9 and 13, despite the occurrence of some MS² fragments characteristic for dicaffeoylquinic acids, their MS fragmentation pattern was not characteristic enough to assign to any particular structure [1]. On the other hand, the MS² base peak of 42 and 46 at m/z 353, produced by the loss of a caffeoyl moiety [M–H–caffeoyl]-, and its subsequent fragmentation evaluated by the hierarchical key [1], allowed for identification of compounds 45 and 46 as 3,5- and 4,5-O-dicaffeoylquinic acids, respectively. The peak 3, also displaying the parent $[M-H]^-$ ion at m/z 515, was eluted much earlier than those of dicaffeoylquinic acids (9, 13, 42, 46) and chlorogenic acid (7). In addition to the fragments characteristic of monocaffeoylquinic acids, the MS² spectrum of this compound yielded fragments at m/z 353 ([M-H-162]-, loss of a hexose residue) and 341 ([M–H–174]-, loss of a quinic acid moiety). This fragmentation pattern pointed to a glycosylated monocaffeoylquinic acid, which might correspond to 1 or 5-O-caffeoylquinic acid hexoside [1]. The fact, that 5-O-caffeoylquinic acid (chlorogenic acid) was the major isomer in the tested extracts, permitted tentative identification of compound 3 as 5-Ocaffeoylquinic acid hexoside.

Compounds **1**, **2** and **10**, detected only in DEF fractions were identified by comparison with reference standards and literature data [2] as protocatechuic, *p*-hydroxybenzoic and caffeic acids.

Among flavan-3-ols and procyanidins, seventeen individuals were found (5, 8, 11, 14-16, 18-20, 22-25, 27, 28, 35 and 36), among which (–)-epicatechin (18), procyanidins B-2 (15) and C-1 (23) clearly dominated, especially in the DEF and EAF fractions. In this group, seven analytes displaying parent ($[M-H]^-$ ions at m/z 577 (5, 11, 14, 19, 22, 24) or at m/z 1153 (20) and the relevant MS² and MS³ fragments corresponding to B-type procyanidin di- and tetramers, respectively [3] were identified in the analyzed *Cotoneaster* species for the first time. Additionally, compound 36 was proposed to be proanthocyanidin derivative, because its parent $[M-H]^-$ ion at m/z 483 yielded the MS² fragment at m/z 289, characteristic for epicatechin.

Of the compounds classified as flavonoids (26, 30-34, 38-41, 43-45 and 47), all analytes were found to be quercetin or kaempferol mono- and diglycosides. Compounds 26, 32, 33, 34, 41 and 47 were identified with authentic standards as quercetin $3-O-\beta-(2''-O-\beta-xylosyl)$ -galactoside, hyperoside, rutin, isoquercitrin, quercitrin, and quercetin, respectively. Among three compounds identified in the

Cotoneaster genus for the first time, **38** with the parent $[M-H]^-$ ion at m/z 433 was suggested to be quercetin pentoside, while compound **39** with the $[M-H]^-$ ion at m/z 447 was classified as kaempferol hexoside. Compound **45** with $[M-H]^-$ ion at m/z 593 was tentatively characterized as quercetin dirhamnoside.

References

- 1. Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food Chem., 2005, 53, 3821–3832.
- 2. Su, S.; Cui, W.; Zhou, W.; Duan, J. A.; Shang, E.; Tang, Y. Chemical fingerprinting and quantitative constituent analysis of Siwu decoction categorized formulae by UPLC-QTOF/MS/MS and HPLC-DAD. *Chin. Med.*, **2013**, *8*, 1-15.
- 3. Karar, M. G. E.; Kuhnert, N. UPLC-ESI-Q-TOF-MS/MS characterization of phenolics from *Crataegus monogyna* and *Crataegus laevigata* (Hawthorn) leaves, fruits and their herbal derived drops (Crataegutt Tropfen). *J. Chem. Biol. Ther.* **2015**, 1, 1-23.

Figure S1. The UHPLC-UV chromatograms of the leaf extracts of *C. bullatus* (A), *C. zabelii* (B) and *C. integerrimus* (C) at 280 nm. Extracts: (a) MED, defatted methanol-water (7:3, *v/v*) extract; (B) DEF, diethyl-ether fraction; (c) EAF, ethyl acetate fraction; (d) BF, *n*-butanol fraction; (e) WR, water residue.

Table S1. UHPLC-PDA-ESI-MS3 data of	olyphenols identified in the fractionated dr	y extracts of Cotoneaster leaves.
-------------------------------------	--	-----------------------------------

Pea	Analyta	Rt c	UV $\lambda_{max} d$	Formula	[M-H]-	^e Fragmentary ions	Extracts ^f				
k	Analyte	(min) (nm)		(m/z)	m/z) (% relative abundance)		DEF	EAF	BF	WR	
1	protocatechuic acid ^{a, b}	4.4	260, 293	C7H6O4	153	MS ² : 153(100)		B, Z, I			
2	<i>p</i> -hydroxybenzoic acid ^{a, b}	4.7	254	C7H6O3	137	MS ² : 93(40)		B, Z, I			
3	caffeoylquinic acid hexoside ^b	5.4	325	C25H24O12	515	MS ² : 379(69),353(29), 341 (20), 191(23) MS ³ [353]:191(84)	Ι			Ι	Ι
4	3-O-caffeoylquinic acid (neochlorogenic acid) ª	6.1	325	C16H18O9	353	MS ² : 191(100), 179(40), 135(5)	B, Z, I		B, Z, I	B, Z, I	B, Z, I
5	procyanidin dimer B-type ^b	9.0	280	C30H26O12	577	MS ² : 451(33), 425(100), 407(65), 289(26) MS ³ [425]: 407(88), 273(10)	В		Β, Ζ	В	
6	caffeic acid derivative ^b	9.7	325		451	MS ² : 405 (100), 179 (7)	Z		Z		
7	5-O-caffeoylquinic acid (chlorogenic acid) ^a	10.4	325	C16H18O9	353	MS ² : 191(96), 179(3)	B, Z, I	B, Z, I	B, Z, I	B, Z, I	B, Z, I
8	(+)-catechin ^a	10.4	280	C15H14O6	289	MS ² : 245 (100), 205 (41)		B, Z			
9	dicaffeoylquinic acid isomer ^b	11.1	325	C25H24O12	515	MS ² : 395(22), 379(100), 285(8)	Z, I		Ι	B, Z, I	B, Z, I
10	caffeic acid ^{a, b}	11.6	325	C9H8O4	179	MS ² : 135(87)		B, Z, I			
11	procyanidin dimer B-type ^b	11.7	280	C30H26O12	577	MS ² : 451(17), 425(100), 407 (64), 289(15) MS ³ [425]: 407(100), 273(11)	В		Β, Ζ		
12	4-O-caffeoylquinic acid ^a (cryptochlorogenic acid)	12.3	325	C16H18O9	353	MS ² : 191(28), 179(61), 173 (100)	B, Z, I	В, І	B, Z, I	B, Z, I	B, Z, I
13	dicaffeoylquinic acid isomer ^b	12.8	325	C25H24O12	515	MS ² : 395(16), 379(100), 285(67)	B, Z, I		Ι	B, Z, I	Z, I
14	procyanidin dimer B-type ^b	13.5	280	C30H26O12	577	MS ² : 451(44), 425(100), 407(64), 289(15) MS ³ [425]: 407(100), 273(6)	Β, Ζ	В	Β, Ζ		
15	procyanidin B2 ª	14.6	280	C30H26O12	577	MS ² : 451(27), 425(100), 407(41), 289(8) MS ³ [425]: 407(100), 273(4)	B, Z, I	B, Z	B, Z, I	B, Z, I	
16	procyanidin trimer B-type	15.0	280	C45H38O18	865	MS ² : 739(93), 713(58), 695(87), 577(20) MS ³ [713]: 695(76), 425(73), 407(100)	Β, Ζ		Β, Ζ		
17	5-p-coumaroylquinic acid	15.3	310	$C_{16}H_{18}O_{8}$	337	MS ² : 191(100), 163(5)	B, Z, I	Ι	B, Z, I	B, Z, I	
18	(-)-epicatechin ª	16.1	280	$C_{15}H_{14}O_{6}$	289	MS ² : 245(100), 205(22), 179(13), 137(5)	B, Z, I	B, Z, I	B, Z, I	В	
19	procyanidin dimer B-type ^b	17.2	280	C30H26O12	577	MS ² : 451(15), 425(100), 407(19), 289(24)		Z	B, Z		
20	procyanidin tetramer B-type ^b	17.7	280	C60H50O24	1153	MS ² : 1027(47), 863(72), 739(14), 501(60), 491(81), 289(100)	Β, Ζ		B, Z		
21	caffeic acid derivative	18.2	290, 328		613	MS ² : 457(6), 339(14), 295(100), 179(16)	Z	Ζ, Ι	Ζ, Ι	Ζ, Ι	Ζ, Ι
22	procyanidin dimer B-type ^b	20.3	280	C30H26O12	577	MS ² : 451(17), 425(100), 407(59), 289(20) MS ³ [425]: 407(100), 273(12)		В			
23	procyanidin C1ª	20.4	280	C45H38O18	865	MS ² : 713(51), 695(100), 577(26) MS ³ [713]: 695(100), 425(32), 407(36)	B, Z, I		B, Z, I	В, Z	

24	procyanidin dimer B-type ^b	21.4	280	C30H26O12	577	MS ² : 425(91), 407(72), 289(100) MS ³ [425]: 407(100), 273(4)			В, Z	
25	procyanidin tetramer B-type	22.9	280	C60H50O24	1153	MS ² : 1027(25), 863(69), 739(3), 501(51), 491(39), 289(100)	Β, Ζ		Β, Ζ	Β, Ζ
26	quercetin 3- <i>O</i> -ß-(2´´-O-ß- xylosyl)galactoside ª	23.6	268, 355	C26H28O16	595	MS ² : 463(9), 445(15), 301(100)	В		В	В
27	procyanidin tetramer B-type	24.3	280	C60H50O24	1153	MS ² : 1027(17), 863(94), 739(14), 501(100), 491(71), 289(97)	B, Z		Β, Ζ	
28	procyanidin dimer hexoside	24.9	280	C36H36O17	739	MS ² : 587(100), 577 (12), 451(18), 289(32)	B, Z		Β, Ζ	Β, Ζ
29	unidentified compound	26.1	280		451	MS ² : 341 (100), 217 (4)		B, Z, I	B, I	
30	quercetin rhamnoside-hexoside	26.4	255, 355	C27H30O16	609	MS ² : 447(7), 343(12), 301(100) MS ³ [447]: 301(100)	B, Z, I		B, Z, I	В, Z, I
31	quercetin dirhamnoside	26.6	255, 350	C27H30O15	593	MS ² : 447(100), 301(45) MS ³ [447]: 301(100)			Z	Z
32	hyperoside (quercetin 3-O-ß-galactoside) ª	26.9	255, 353	C21H20O12	463	MS ² : 301(100)	B, Z, I	B, Z, I	B, Z, I	
33	rutin (quercetin 3- <i>O</i> -β-(6´´-O-α- rhamnosyl)-glucoside) ª	27.3	265, 350	C27H30O16	609	MS ² : 463(1), 343(6), 301(100)	Z		Ζ, Ι	B, Z, I
34	isoquercitrin (quercetin-O-ß-glucoside) ª	27.9	275, 350	C21H20O12	463	MS ² : 301(100)	B, Z, I	B, Z, I	B, Z, I	
35	procyanidin dimer B-type	28.5	280	C30H26O12	577	MS ² : 425(100), 407(51), 289(16)	B, Z	B, Z	Β, Ζ	
36	proanthocyanidin derivative ^b	28.8	280		483	MS ² : 451(61), 341(42), 289(100), 245(4)		B, Z	В	
37	unidentified compound	29.0	280		451	MS ² : 341(91), 299(100), 189(22), 177(23)		B, Z, I		
38	quercetin pentoside ^b	30.2	275, 350	C20H18O11	433	MS ² : 301(100), 179(4)		В, І		
39	kaempferol hexoside ^b	30.5	265, 350	C21H20O11	447	MS ² : 285(100)	Ι	Ι	Ι	
40	quercetin rhamnoside-hexoside	31.0	265, 355	C27H30O16	609	MS ² : 447(9), 301(100)	В		В	В
41	quercitrin (quercetin 3-0-ß-rhamnoside) ª	32.2	275, 350	C21H20O11	447	MS ² : 301(100)	B, Z, I	B, Z, I	B, Z, I	
42	3,5- <i>O</i> -dicaffeoylquinic acid ^b	32.9	325	C25H24O12	515	MS ² : 447(19), 379(57), 353(100) MS ³ [353]: 191(100), 179(35)	Ι	В, І	B, Z, I	
43	quercetin hexoside derivative	33.3	265, 355	C23H22O13	505	MS ² : 463(24), 337(26), 301(100)	Ζ, Ι	Z	Ι	
44	quercetin hexoside derivative	34.7	265, 355	C23H22O13	505	MS ² : 463(31), 373(4), 301(100)		Z, I	Ι	
45	quercetin dirhamnoside ^b	35.3	365, 355	C27H30O15	593	MS ² : 447(11), 301(100)	В		В	
46	4,5-O-dicaffeoylquinic acid isomer ^b	36.3	325	C25H24O12	515	MS ² : 379(90), 353(100), 299(8), 203(14) MS ³ [353]: 191(37), 179(69), 173(100	I, B	В, І	B, Z, I	
47	quercetin ^{a, b}	43.2	256, 365	C15H10O7	301	MS ² : 273(11), 179(100), 151(66), 107(5)		Ζ, Ι		

^a Analytes identified with authentic standards. ^b Compounds identified in the *Cotoneaster* extracts for the first time. ^c Rt, retention time. ^d UVmax, absorbance maxima in PDA spectra. ^e[M-H]⁻, pseudomolecular ion in MS spectra recorded in a negative mode. ^f MED, methanol-water (7:3, v/v) extract; DEF, diethyl-ether fraction; EAF, ethyl acetate fraction; BF, *n*-butanol fraction; WR, water residue; **B**, *C. bullatus*; **Z**, *C. zabelii* and **I**, *C. integerrimus*.

Crown of	Chemical m	nodel			Human	plasma model	Enzyme inhibition		
Group of	DPPH FRAP		3NT	LOOH	TBARS	DPPH	FRAP	HYAL	LOX
phenomes	(mmol TX/g)	(mmol TX/g)	(nmol/mg)	(nmol/mg)	(µmol/mL)	(µM TX)	(mM Fe ²⁺)		
TPC (mg GAE/g dw)	0.9706***	0.9622***	-0.6541	0.0948	-0.6154	0.7823*	0.6009	-0.4228	-0.8403***
TFC (mg/g dw)	0.2386	0.4378	-0.0211	-0.1395	0.5604	0.2394	0.2103	0.3407	-0.3416
TAC (mg/g dw)	0.0012	0.2457	0.4858	-0.1351	0.6621	-0.2518	-0.1496	0.1116	-0.2599
TPA (mg CYE/g dw)	0.5088	0.1160	0.2312	0.7432*	-0.1747	-0.2562	-0.2919	-0.4071	-0.4707
TLPA (mg/g dw)	0.6645**	0.7240**	-0.8784**	-0.3891	-0.8675**	0.7263*	0.6080	-0.2326	-0.3326

Table S2. Correlation coefficients (*r*) of the linear relationships between antioxidant activity parameters and the content of particular groups of phenolics in the investigated *Cotoneaster* extracts.

Activity and quantitative parameters according to Tables 1, 2 and Figures 2, 3. Asterisks mean statistical significance of the estimated linear relationships (*p < 0.05, **p < 0.01, ***p < 0.001).

Table S3. Statistically significant multiple regression models for activity parameters based on the content of particular groups of phenolics in the Cotoneaster extracts.

	Statistically sign	nificant coefficient	Parameters of the model					
Activity parameter	Y-intercept	TFC	TAC	TPA	TLPA	adj. R²	F-value	<i>p</i> -value
DPPH (mmol TX/g) ^a	-	0.0055 (0.0290)	0.0114 (0.0187)	0.0092 (0.0000)	0.0136 (0.0000)	0.9683	115.75	0.0000
FRAP (mmol TX/g)ª	-	0.0073 (0.0329)	0.0228 (0.0019)	0.0068 (0.0005)	0.0185 (0.0000)	0.9591	89.09	0.0000
LOX (nmol/mL)ª	608.9 (0.0000)	-	-2.705 (0.0058)	-0.9297 (0.0026)	-0.8006 (0.0301)	0.5806	7.46	0.0053
DPPH (µM TX) ^ь	0.4536 (0.0000)	-	-	-	0.0002 (0.0267)	0.4601	7.817	0.0267
TBARS (µmol/mL) ^b	0.0442 (0.0000)	-	-	-	-0.00002 (0.0024)	0.7172	21.29	0.0024
3-NT (nmol/mg)⁵	2.3414 (0.0000)	-	-	-	-0.0023 (0.0018)	0.7390	23.66	0.0018
LOOH (nmol/mg) ^b	0.6243 (0.0008)	-	-	0.0013 (0.0217)	-	0.4884	8.64	0.0217

Activity and quantitative parameters according to Tables 1, 2 and Figures 2, 3; the activity parameters from ^a the chemical and ^b the human plasma tests;

adj. R², R² adjusted for number of predictors in the model; F-value, F-test for overall significance