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Abstract: Matrix solid phase dispersion (MSPD) has proven to be an efficient sample preparation
method for solid, semi-solid, and viscous samples. Applications of MSPD have covered biological,
food, and environmental samples, including both organic and inorganic analytes. This review
presents an update on the development of MSPD in the period 2015~June 2018. In the first part of
this review, we focus on the latest development in MSPD sorbent, including molecularly imprinted
polymers, and carbon-based nanomaterials etc. The second part presents the miniaturization of
MSPD, discussing the progress in both micro-MSPD and mini-MSPD. The on-line/in-line techniques
for improving the automation and sample throughput are also discussed. The final part summarizes
the success in the modification of original MSPD procedures.
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1. Introduction

Sample preparation is the key step in analytical workflow [1]. For solid, semi-solid, and viscous
samples, procedures of sample preparation generally start with extracting analytes from matrix
into homogeneous liquid solvents. Then a consequent clean-up step may be performed to reduce
interference compounds in the extract. Finally, an additional enrichment or concentration step may
also be required to meet the sensitivity of the analytical technique. Limitations in the classical method
are the use of large volumes of solvent, labor-intensive, and time-consuming through the manipulation.
Matrix solid phase dispersion (MSPD), first introduced by Barker et al. [2], provides an alternative
approach to reduce solvent use and analysis time for preparing solid, semi-solid, and viscous
samples [3].

In a typical MSPD procedure, samples are blended with sorbent to obtain homogeneous mixture.
The resulting mixture is transferred and packed into an extraction column. Then solvent is passed
through the column to carry out washing and elution step for the extraction and isolation of analytes
from the matrix. In some case, an additional co-sorbent could be loaded at the bottom of the column
to further clean-up the eluent. Generally, the final extract can be analyzed by chromatography based
analytical techniques. Compared with classical solvent extraction method, MSPD eliminates steps of
repeated centrifugation and/or filtration, and procedures of re-extraction. Different with solid phase
extraction (SPE), in which separated solvent extraction procedure is required to make solid samples
suitable for loading into a SPE column, MSPD eliminates the solvent extraction step. These would
dramatically reduce the consumption of solvent and the required manipulation time for the preparation.
There have been extensive reviews regarding the trends and developments of MSPD [3–10]. In this
review, we focus attention on the latest developments in MSPD sorbent, miniaturization of MSPD,
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on-line/in-line techniques, and the modification of original MSPD procedure. Literatures during 2015
and June 2018 are reviewed to avoid the overlap with recent excellent reviews [9,10].

2. Latest Developments in MSPD Sorbent

Molecularly imprinted polymers (MIPs), the synthetic sorbents which exhibit selective binding of
target molecular, have been widely used for the extraction of specific compounds [11,12]. In MSPD,
sorbent requires to be blended with sample to obtain homogeneous mixture. To improve mechanical
strength of MIPs materials, imprinted polymers can be synthesized using other sorbents as carrier.
For example, MIPs were prepared on carbon nanotubes (CNTs) for the MSPD preparation of malachite
green in aquatic products [13]. Silica gel [14], silica nanoparticles [15], and mesoporous silica [16] also
have been reported as the carrier of MIPs to improve the selectivity of MSPD sorbents. Additionally,
Wang et al. reported the synthesis of mixed-template MIPs for the extraction of multi-class veterinary
drugs [17]. This novel MIPs sorbent was used for the simultaneous MSPD extraction of 20 drugs in
meat, including 8 fluoroquinolones, 8 sulfonamides and 4 tetracyclines.

Graphene is one of the carbon-based nanomaterials which shows great promise in sample
preparation [18,19]. Graphene provides large surface area and nanosheets morphology for improving
adsorption capacity. In addition, the delocalized π electron system in graphene could make it form strong
π-stacking interaction with compounds containing aromatic rings. These properties make graphene a good
candidate for the adsorption of benzenoid compounds. Sun et al. reported a graphene-encapsulated silica
sorbent for the analysis of flavonoids in the leaves of Murraya panaculata (L.) Jack [20]. Immobilized on the
of surface of silica gel avoided the aggregation and maintained the large surface area and π-electron rich
structure graphene during the mechanical blending. Compared with five sorbents (graphene, silica gel,
C18, diatomaceous earth, and neutral alumina), graphene-encapsulated silica showed the better extraction
efficiency for the target flavonoid compounds.

Phenyltrichlorosilane-functionalized magnesium oxide microspheres were designed by Tan et al.
for the extraction of polycyclic aromatic hydrocarbons (PAHs) in soils [21]. This material takes
advantage of the high affinity between magnesium oxide and PAHs to enhance the retention of target
molecules. Grafting the microspheres with phenyltrichlorosilane reduced the competitive adsorption
of chlorine-contained interferences which are widely exist in soil samples. Using hexane and DCM
as rinsing and eluting solvent, respectively, seven PAHs were successfully determined in HPLC-FLD
with limits of detection (LODs) of 0.02–0.12 µg/kg.

The use of polyethyleneimine (PEI)-modified attapulgite material as MSPD sorbent was reported
by Wang et al. for the determination of cadmium in seafood products [22]. Introducing of PEI, which
is a cationic polymer with high affinity to cadmium ion, resulted in the high recovery of target ion
in complex matrices. High concentration of HNO3 (50%, v/v) was required to release the cadmium.
Determined by atomic absorption spectrometry (AAS), the LOD of cadmium in fish sample was found
to be 2.5 µg/kg.

Additionally, sorbents such as mussel shell [23,24], molecular sieve [25,26], microcrystalline
cellulose [27], and metal-organic framework materials [28,29] also have been reported. These emerging
sorbents are summarized in Table 1.
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Table 1. Selected representative studies involving developments in MSPD sorbent.

Sorbent Analytes Matrix

MSPD Parameters

Detection
LOD

(µg/kg)
LOQ

(µg/kg) Ref.Sample
Amounts

(g)

Sorbent
Amounts

(g)

Blend
Time
(min)

Co-Sorbent Washing Solvent Elution Solvent

MIPs Veterinary drugs Meat 0.2 0.15 3 0.05 g MIPs 3 mL MeOH/H2O
(2:8, v/v)

4 mL MeOH/acetic
acid (9:1, v/v) UPLC -DAD 0.5–3 1.5–6 [17]

CNTs-MIPs Malachite green Aquatic products 0.3 0.2 15 None 4 mL 50% aqueous
MeOH

3 mL MeOH-acetic
acid (98:2, v/v) HPLC-UV 0.7 n.r. [13]

CNTs-MIPs Camptothecin Herb (Camptotheca
acuminate) 0.1 0.1 5 None 5 mL 10% aqueous

MeOH
4 mL MeOH-acetic

acid (95:5, v/v) HPLC-UV 130 µg/L n.r. [30]

Silica gel -MIPs
Degradation
products of
penicillin

Milk 0.3 mL 0.2 n.r. None 2 mL DCM 3 mL MeOH-10%
acetic acid (9:1, v/v) HPLC-UV 40/50 130/170 [14]

SiO2-MIP Acrylamide Biscuit and bread 0.1 0.15 n.r. None 1 mL hexane 2.5 mL ACN-MeOH
(50:50, v/v) HPLC-UV 14.5/16.1 40.5/40.1 [15]

Mesoporous
silica-MIPs Ketoprofen Powder milk 0.05 0.025 n.r. None None 1 mL ACN HPLC

-MS/MS n.r. n.r. [16]

Graphene-
encapsulated

silica
Flavonoids Herb (Murraya

panaculata (L.) Jack) 0.025 0.05 3 None None 5 mL MeOH UPLC-UV 4–12 µg/L 10–40
µg/L [20]

PTS-MgO PAHs Soils 0.1 0.1 n.r. 0.05 g
PTS-MgO 4 mL hexane 4 mL DCM HPLC-FLD 0.02–0.12 0.07–0.40 [21]

PEI-attapulgite Cadmium Seafood 0.21 0.13 n.r. None 6 mL H2O 8 mL 50%HNO3/H2O
(v/v) AAS 2.5 8.3 [22]

Golden mussel
shell

Pesticides and
PPCPs Mussel tissue 0.5 0.5 5 None None 5 mL ethyl acetate LC-MS/MS 3–30 10–100 [23]

Mussel shell Booster biocides Fish tissue 0.5 0.5 5 None None 5 mL EtOH LC-MS/MS 1.5/15 5/50 [24]

Molecular
sieves Flavonoids Fruit peels 0.025 0.025 2.5 None None 0.5 mL MeOH UPLC-UV 20–30 µg/L 70–90

µg/L [25]

Molecular sieve Sesquiterpenes Herb (Curcuma
wenyujin) 0.2 0.2 2.5 None None 1 mL MeOH MEEKC 5–34

µg/mL
16–78
µg/mL [26]

Microcrystalline
cellulose

Triterpenoid
acids Herb (loquat leaves) 0.024 0.024 1 None None 0.2 × 3 mL EtOH UHPLC-

Q-TOF 19.6–51.6 65.3–171.8 [27]

MOFs Pesticides Coconut palm 0.25 1 3 None None 20 mL ACN HPLC- DAD 10–50 50–100 [28]

MOFs Pesticides Peppers (Capsicum
annuum L.) 0.5 0.35 n.r. 1 g Na2SO4 +

0.5 g silica None 10 mL DCM GC-MS 16.0–67.0 50.3–200.0 [29]

DCM, dichloromethane; CNTs, carbon nanotubes; MIPs, molecularly imprinted polymers; PPCPs, pharmaceutical and personal care products; MOFs, metal-organic frameworks; PTS,
phenyltrichlorosilane; PAHs, polycyclic aromatic hydrocarbons; PEI, polyethyleneimine; ACN. acetonitrile. n.r., not reported.
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3. Miniaturization of MSPD

In classical MSPD protocol, the sample amount is typically 0.5 g [3]. The miniaturization
of MSPD (micro/mini-MSPD) can significantly reduce the sample amount, and consequently the
consumption of sorbent, solvent, and preparation time. Developed micro/mini-MSPD methods are
summarized in Table 2. For instance, Guerra et al. developed a method based on micro-MSPD
combined with LC-MS/MS for the simple and rapid determination of dyes in cosmetic products [31].
The proposed micro-MSPD was carried by grounding 0.1 g cosmetic sample with 0.3 g anhydrous
Na2SO4 (drying agent) and 0.4 g of Florisil. After transferring the mixture into a glass Pasteur pipette,
2 mL of methanol was eluted to extract nine water-soluble dyes. By using micro-MSPD method, time
and solvent consumption in the sample preparation could be reduced.

Taking advantage of high sensitive detection methods, sample amount in recently published
mini-MSPD could be reduced to the scale of milligram. Chen et al. reported a sensitive quantification
of mercury distribution in fish organ based on the mini-MSPD [32]. The sample amount in this research
was as low as 1 mg of organ sample. Multiwall carbon nanotubes (MWCNTs) were used as the
sorbent, with amount of 0.5 mg. Mercury species were eluted by 100 µL eluent containing HCOOH
and L-cysteine. When combined with a sensitive mercury determination method named single-drop
solution electrode glow discharge-induced cold vapor generation combined with atomic fluorescence
spectrometry, LOD of 0.01 µg/L was achieved. The consumption of sample, adsorbent, and solvent
were all dramatically decreased in this mini-MSPD.

Another example of mini-MSPD was reported by Deng et al. [33], in which only 0.30–0.80 mg
of plant samples were ground with 2 mg C18 sorbent in liquid nitrogen to obtain the homogenous
mixture. Based on this mini-MSPD and the precolumn derivatization coupled with UPLC-MS/MS
determination, phytohormone gibberellins were detected with the limits of quantification (LOQs)
of 0.54–4.37 pg/mL. As only sub-milligram sample was required for the determination, a spatial
distribution of gibberellins in a single Arabidopsis thaliana leaf with resolution of 2 × 2 mm2 was profiled.
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Table 2. Selected representative studies using miniaturized MSPD.

Analytes Matrix

MSPD Parameters

Detection
LOD

(µg/kg)
LOQ

(µg/kg) Ref.Sample
Amounts (g) Sorbent Amounts Blend

Time (min) Co-Sorbent Washing
Solvent Elution Solvent

Dyes Cosmetic products 0.1 0.4 g Florisil + 0.3 g
Na2SO4

n.r. 0.1 g
Florisil None 2 mL MeOH LC-MS/MS 0.01–11 n.r. [31]

Photoproducts of
cosmetic preservatives

Personal care
products 0.1 0.4 g Florisil + 0.4 g

Na2SO4
5 0.2 g

Florisil None 1 mL hexane-acetone
(1:1, v/v) GC-MS/MS 31–170 n.r. [34]

Flavonoids Lime fruit 0.05 0.15 g Florisil 1 None None
0.4 mL [Bmin]BF4

aqueous solution (250
mM)

UPLC-UV 4.08/5.04
µg/g

14.01/14.56
µg/g [35]

Phenolic isomers Honeysuckle 0.025 0.075 g
β-cyclodextrin 2 None None 0.5 mL MeOH-H2O

(80:20, v/v)
UPLC-UV-

Q-TOF
1.62–3.33
ng/mL

5.52–11.40
ng/mL [36]

Inorganic iodine and
iodinated amino acids Seaweed 0.05 0.05 g molecular

sieve SBA-15 0.5 None None 0.4 mL [C12mim] Br
(200 mM) UHPLC-UV 3.7–16.7

ng/mL
12.4–55.8
ng/mL [37]

Phenols Olive fruits 0.05 0.025 g chitosan 1 None None 0.5 mL × 3
MeOH-H2O (6:4, v/v)

UHPLC-Q-
TOF 69.6–358.4 232–1240.8 [38]

Mercury species Fish organs 1 mg 0.5 mg MWCNTs 5 0.15 g C18 None
0.1 mL × 2 0.5%

L-cysteine and 4%
HCOOH

AFS 0.01 n.r. [22]

Gibberellins Plant 0.3–0.8 mg 2 mg C18 n.r. None None 0.2 mL ACN UPLC-
MS/MS

0.16–1.31
pg/mL

0.53–4.37
pg/mL [33]

Synthetic dyes Cosmetics and
foodstuffs 0.1 0.4 g C18 + 0.3 g

Na2SO4
n.r. 0.1 g C18 None 2 mL MeOH LC-MS/MS 14.2–95.2 n.r. [39]

Phenolic acids Plant preparation
(Danshen tablets) 0.024 0.024 g graphene

nanoplatelets 1 None None 0.2 mL H2O UHPLC- ECD 1.19–4.62
ng/mL

3.91–15.23
ng/mL [40]

Lignans Herbs (Schisandrae
Chinensis Fructus) 0.025 0.05 g molecular

sieve TS-1 2.5 None None 0.5 mL MeOH MEEKC n.r. 2.77
µg/mL [41]

MWCNTs, multiwall carbon nanotubes; AFS, atomic fluorescence spectrometry. n.r., not reported.
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4. On-Line/In-Line MSPD

On-line/in-line sample preparation techniques that couple sample preparation step and
chromatography separation are regarded as a promising technique with advantages of automatable
high sample throughput, reducing sample manipulation and contamination, improving precision, and
lower regent consumption [42]. On-line/in-line MSPD provides a potential automated way for the
sample preparation of solid, semi-solid, and viscous samples.

Rajabi et al. reported an in-line micro-MSPD method for the determination of Sudan dyes in
spices [43]. In this in-line MSPD, the filled MSPD column was placed in the mobile phase pathway
before the analytical column. Then the mobile phase passed through the MSPD column to elute
analytes and subsequently separated in a reverse-phased HPLC. Since the in-line method integrated
extraction and separation into one step, this proposed approach was much faster than other reported
methods for the determination of Sudan dyes.

Gutiérrez-Valencia et al. developed an on-line MSPD-SPE sample preparation method combined
with HPLC-FLD for the analysis of PAHs in bovine tissues [44]. The bovine liver sample (50 mg)
was dispersed on C18 sorbent (200 mg). Then the obtained homogenous mixture was packed into a
stainless steel cartridge which was connected to a MSPD-SPE-HPLC-FLD system. The SPE column was
used to trap and pre-concentrate the target compounds eluted from the MSPD cartridge. Acetonitrile
(ACN)-water mixture and pure ACN solution were applied to wash and elute the MSPD cartridge,
respectively. However, ACN extract exhibited poor retention of analytes in C18 SPE column. Thus a
dynamic mixing chamber was required to dilute the ACN extract with water before pre-concentration
to quantitatively transfer PAHs from MPSD cartridge to the SPE column. Finally, the analytes
pre-concentrated on the SPE column were eluted through the guard-column and the analytical column
with mobile phase and detected by FLD. Compared with off-line MSPD, the on-line MSPD method
showed advantages of lower consumption of sample amount and saving of analysis time.

Additionally, an on-line MSPD-HPLC-ICP-MS method for the determination of mercury
speciation in fish was reported by Deng et al. [45]. In this on-line MSPD performance, 1 mg fish
sample was blended with 2 mg of MWCNTs, then the mixture was transferred into a stainless steel
column which was prior loaded with 0.20 g of C18. The eluent solution containing HCl (2%, v/v)
and L-cysteine (1.5%, m/v) was loaded by a 100 µL loop through the six-port valve. Then mobile
phase flushed the eluent to pass through the MSPD column for the extraction of analytes, which were
further separated and detected by HPLC-ICP-MS. It is interesting to notice that the on-line MSPD
system consisting of two sequential valves and six stainless steel MSPD columns to improve sample
throughput. This on-line system shows the potential of automatable high sample throughput in
MSPD method.

5. Modification of Original MSPD

The original MSPD can be modified or combined with other extraction methodologies to improve
the extraction yields or simplify the MSPD procedures. The schematic procedure of the original and
representative modification of MSPD is shown in Figure 1. For instance, ultrasonic-assisted MSPD
(UA-MSPD) was first reported by Ramos et al. to improve the extraction yields by putting MSPD
column into ultrasonic bath or sonoreactor after the extraction solvent was loaded into the MSPD
column [46]. As summarized in Table 3, UA-MSPD has been introduced for the analysis of multi-class
organic contaminants. For example, Albero et al. developed an UA-MSPD method for the analysis of
17 emerging contaminants in vegetables [47]. In this modified method, vegetable samples (2 g) was
blended with Florisil (4 g) and magnesium sulfate anhydrous (1 g), then the homogenous mixture was
transferred into a 20 mL glass column. Extraction solution of 8 mL EtAc:MeOH (9:1, v/v) containing
3% of NH4OH were added to the column. After that, column was sonicated for 15 min in an ultrasonic
water bath at room temperature for the extraction. Finally, extract was collected under vacuum
manifold. Results indicated that better recoveries were obtained with the assistance of sonication.
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Table 3. Selected representative studies using ultrasonic assisted MSPD and vortex assisted MSPD.

Modification Analytes Matrix

MSPD Parameters

Detection
LOD

(µg/kg)
LOQ

(µg/kg) Ref.Sample
Amount

(g)
Sorbent Amount Grind Time

(min)
Extraction

Time (min) Elution Solvent

Ultrasonic assisted Emerging organic
contaminants

Poultry
manure 0.5 2 g Florisil + 1 g

MgSO4
n.r. 15

8 mL ACN with 3%
NH4OH + 10 mL ACN
with 4% formic acid

GC-MS/MS 0.9–2.2 2.8–5.5 [48]

Ultrasonic assisted Emerging contaminants Vegetables 2 4 g Florisil + 1 g
MgSO4

n.r. 15
8 mL EtAc:MeOH (9:1,

v/v) containing 3%
NH4OH

GC-MS/MS 0.1–0.4 n.r. [47]

Ultrasonic assisted Emerging contaminants Aquatic
plants 1 4 g Florisil + 2 g

MgSO4
5 15 8 mL EtAc with 3%

NH4OH GC-MS 0.3–2.2 1.0–6.7 [49]

Ultrasonic assisted Aflatoxins Rice 1 1 g C18 5 11 4 mL ACN HPLC-FLD 0.04–0.14
ng/g

0.12–0.56
ng/g [50]

Vortex assisted 5-HMF and iridoid
glycosides

Herb
(Fructus
Corni)

0.02 0.04 g silica 3 3 6 mL [Domin]HSO4 UHPLC-UV 0.02–0.08
µg/mL

0.07–0.24
µg/mL [51]

Vortex assisted Booster biocides Marine
sediments 2 0.25 g C18 n.r. 1 10 mL MeOH LC-MS/MS n.r. 0.5–5 [52]

Vortex assisted Phenol
Herb

(Forsythiae
Fructus)

0.02 0.02 g Florisil 3 2 2 mL10% (v/v) Triton
X-114 UHPLC-UV 0.03–0.08

µg/mL
0.08–0.25
µg/mL [53]

Vortex assisted Ibuprofen enantiomers Milk 0.5

0.30 g diatomaceous
earth + 0.30 g Na2SO4
+ 0.26 g PSA + 0.021 g

β-cyclodextrin

5 1 2 mL MeOH HPLC-UV 0.042/0.045
µg/g

0.14/0.15
µg/g [54]

Vortex assisted Pesticides

Drinking
water

treatment
sludge

1.5 0.5 g Chitin 5 1 5 mL ethyl acetate GC-MS n.r. 5–500 [55]

Vortex assisted Pharmaceuticals Fish tissue 0.5 0.5 g diatomaceous
earth + 0.5 g Na2SO4

5 1 5 mL MeOH LC-MS/MS 1.5–300 5–1000 [56]

5-HMF, 5-hydroxymethy furfurol. n.r., nor reported.
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Figure 1. Schematic procedure of original matrix solid phase dispersion (MSPD), ultrasonic-assisted
MSPD (UA-MSPD), vortex-assisted MSPD (VA-MSPD), and magnetically-assisted MSPD (MA-MSPD).

Vortex-assisted MSPD (VA-MSPD), in which the step of column elution is replaced by vortex,
has been developed to reduce the solvent consumption and analysis time. This simplified MSPD
procedure has been found applications in the analysis of phytochemical compounds and organic
contaminants (Table 3). For instance, Caldas et al. reported the analysis of antifouling booster
biocides in marine sediments by employing VA-MSPD [52]. In the sample preparation procedure, the
homogenized mixture of sample and sorbent was added into a centrifuge tube. Then the extraction
solvent was added, and the sample was vortexed for 1 min. Finally, the mixture was centrifuged,
and the supernatant was collected for the LC-MS/MS analysis. Compared with other extraction
methods including ultrasonic extraction, SPE, and microwave extraction, this VA-MSPD exhibited the
advantages of shorter extraction time and less solvent consumption.

Another recent progress of the modification is the magnetically-assisted MSPD (MA-MSPD)
developed by Fotouhi et al. for the extraction of parabens from breast milks [57]. Modified magnetic
nanoparticles were used as the sorbent in the MA-MSPD. Milk sample (200 µL) was blended
with poly(indole-thiophene) coated magnetic graphene oxide (MGO@PIT, 50 mg) and drying salt
Na2SO4 (550 mg). After blending, the homogenous mixture was transferred into water solution and
mechanically stirred for the adsorption of parabens. Then the MGO@PIT with target compounds
were isolated from the solution by magnet. Subsequently, analytes were desorbed from the sorbent
with methanol. Compared with the magnetic liquid-solid extraction (MLSE) [58,59], a hot topic of
nanomaterials in sample preparation, the major difference between MA-MSPD and MLSE is the
manipulation of sample. For MLSE, analytes in solid sample are extracted into the liquid solution
prior to the introduction of magnetic sorbent. While in MA-MSPD, the solid sample is blended with
magnetic nanoparticles to obtain the homogenous mixture. The similarity of these two methods is
the replacement of column packing and elution with simple magnetic isolation. This would simplify
the preparation step and reduce the extraction time. More importantly, magnetic nanoparticles have
been demonstrated to be reusable in the liquid-solid extraction [58]. Thus MA-MSPD may provide a
solution for the reusability of sorbent in MSPD.
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Recently, we reported the combination of Soxhlet extraction and MSPD to develop a Soxhlet
assisted MSPD (SA-MSPD) method [60,61]. In this modification method, sample was blended with
silica gel following the original MSPD protocol and loaded into a column of constant pressure funnel.
Then elution solvent was heated and continuous refluxed and passed through the column for the
extraction and isolation of flavonoids. By comparing with conventional solvent extraction and Soxhlet
extraction method, SA-MSPD showed the higher extraction yield with shorter extraction time and less
consumption of solvent. Moreover, the introduction of sorbent into the Soxhlet enabled this classical
method to be with clean-up ability. More recently, this SA-MSPD method was further combined with
acid-hydrolysis for the quantification of flavonoid aglycones in bee pollen [61]. The acid hydrolysis
SA-MSPD procedure accomplished the extraction and hydrolysis of flavonoid glycosides into one step,
and provided a more efficient sample preparation method for the quantification of flavonoid aglycones.

6. Conclusion Remarks

Application fields of MSPD have been extended from the first reported drug residues in biological
tissues to the food and environmental analysis, both for organic and inorganic analytes. Development
of new sorbent materials for improving the capacity or selectivity is still the exciting research area in
MSPD. One of the drawbacks of MSPD is the reusability of the extraction column. Among the emerging
MSPD sorbents, modified magnetic nanoparticles are expected to provide the possibility of reusability.
Combining high efficient sorbents with ultra-sensitive analytical technologies, miniaturization of
MSPD might be found great interests in the analysis of limited or small size samples. Especially, the
mini-MSPD may provide more information on the evolution or the spatial distribution of analytes in
the sample matrices. In addition, on-line MSPD has shown the possibility of high-throughput analysis
in MSPD. This would also be the trend of automation in MSPD. The modification of the original MSPD
appears to be simplified the MSPD procedure and could be help for improving the reproducibility of
the manipulation.
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