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Abstract: In this study, 5-hydroxymethylfurfural (HMF) oxidation was carried out via both the
catalytic and the photocatalytic approach. Special attention was devoted to the preparation of the
TiO2-based catalysts, since this oxide has been widely used for catalytic and photocatalytic application
in alcohol oxidation reactions. Thus, in the catalytic process, the colloidal heterocoagulation of
very stable sols, followed by the spray-freeze-drying (SFD) approach, was successfully applied
for the preparation of nanostructured porous TiO2-SiO2 mixed-oxides with high surface areas.
The versatility of the process made it possible to encapsulate Pt particles and use this material
in the liquid-phase oxidation of HMF. The photocatalytic activity of a commercial titania and a
homemade oxide prepared with the microemulsion technique was then compared. The influence
of gold, base addition, and oxygen content on product distribution in the photocatalytic process
was evaluated.
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1. Introduction

5-hydroxymethyl furfural (HMF) is still one of the most-studied platform molecules for the
production of fuels and chemicals from renewable biomass sources. This is thanks to its chemical
structure, which includes a furan ring, a hydroxyl group, and a formyl group that can undergo different
reactions such as reduction, oxidation, and esterification. HMF oxidation has been widely studied over
the past two decades using different reaction conditions and catalysts [1–5]. Scheme 1 shows the general
HMF oxidation pattern. Indeed, HMF can be transformed in different ways: the carbonyl group can
be oxidized to the carboxylic moiety, producing 5-hydroxymethyl-2-furancarboxylic acid (HMFCA);
the oxidation of the hydroxymethyl group can then produce FDCA via 5-formyl-2-furancaboxylic
acid (FFCA) intermediate formation. Moreover, the formation of 2,5-diformylfuran (DFF) can also be
observed, mainly in the absence of an added base and with metals other than Au [6–8].
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Some HMF derivatives characterised by diols or diacid double functionalities are used in the
polymer industry for bio polyester production [9]. As an example, 2,5-furandicarboxylic acid (FDCA),
produced from HMF oxidation, is one of the most promising intermediates for the production of
poly(ethylene furanoate) (PEF), the furan-based analogue to poly(ethylene terephthalate) (PET),
which is the dominant polymer in beverage packaging industries. Recent results have demonstrated
that poly(ethylene furanoate), when manufactured with bio-sourced ethylene glycol, provides a
100% renewable polymer with an enhanced oxygen and carbon dioxide permeability compared
to PET, despite the fact that an increase in CO2 solubility is observed for PEF polymer [10,11].
Moreover, the chain mobility, reduced due to the suppression of the furan ring-flipping—because
of an increased furan ring hindrance, which is characteristic for the bio-based polymer—affects
the overall CO2 transportation properties. A decrease of the oxygen permeability and higher glass
transition temperature are present in PEF with respect to its terephtalic acid counterpart [12]. Moreover,
recent studies on the enzymatic hydrolysis of PEF powder highlighted the possibility of both surface
functionalization and the polymer recycling process, thus opening up the prospects for a higher-value
application of this material [13,14].

Today many companies are very interested in developing processes for production of FDCA to
be used as a monomer for polyester, polyamide, and polyurethane synthesis. As a result, several
patents have been recently published on this subject; among the most recent ones, Dumesic et al. [15]
patented the process for FDCA production from C6 sugars, by oxidizing HMF to FDCA with and
without separating HMF from the reaction solution containing the by-products. HMF is obtained by
dehydrating sugars in a lactone solvent using a Brönsted or Lewis acid catalyst and is oxidised using
molecular oxygen and a metal supported catalyst in the absence of a base. For this reason, FDCA
is extracted at the end of the reaction using an aromatic solvent. Another patent, published in 2017,
converts HMF to FDCA with molecular oxygen using a homogeneous metal salt catalyst and water as
solvent [16]. Moreover, FDCA can be produced through an enzymatic pathway starting from glucose
or other sugar derivatives; the patented enzymes can perform the desired reaction with high specificity
and efficiency [17]. Other two-step processes were patented by Sequeira et al. for the integrated
process that generates HMF from aqueous carbohydrate solution and oxidises it into FDCA [18].
Van Harven et al. [19] produced a mixture of 2,4-FDCA and 2,5-FDCA from a disproportionation of
furoic acid salts, obtained from furfural oxidation in an alkaline solution and metal-based catalyst.
Other patents on the production of purified and dried FDCA using different HMF derivatives as the
starting materials have been reported [20,21].

From the industrial standpoint, some pilot scale plants have already been developed [22,23].
Synvina, the joint venture company between BASF and Avantium, has already started a pilot plant for
PEF production and is also developing technologies for PEF recycling [24]. Metal-supported catalyst
and oxygen are mainly used in these pilot-scale plants. Nevertheless, the precise route for the synthesis
of FDCA has not yet been identified, but the current technology for terephthalic acid production using
metal/bromide catalysts is being evaluated. One drawback of these catalytic systems is the use of
corrosive media and dangerous compounds, which make the process polluting.
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Therefore, the preparation of active and stable metal-supported catalysts, also combing two
metals in the form of an alloy, can be of great of interest [25]. The most commonly used monometallic
supported catalysts are based on Au [26–30], Pd [2,31,32], and Pt [33–37]. The tailoring of metal
particles in terms of size and shape can be a useful tool for increasing catalyst activity and stability.
AuCu [38–40] and AuPd [5,41–45] bimetallic nanoparticles in the form of alloys and core-shells were
found to be active in HMF, showing superior properties compared to their monometallic counterpart.

However, the support must also be taken into account in a process development, since it is very
well known that a catalyst prepared with the same metal active phase may display different catalytic
performances depending on the support used [1,46–49]. Thus, the study of innovative processes aiming
at the preparation of metal-supported catalysts, characterized by high surface area and high metal
dispersion, is becoming a very important topic. The selection of the method for support preparation is
a key factor for catalyst development, since it can affect the thermal and mechanical properties of the
material, together with other chemical-physical features such as surface area porosity. As an example,
porous ceramics with an open-cell structure are considered suitable catalyst supports; however, some
industrial applications might require high temperature-resistant catalysts together with high porosity
systems to facilitate mass transfer. Magnesia ceramics prepared with the spray-freeze drying technique
made it possible to prepare high-thermal-strength materials, which were also characterized by a large
surface area [50]. The spray-freeze drying (SFD) technique is an industrial process which consists of
removing water from frozen samples by sublimation and desorption under a vacuum; it has also been
applied to the preparation of nanostructured materials because it made it possible to maintain the
nanometric size of the phase, while avoiding the agglomeration and segregation of components [51],
while at the same time, increasing the stability of the system [52,53]. Moreover, this technique can be
used for the homogeneous embedding of active phases into the support, minimizing the possibility
of phase separation on a molecular scale. Much effort has been devoted to the formulation of the
starting suspension for the identification of the optimal quantity that maximizes stability, safety,
and marketability of a given product [54].

In this work, special attention was paid to the development of synthetic procedures for the
preparation of high-surface-area supports. At first, the spray-freeze drying approach was used for
the preparation of round, highly porous TiO2-SiO2 grains with a size in the 10–100 µm range; then,
a microemulsion procedure was optimized to obtain titania of high surface area and small particle
size. Pt-based catalysts supported on a nanostructured TiO2-SiO2 matrix were prepared by SFD.
The support was prepared by heterocoagulation of the nanometric suspension of the oxides together
with the metallic salt in a self-assembling approach, which exploits the surface charge of different
materials to induce the spontaneous organization of the starting materials [55]. The samples obtained
from nanosol heterocoagulation were then used to prepare granules using the spray-freeze-granulator,
thus leading to the formation of a micrometric catalyst.

Moreover, the possibility to convert the HMF selectively using a photocatalyst active under
sunlight at ambient temperature was investigated. First, the effect of titania preparation was studied,
comparing the activity of a TiO2 homemade support (TiO2-m) prepared by microemulsion and
commercial titania (TiO2-c). Microemulsion—which is defined as an isotropic and thermodynamically
stable dispersion made up of water, oil, and surfactants whose diameters vary from approximately one
to 100 nm [56]—has become one of the most-studied methods for the synthesis of nanomaterials [57].
The preparation of nano-oxides by microemulsion is a very interesting field, which has been widely
studied in literature [58–66].

Currently, there is a growing interest in the photocatalytic synthesis of organics, mainly the
oxidation of hydroxyl functional groups to aldehydes, because it enables preventing the use of strong
chemical oxidants, toxic solvents and by-products, high temperatures, and pressures [67–77].

Therefore, the goal of this paper was to investigate the selective oxidation of HMF by both a
heterogeneous batch process and a photocatalytic approach, using Pt- and Au-TiO2-based supported



Molecules 2018, 23, 2792 4 of 24

catalysts and devoting special attention to material preparation for promoting the catalytic activity
and selectivity.

2. Results and Discussion

2.1. HMF Oxidation Using Heterogeneous Catalysts

In the present study, Pt/TiO2/SiO2 samples prepared by the spray-freeze drying technique were
tested in the liquid-phase oxidation of HMF in base-free conditions.

2.1.1. Catalyst Preparation and Characterisation

The preliminary approach to the spray-freeze drying technique for catalyst preparation deals with
the study of the reagents used as starting materials and the optimization of their amounts to be used
in the synthesis. From the industrial standpoint, formulation is a key step in the development of new
materials, since the relative amount of the reagents used may affect the chemical-physical properties of
the final solid [54].

With this aim, the measurements of the zeta potential of colloidal SiO2 (LUDOX HS-40) and the
water suspension of commercial TiO2 (AEROXIDE P25) have been investigated (Figure 1) in a wide
range of pH.
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Figure 1. Zeta potential of SiO2 (x) and TiO2 (•) as a function of pH.

The results obtained highlighted the different behaviors of the two materials; titania was
characterized by a positive zeta potential in the range two–eight, having its isoelectric point at 8.5,
while silica showed a negative zeta potential in the full studied range. Moreover, the very low potential
values (between −30 and −50 mV) of SiO2 indicated its high colloidal stability. By exploiting the
opposite superficial charge, which characterizes these oxides, it is possible to design new materials by
heterocoagulation. The spray-freeze drying of the suspension containing both titania and silica in the
ratio 1:0.5 (w/w) made it possible to obtain micrometric round grains as reported in Figure 2.
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Figure 2. SEM images of the sample TiSi (TiO2:SiO2 1:0.5 w/w) characterized both by irregular shaped
grains (a,b) and spherical granules (c,d).

The use of the same procedure for preparing only TiO2-based materials did not permit obtaining
regular round granules; furthermore, silica was fundamental in the process of heterocoagulation,
since it helped increase the mechanical strength of the grains. Silica also had the role of
promoting granulation, i.e., the formation of more spherical and homogeneous granules (Figure 2c,d).
Additionally, the addition of a very small amount of SiO2 helped in the preparation of these micro-size
grains with a packed porosity, even though the obtained samples also contained some irregularly
shaped grains (Figure 2a,b), typically obtained in the granulation of TiO2. The preparation of
a mixed TiO2-SiO2 material modified the zeta potential. In Figure 3 the measurements of the
zeta potential of starting materials are reported and compared to the TiO2-SiO2 1.0.5 wt % (TiSi)
and platinum-containing catalysts (TiPt, TiSiPt). The isoelectric point of the TiSi sample was 1.9,
thus completely changing what was previously observed with starting materials. The presence of
silica, although in small amounts, made it possible to reverse the TiO2 zeta potential sign, thus
demonstrating that TiO2 was surrounded by silica NPs. The addition of Pt metal salts was taken into
account; (NH3)Pt(NO3)2 was dissolved in the aqueous suspension containing the two oxides before
spray-freezing. Pt addition did not lead to any significant change in the zeta potential curve. This trend
was also confirmed by the preparation of the TiPt sample. Thus, TiSi and TiSiPt were characterized by
very low Z potentials, indicating that the suspension used for spray-freeze drying is stable.
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Figure 3. Zeta potential of suspensions containing SiO2 (x), TiO2 (•, solid line) and Pt containing
mixtures—TiPt (•, broken line), TiSi (N), and TiSiPt (N, broken line)—as a function of pH.

The presence of silica strongly increased the surface area of the material (Table 1). In fact, while
silica colloid has a surface area of 210 m2/g, titania P25 is characterized by a very low value (46 m2/g)
and the mixing of the two in the ratio TiO2:SiO2 1:0.5 brings the surface area up to 100 m2/g. It is
important to note that the spray-freeze drying technique, also, is responsible for the increased surface
area of the sample, which is an important feature to be taken into account in catalyst preparation. As a
matter of fact, the spray-freeze drying of titania P25 suspension led to a significant increase in the
surface area of the sample (59 m2/g), despite the fact that grain formation did not occur without silica.
The addition of platinum reduced the surface area of Ti and TiSi slightly.

Table 1. Silica, Platinum content, and surface area of the samples prepared.

Sample Name TiO2:SiO2 (w/w%) Pt (wt %) Surface Area (m2/g)

SiO2 - - 210
TiO2 (P25) - - 46

Ti - - 59
TiSi 1:0.5 - 100
TiPt - 0.5 41

TiSiPt 1:0.5 0.5 91

Furthermore, the SEM images in Figure 4 show that grain formation and the macro-porosity of
the material are not affected by platinum introduction. However, sample TiPt, which was prepared
without the addition of silica, confirmed once again that only the titania suspension did not permit a
proper spray-freeze drying process, preventing homogeneous round grain formation (Figure 4a,b).
Nevertheless, even in this case, the preservation of the nanostructuring was demonstrated (Figure 4c).
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Figure 4. SEM images of (a,b) TiPt and (d,e) TiSiPt; (c) high magnification SEM image of TiPt
sample nanostructuring.

The prepared samples were treated under H2 flow at 400 ◦C to reduce the metal; then, the particle
size distribution was evaluated through TEM analysis. Figure 5 shows TEM images of the TiPt
sample showing the presence of small and well-dispersed metal particles with a narrow particle size
distribution centered on 2.2 nm. Titania particles can be well distinguished from Pt because of their
size and shape. The presence of silica can be seen clearly in the TiSiPt sample (Figure 6) because of
its round shape. In this case, also, metal particles are well dispersed and have a very small diameter
(2.8 nm), meaning that the presence of silica made it possible to prepare a homogeneous material with
dispersed Pt nanoparticles.
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2.1.2. Catalytic Tests

The catalyst TiSiPt and the reference material TiPt were tested in the liquid-phase oxidation of
HMF in a batch reactor. The preparation of catalytic materials using the spray-freeze drying process
made it possible to obtain TiO2-based micrometric grains with a higher surface area compared to
the commercial support. Moreover, this synthetic approach permitted the preparation of small Pt
nanoparticles characterized by a narrow size distribution and well dispersed throughout the support.
All these features favorably affected the catalytic activity; the sample TiPt had an interesting catalytic
activity in the absence of a base, leading to more than 50% HMF conversion and 10% FDCA yield.
The addition of silica to the system brought a lower FDCA yield (4%), but a higher HMF conversion.
In the latter case, the product formed most was FFCA (33%); the lower FDCA yield observed may be
related to a different reaction rate of FFCA transformation which, in this case, was the rate-limiting
step in the process (Figure 7).
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The conduction of the process without a base slowed down the aldehyde oxidation; in fact, in
these conditions, HMF conversion is never complete, and both DFF and FFCA are always present in
high amounts. Moreover, HMFCA is formed only in traces, meaning that under the studied conditions
the oxidation of the alcoholic group is more favored than the transformation of the aldehyde.

Subsequently, a base was added to the system to try to promote the catalytic activity and to check
if there was a change in the reaction pathway: results were evaluated after the addition of NaOH and a
milder base, such as Na2CO3 (Figure 8). The reported results highlighted the detrimental effect of the
base addition. Surprisingly, the use of a milder base worsened the carbon balance, confirming the role
of OH− group in the reaction medium. High pH can cause HMF degradation, but a significant amount
of OH− in the solution, in the presence of an active catalyst, can foster HMF oxidation to HMFCA [30].
In both tests, HMF conversion increased, but the side reaction of by-product formation was enhanced.
FFCA was observed in high yield, while HMFCA was detected only when sodium hydroxide was
used. The basic environment, however, did not stimulate the Cannizzaro reaction on HMF, because no
BHMF was observed in the reaction medium.
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Lastly, the reaction time and temperature were studied, and the increase of these parameters led to
an enhancement of the catalytic performances (Figure 9). In fact, working for 4 h at a mild temperature
(70 ◦C), only 10% HMF conversion was obtained, and DFF and FFCA formed as major products, with
a yield of about 5%. The same process conducted at 110 ◦C for 6h caused a conversion of more than
50%; FFCA was the most important product (33%) followed by DFF (17%). The most interesting result
was obtained with a 16h reaction (29% FDCA yield; 89% HMF conversion). FFCA formed in a high
amount (51%), while DFF formed with a 9% yield. The absence of HMFCA led to the conclusion
that reaction mechanisms passed basically via DFF formation, and without the addition of the base,
HMFCA formed only in smaller amounts. Reported results demonstrate once again that when a basic
environment is not used, no by-products form.
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2.2. Oxidation of HMF by a Photocatalytic Process

The second part of the work was devoted to the preparation of a homemade titania (TiO2-m), using
the microemulsion approach, to be used as the catalyst for the photooxidation of HMF. The effect of
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base addition, O2 content, and the presence of gold were studied. The results obtained were compared
with those obtained with commercial TiO2 (DT-51 Millennium chemicals) (TiO2-c).

2.2.1. Catalyst Preparation and Characterisation

In order to carry out the photocatalytic oxidation of HMF, some preliminary tests using commercial
(TiO2-c) and homemade TiO2 (TiO2-m) were performed. Au nanoparticles were then added to
investigate the possibility to induce the selective conversion of HMF. The samples studied are shown
in Table 2.

Table 2. Prepared samples and main characterization data obtained from XRD, UV-vis spectroscopy,
and BET measurements.

Sample
Crystallite Size/nm

λ/nm SBET/m2/g
TiO2 Crystallites Au Crystallites

TiO2-c 17 - 371 82
TiO2-m 8.3 - 413 132

Au/TiO2-c 17 <3 380 89
Au/TiO2-m 8.3 - * 429 130

* Au XRD peaks could not be seen by XRD due to the presence of rutile.

A homemade TiO2 support was prepared using the microemulsion method [78] and was compared
to the commercial powder. The absorbing capability of photocatalysts in the UV-visible region was
measured by UV-Vis diffuse reflectance spectroscopy. The spectra in Figure 10 indicate that absorption
of TiO2-m is slightly enhanced in the visible region compared to the commercial TiO2. This behavior
could be mainly due to the presence of a small amount of rutile in the homemade titania TiO2-m, as
highlighted by the XRD patterns shown in Figure 11. Indeed, it is known that the energy bandgap of
rutile is around 3.0 eV, while anatase is characterized by an energy bandgap of 3.3 eV, which is likely
the reason for the shift to a visible region for this sample.
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Figure 11. XRD patterns of TiO2-c and TiO2-m. Rutile phase is assigned as *.

Estimated crystalline sizes of TiO2 anatase from XRD analysis are 17 and 8.3 nm for TiO2-c and
TiO2-m, respectively, while TEM images (Figure S1) of both materials confirmed the presence of smaller
oxide particles in the homemade oxide. Moreover, BET measurements demonstrated that TiO2-m has
a larger surface area (Table 2). The results obtained indicated that the procedure used for homemade
titania preparation permitted to obtain a photocatalyst with a larger surface area and smaller crystallite
size with respect to the commercial powder.

Au nanoparticles have been introduced by deposition-precipitation both on the commercial and
on the homemade TiO2, leading to a shift in absorption in the visible range (Figure 12).
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corresponding supports.

Moreover, for metal-containing catalysts a new band located at 550 nm appeared, which is peculiar
for this kind of material and is due to plasmon resonance of gold. TEM images of the Au-containing
photocatalysts (Figure 13) show that metallic particles are well-dispersed on both TiO2 with a size of
2 nm. The larger surface area and smaller titania particles which characterized TiO2-m sample, did not
significantly influence the particle size and distribution of gold, which resulted to be very similar to
what was obtained over commercial TiO2. Indeed, in both cases, the deposition precipitation method
made it possible to prepare 2 nm Au nanoparticles, homogeneously distributed on the support.
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2.2.2. Photocatalytic Tests

The materials prepared were tested in the photocatalytic oxidation of HMF in water, using
simulated solar radiation. The reaction temperature was rigorously maintained at 30 ◦C using a
water-cooling system. At first, pristine titania (commercial and homemade) were used. The conversions
of the two different titania (TiO2-c and TiO2-m) are very similar (Figure 14), despite the different
UV-vis diffuse reflectance absorption spectra measured. The reaction did not occur in the dark, and no
oxidation was observed in the absence of catalyst and oxygen.
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Figure 14. Photocatalytic activity of the commercial (TiO2-c and Au-TiO2-c) and homemade samples
(TiO2-m and Au-TiO2-m). Reaction conditions: 8 h, 30 ◦C, HMF 0.08 M. Legend: HMF conversion (�),
DFF yield (�), FFCA yield (�), CO2 yield (�), and others (�). Bare supports are represented by full
bars; gold-supported catalysts have bars with lines.
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The main identified products in the reaction were 2,5-diformylfuran (DFF) and CO2.
The suggested mechanism for the formation of DFF and CO2 can be summarised as reported in
Scheme 2, similarly to what has been suggested by Palmisano and co-workers [67]. The reaction
starts from the abstraction of hydrogen with respect to an OH-group in HMF molecule by either h+ or
·OH, with subsequent formation of the aldehyde. DFF may then be further oxidized and completely
mineralized to CO2 and H2O through aliphatic intermediates: something that actually explains the
presence of carbon dioxide and other ring-opened by-products as observed at low retention times from
HPLC analysis (Figure S2).
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Scheme 2. Proposed reaction pathway towards DFF formation over TiO2-based samples [67].

As a matter of fact, both HPLC and ESI-mass analysis showed the presence of other compounds,
within which we saw the presence of maleic acid. This compound has already been found in literature
as a derivative of HMF oxidation [79] using H2O2 [80,81]; so it is possible that hydrogen peroxide
formed by radical reaction using TiO2 as the photocatalyst in water [69] promoted the formation of this
compound. Other by-products might be formed in reactions with reactive oxygen species produced by
the photocatalytic reaction over TiO2 (such as h+, •O2

−, •OH, and H2O2); in fact, it is well known that
aliphatic intermediates can be obtained from molecules that are able to form a peroxy-bridge, as also
observed in the photooxidation of phenol [69].

When comparing the commercial to the homemade titania, DFF and CO2 yield was lower for
TiO2-m, but a higher carbon loss was observed using this material. This seems to indicate that the
homemade titania has a higher reactivity in the formation of by-products. Indeed, the HMF conversion
value was very similar to that obtained with commercial titania.

An effective improvement of the photocatalytic activities was observed with the introduction of
gold onto the catalyst. Nevertheless, when increasing the HMF conversion, a significant enhancement
of CO2 yield was observed, suggesting the presence of a metal causing mineralization reactions [82].
Indeed, DFF selectivity was higher using bare TiO2, suggesting that the observed high activity of
metal-containing systems is mainly associated with unselective reactions on both the commercial
and the homemade supports. Worthy of note was the FFCA formation when Au nanoparticles were
deposited on TiO2 (Figure 14).

The effect of the base on the photocatalytic reaction
With the aim of improving the selectivity, Na2CO3 was added in the molar ratio of HMF:Na2CO3

= 2, to avoid unselective oxidation, since this base was reported to act as a ·OH radical scavenger [72].
The general effect observed after the base addition is the increase in HMF conversion and also

the production of a higher amount of oxidation products, such as FFCA and other by-products;
HMFCA appeared with all the catalytic systems, but its formation was deeply enhanced with
gold-supported catalysts. The presence of HMFCA is mainly attributed to the presence of a base.
Therefore, an interesting consideration can be made by evaluating the results obtained for the
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two different titanium oxides: HMF oxidation, which passes mainly via DFF formation with the
consecutive formation of FFCA, can go through the other pathway in basic conditions, which includes
HMFCA formation. (Figure 15). The changed reaction mechanism can be observed even in the case of
metal-supported catalysts; in the presence of gold, this effect is even more emphasized where a yield of
more than 25% of HMFCA is achieved with Au/TiO2-c. Meanwhile, no DFF formation was observed
in both cases, indicating that—in the presence of a base—gold is very active in HMF oxidation, while
the reaction pathway passes through HMFCA formation, since alcohol oxidation is the rate-limiting
step of the reaction.
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Figure 15. Photocatalytic activity of the commercial (TiO2-c and Au-TiO2-c) and homemade samples
(TiO2-m and Au-TiO2-m) in presence of a base with HMF:Na2CO3 = 2 molar ratio. Reaction conditions:
8 h, 30 ◦C, HMF 0.08 M. Legend: HMF conversion (�), DFF yield (�), HMFCA yield (�), FFCA yield
(�), and C-loss (�). Bare supports are represented by solid bars; supported catalysts have lighter,
lined bars.

Moreover, despite the low temperature used in these tests (30 ◦C), the basic pH enhances HMF
degradation, leading to the formation of high-molecular-weight molecules such as humins [11], defined
as C-loss. As a matter of fact, other products such as maleic acid were not observed in these conditions.

Scheme 3 sums up the two different pathways of HMF oxidation that are observed for Au/TiO2

catalysts and pristine supports. In the presence of a base, the reaction pathway is mainly towards
HMFCA and FFCA formation. The results of HMF photooxidation for bare TiO2 also showed
DFF formation, thus suggesting that FFCA can also be formed via the fast oxidation of DFF using
gold-containing systems. The presence of colored, high-molecular-weight products in the reaction
mixture confirms the formation of humin-like compounds at basic pH. On the contrary, in the
absence of a base, HMF is mainly converted to DFF, which can either be transformed into FFCA
using gold-supported catalysts or go through a ring-opening reaction leading to the formation of
aliphatic products and CO2. Some mineralization products can also be derived from HMF, as reported
by Yurdakal et al. [67].
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The effect of O2 on the photocatalytic reaction
The effect of O2 on the photocatalytic reaction was investigated using pristine and gold-containing

TiO2-m, with the aim of elucidating the role of an oxidant during photooxidation (Table 3). Using
bare TiO2-m, the conversion of HMF was increased from 10% to 22%, leading to a higher formation
of DFF, CO2, and aliphatic by-products, when a greater amount of oxygen was introduced into the
reactor. On the other hand, similar conversions were obtained using the gold-containing catalyst
(Au/TiO2-m). These results suggest that molecular oxygen plays a pivotal role when bare titania
is used as the catalyst. Indeed, it can be activated by the photogenerated electrons and participates
in oxidation processes. The presence of O2 is also important since it acts as an electron scavenger
and reduces the recombination of electrons and holes [83]. The amount of oxygen, however, does
not seem to be crucial for the reaction when gold is added to TiO2, probably because, in this case,
the rate-limiting step is the charge transfer between TiO2 and Au, while oxygen activation on a gold
surface is not dependent on its concentration [84].

Table 3. Photocatalytic results for TiO2-m and Au-TiO2-m with different oxygen contents. Reaction
conditions: 8 h, 30 ◦C, HMF 0.08 M.

Catalyst O2 Content
(vol %)

HMF Conv.
(%)

DFF Yield
(%)

FFCA Yield
(%)

CO2 Yield
(%)

Others
Yield (%)

TiO2-m
11 10 2 - 3 5
21 12 2 - 2 8
100 22 5 - 8 9

Au-TiO2-m
11 12 2 - 2 8
21 17 3 1 5 8
100 15 3 1 8 3

The influence of oxygen content on aliphatic product formation was also studied. In particular,
the presence of one compound that had a retention time of 12 min (see S2 for the HPLC chromatogram)
was noticed and its peak area was considered. The correlation of the peak area obtained with
homemade titania catalysts and different amounts of O2 is shown in Figure 16. The results obtained
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highlighted that O2 content encouraged the formation of the aliphatic product, especially when the
bare support was used.Molecules 2018, 23, x FOR PEER REVIEW  17 of 24 

 

 

Figure 16. Peak area from HPLC analysis of the aliphatic product obtained at different oxygen 

contents with TiO2-m and Au-TiO2-m. Reaction conditions: 8 h, 30 °C, HMF 0.08 M. 

These results merely give an overview of the reaction mechanism for HMF photooxidation, 

which is influenced by the base content, oxygen amount, and presence of the metal. However, in 

order to find out which radical is actually involved in DFF formation using the prepared systems, 

some additional tests are currently ongoing, similar to what has been recently reported in literature 

[25,34,35]. 

3. Materials and Methods 

3.1. Catalyst Preparation 

3.1.1. Preparation of Pt/SiO2/TiO2 Catalysts by Colloidal Heterocoagulation and Spray-Freeze 

Drying 

Nanostructured micrometric powders made up of silica, titania, and platinum were produced 

in different compositions using a colloidal heterocoagulation method combined with spray-freeze 

drying. Multicomponent TiO2/SiO2 samples were obtained by heterocoagulation, mixing the stable 

suspension of the two oxides. Titania P25 Areoxide was suspended in acidic water (pH = 3.5). Then 

colloidal SiO2 nanosol (LudoxHS-40, Grace Davison, Columbia, MD, USA) was added after dilution 

in distilled water to 20 wt %, obtaining a 13 wt % total solid concentration for the preparation of a 

TiO2/SiO2 ratio of 1:0.5. The two oxide mixtures were prepared by dripping under stirring 50 g of SiO2 

Ludox HS in 50 g of TiO2P25 (3 wt %). The pH of the silica commercial nanosol was modified up to a 

value of 4, by means of a cationic exchange resin (DOWEX 50 × 8). This procedure entails the slow 

addition of the resin under stirring, until pH 4 is reached. The heterocoagulation is promoted at pH 

4, corresponding to a slight colloidal destabilization, in order to enhance electrostatic interactions 

between positively (TiO2) and negatively (SiO2) charged surfaces. The mixture thus prepared was 

ball-milled for 24 h using ZrO2 balls (5 mm diameter). The Pt precursor (NH3)4Pt(NO3)2 was added 

before and after SiO2 addition in order to evaluate any possible differences in physicochemical 

properties and catalytic performances. The spray-freeze-granulation technique was applied here to 

obtain micrometric powders starting from nanosols using the lab-scale granulator instrument, LS-2. 

The suspension was atomized by means of a peristaltic pump, blowing nitrogen gas at 0.4 bar through 

a 100 μm nozzle and nebulized into a stirred solution of liquid nitrogen, thus enabling an 

instantaneous freezing of each generated drop. The drops thus frozen were placed into a freeze-

Figure 16. Peak area from HPLC analysis of the aliphatic product obtained at different oxygen contents
with TiO2-m and Au-TiO2-m. Reaction conditions: 8 h, 30 ◦C, HMF 0.08 M.

These results merely give an overview of the reaction mechanism for HMF photooxidation,
which is influenced by the base content, oxygen amount, and presence of the metal. However, in order
to find out which radical is actually involved in DFF formation using the prepared systems, some
additional tests are currently ongoing, similar to what has been recently reported in literature [25,34,35].

3. Materials and Methods

3.1. Catalyst Preparation

3.1.1. Preparation of Pt/SiO2/TiO2 Catalysts by Colloidal Heterocoagulation and Spray-Freeze Drying

Nanostructured micrometric powders made up of silica, titania, and platinum were produced in
different compositions using a colloidal heterocoagulation method combined with spray-freeze drying.
Multicomponent TiO2/SiO2 samples were obtained by heterocoagulation, mixing the stable suspension
of the two oxides. Titania P25 Areoxide was suspended in acidic water (pH = 3.5). Then colloidal SiO2

nanosol (LudoxHS-40, Grace Davison, Columbia, MD, USA) was added after dilution in distilled water
to 20 wt %, obtaining a 13 wt % total solid concentration for the preparation of a TiO2/SiO2 ratio of
1:0.5. The two oxide mixtures were prepared by dripping under stirring 50 g of SiO2 Ludox HS in 50 g
of TiO2P25 (3 wt %). The pH of the silica commercial nanosol was modified up to a value of 4, by means
of a cationic exchange resin (DOWEX 50 × 8). This procedure entails the slow addition of the resin
under stirring, until pH 4 is reached. The heterocoagulation is promoted at pH 4, corresponding to a
slight colloidal destabilization, in order to enhance electrostatic interactions between positively (TiO2)
and negatively (SiO2) charged surfaces. The mixture thus prepared was ball-milled for 24 h using ZrO2

balls (5 mm diameter). The Pt precursor (NH3)4Pt(NO3)2 was added before and after SiO2 addition in
order to evaluate any possible differences in physicochemical properties and catalytic performances.
The spray-freeze-granulation technique was applied here to obtain micrometric powders starting from
nanosols using the lab-scale granulator instrument, LS-2. The suspension was atomized by means of a
peristaltic pump, blowing nitrogen gas at 0.4 bar through a 100 µm nozzle and nebulized into a stirred
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solution of liquid nitrogen, thus enabling an instantaneous freezing of each generated drop. The drops
thus frozen were placed into a freeze-drying apparatus with a pressure of 0.15 mbar and a temperature
of −1 ◦C, thus promoting the sublimation process which was completed in 48 h, producing a highly
porous granulated powder.

All the granulated samples were then submitted to a thermal treatment (H2 flow at 400 ◦C,
10 ◦C/min, then isothermal step for 30 min), which was aimed at consolidating the granule structure
and reducing any Pt.

3.1.2. Titania Microemulsion Preparation (TiO2-m)

In the photocatalytic study, two types of TiO2 were used: Commercial anatase powder DT-51
Millennium chemicals (denominated TiO2-c), and a homemade one which was synthetized by using a
microemulsion-mediated system (denominated TiO2-m) [78].

3.1.3. Synthesis of Au/TiO2 by the Deposition-Precipitation Method

During the synthesis, a 0.001 M solution of HAuCl4·3H2O was used at pH 9, adjusted by adding
dropwise a 0.1 M NaOH solution. Similarly, the pH of an aqueous suspension (300 mL) of 2 g of TiO2

was adjusted to 9. Then a solution of HAuCl4·3H2O was added dropwise to the TiO2 suspension
under vigorous stirring at room temperature, maintaining pH 9. Once the entire gold solution was
transferred to TiO2 suspension, the temperature was increased to 65 ◦C. Once the temperature reached
the desired value, the stirring was continued for 2 h.

As was reported [30], this synthesis is supposed to result in the selective deposition of Au(OH)3 on
the TiO2. The solid was then separated from the solution by centrifugation, washed several times with
water to remove chloride, dried at 110 ◦C overnight, and calcined at 300 ◦C for 2 h (rate 2 ◦C/min).

3.2. Catalyst Characterisation

Zeta potential measurements on the colloidal samples were performed at 25 ◦C with the
Electrophoretic Light Scattering (ELS) technique by means of the instrument Zetasizer nano ZSP
(Malvern Instruments, Malvern, UK). The Smoluchowski equation was applied to convert the
electrophoretic mobility to zeta potential. The instrument is equipped with an autotriation which
enables the identification of the isoelectric point (IEP) and adds up automatically to the sample
KOH 0.1 M or HCl 0.1 M, in order to explore the zeta potential trend within a selected pH range.
Measurements were performed on samples diluted at 0.1 wt %.

The granulated catalysts were observed by scanning electron microscopy using a Field Emission
Scanning Electron Microscope, FESEM (Carl Zeiss Sigma NTS, Oberkochen, Germany). Granules were
fixed to aluminum stubs with conductive adhesive tape. The elemental analysis was performed by
image analysis using FESEM coupled to an energy dispersive X-ray micro-analyzer (EDS, mod. INCA).

The synthesized materials were also examined by high resolution transmission electron
microscopy (HR-TEM), using a TEM/STEM FEI TECNAI F20 (ThermoFisher, Hillsboro, OR, USA),
which uses a high-angle annular dark field (HAADF) imaging mode at 200 kV. Samples were dispersed
on a holey carbon film supported on a copper grid.

XRD was measured at room temperature with a Bragg/Brentano diffractometer (X’pertPro
PANalytical) equipped with a fast X’Celerator detector, using a Cu anode as the X-ray source (Kα,
λ = 1.5418 Å). Diffractograms were recorded in the range 5–80◦2θ, counting for 15 s every 0.05◦2θ step.

Catalyst surface areas were measured by a N2 physisorption apparatus (Sorpty 1750 CE
instruments) and single-point BET analysis methods, in which samples were pre-treated under a
vacuum at 120 ◦C.

Solid UV-VIS analyses were recorded in a Perkin Elmer Lambda 19 instrument (Perkin Elmer
Waltham, MA, USA) equipped with an integrating sphere in the range 280–800 nm.
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3.3. Catalytic Tests

Batch reactor: 5-hydroxymehtyfurfural (HMF) oxidation: HMF was oxidised in a 100-mL
autoclave reactor (Parr Instrument, Moline, IL, USA) equipped with a mechanical stirrer (0–600 rpm)
and tools for the measurement of temperature and pressure. The reactor was filled with 25 mL of
distilled water, the appropriate amount of 5-hydroxymethylfufural, NaOH, or Na2CO3 (2 eq. when
specified), and catalyst (HMF/metal molar ratio = 100). The autoclave was purged 3 times with O2

(5 bar) and then pressurised at 10 bar. If not otherwise indicated, the temperature was set from 70 to
110 ◦C, and the reaction mixture was stirred at 400 rpm for 4–6 h. At the end of the reaction, the reactor
was cooled down to room temperature, and the solution was filtered, diluted 5 times, and analyzed by
an Agilent Infinity 1200 liquid chromatograph equipped with a Aminex HPX 87-H 300 mm 7.8 mm
column using a 0.005 M H2SO4 solution as the mobile phase. The identification of compounds was
achieved by calibration using reference commercial samples.

Photoreactor: The essential part of the experimental set-up was performed by the solar simulator
that consists of a 300 W Xe-lamp, which generates light in the 250–2500 nm range with an output
of 1 sun at a distance of 18 cm. The reactive mixture is placed in a glass photoreactor which in turn
comprises the circulating bath, inlet and outlet for gaseous compounds, outlet for sampling liquid
products, stirring system, and quartz disk for maintaining light transmission, once the reactor is sealed.
Catalysts were then tested for 8 h with 0.08 M aqueous solution of HMF with an HMF/Au molar ratio
of 100. The same amount of powder was introduced with the bare TiO2. The reaction took place at
30 ◦C with the irradiance output of 1000 W/m2 and spectral range of 250–2500 nm.

After reaction, samples were separated from the photocatalyst by centrifugation or filtration,
diluted by 5 times in deionized water and analyzed by HPLC as described above.

Gaseous products were analyzed in an off-line Thermo Focus GC with a carbon molecular sieve
column (CARBOSPHERE 80/100 6*1/8) and TCD detector.

4. Conclusions

The oxidation and photooxidation of HMF in water can provide environment-friendly methods
to produce DFF and FDCA, an important molecule serving as the starting point for the synthesis
of bio-polymers. Catalytic materials based on TiO2 were shown to be active in both the thermal
and photoactivated conditions, and the reaction network was significantly affected by the catalyst
method of synthesis and composition. Micro-sized TiO2-SiO2 grains with packed porosity and high
surface area, containing very small and well dispersed Pt nanoparticles (2 nm), were active in the
liquid-phase oxidation of HMF at neutral pH, forming DFF, FFCA, and FDCA as the most important
products. The addition of a base led to a change in the reaction mechanism, forming HMFCA as the
first intermediate; however, a large amount of high-molecular weight by-products was present because
of HMF degradation in these high pH conditions.

Microemulsion was used to prepare homemade TiO2 having a higher surface area and smaller
crystallite size compared to commercial DT-51. The use of both materials for HMF photooxidation led
to the production of DFF and CO2 as the main products; moreover, some aliphatic intermediates, such
as maleic acid, were observed. The different chemical-physical properties of the two oxides did not
seem to have a strong influence on the selectivity of the process in the conditions studied.

The introduction of gold enhanced the activity but also decreased the DFF selectivity, while
molecular oxygen was shown to play a pivotal role, especially when bare titania was used as
the catalyst.

Supplementary Materials: The following are available online. Figure S1. TEM images of the studied titania
support. TiO2-m (microemulsion) and TiO2-c (commercial); Figure S2. HPLC analysis of the reaction mixture
TiO2-m (microemulsion) and TiO2-c (commercial); Figure S3. Schematic representation of solar simulator. Table S1.
Solar simulator and reactor technical parameters.
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