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Abstract: Ischemic injuries and local hypoxia can result in osteocytes dysfunction and play a key role
in the pathogenesis of avascular osteonecrosis. Conventional imaging techniques including magnetic
resonance imaging (MRI) and computed tomography (CT) can reveal structural and functional
changes within bony anatomy; however, characterization of osteocyte behavioral dynamics in the
setting of osteonecrosis at the single cell resolution is limited. Here, we demonstrate an optical
approach to study real-time osteocyte functions in vivo. Using nicotinamide adenine dinucleotide
(NADH) as a biomarker for metabolic dynamics in osteocytes, we showed that NADH level within
osteocytes transiently increase significantly after local ischemia through non-invasive photo-induced
thrombosis of afferent arterioles followed by a steady decline. Our study presents a non-invasive
optical approach to study osteocyte behavior through the modulation of local environmental
conditions. Thus it provides a powerful toolkit to study cellular processes involved in bone
pathologies in vivo.
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1. Introduction

Avascular osteonecrosis (AVN), commonly found in the regions of femoral head, is associated
with bony cell death. Although AVN is attributed to ischemic insults, the exact molecular mechanism
remains controversial [1,2]. Previous studies have suggested that intravascular thrombus and
extravascular marrow lipid deposition can result in impaired blood supply leading to regional ischemia.
The decreased oxygen tension ultimately causes osteocyte death and eventual collapse of subchondral
bones [3,4]. Modern imaging techniques, such as magnetic resonance imaging (MRI), Single-photon
emission computerized tomography (SPECT) and positron emission tomography (PET), have been
utilized extensively in clinical settings to diagnose AVN [5–8]. However, imaging-based approaches
that rely on optical platforms to study the cellular and molecular pathogenesis of AVN, possess unique
technical challenges due to the high photon attenuation of calcified bone matrix.

Our current study aims to overcome many of the challenges associated with optical-based
imaging of bony compartments and elucidates a potential molecular pathophysiology of AVN.
Nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme in oxidative
phosphorylation [9,10], is a sensitive non-linear proxy of tissue hypoxia [11,12]. Moreover, NADH is
also a cofactor used by fatty acid synthetase in lipid biosynthesis, and by enzymes such as desmolases
and hydroxylases in steroid biosynthesis [13]. NADH level within cells thus provides an accurate
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reflection of their metabolic demand and may serve as a surrogate marker for functional changes
within osteocyte in AVN.

Due to the unique auto-fluorescence properties of NADH, imaging of NADH to monitor cellular
metabolic states in vivo has been investigated in the past [14–16]. Recent studies have demonstrated
that two-photon excitation microscopy may further enhance NADH imaging in vivo [16,17].
Using longer wavelength photons to excite NADH, less tissue scattering is expected, which will result
in improved signal detection with reduced background noise. The small focal excitation volume further
improves imaging resolution in the axial and longitudinal plane, thus enabling single cell imaging and
tracking in deep tissue compartments such as the bone, marrow cavity or soft tissues [18–21].

Utilizing these advantages, our current study proposes a novel, all optical-based approach to
generate and study the hypoxic microenvironment of AVN in situ. Performing high resolution real-time
and long-term imaging of necrotic processes occurring in mouse calvaria, our goal is to characterize the
deterministic relationships between vascular occlusion, osteocyte death, and changes in intracellular
metabolic demand that contribute to the development of AVN.

2. Results

2.1. Real-Time In Vivo Imaging of Osteocyte Structure and Blood Vessels

To track and visualize the live osteocytes and vasculature in the bone, a common dye, Calcein AM,
was subcutaneously administrated (S.C, 20 mg/kg) 3 days before imaging and the dextran (70 kDa
Texas red) intravenously injected 5 minutes before imaging (I.V, 10 mg/kg), Figure 1 showed the
structure of the live osteocytes (green) and bone vasculature (red) using two-photon imaging system.
We found that the live osteocytes were distributed and clustered along the vasculature (Supplementary
Movie 1: Live osteocytes were distributed and clustered along the vasculature). In order to further
confirm that the observed area was limited to the bone, we magnified the image area to visualize
the osteocytes and extracellular matrix component within the bone (Figure 2). We observed that
osteocytes were connected to one another through a network of cytoplasmic projections, including
disk-shaped osteocytic lacunae and an abundance of dendritic canaliculus. Furthermore, the skull
had been removed and the cortex exposed. The image from the cortex showed no labeled cells with
Calcein dye (data not shown), which indicated that Calcien was specific to target and label osterocytes
and imaging area did not exceed the range of bone.
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Figure 2. Intravital two-photon imaging of osteocytes: (A) Osteocytes were connected to one another
through a network of cytoplasmic projections; (B) Extracellular matrix; (C) Magnification of the inset in
Figure 2A; (D) Overlap of Figure 2A,B.

2.2. Photo-thrombosis of the Selected Blood Vessels

To investigate the effects of blood flow supply on osteocytes metabolism, laser beam (563 nm) was
used to target and stimulate the arterioles (white circle in Figure 3A) to make photo-thrombosis
ischemic models after the intravenously administration of photosensitive dye, Rose Bengal
(RB, I.V). After photo-stimulation, many black dots (un-labeled RBC) were found within the vessel
(Figure 3B) with a reduction in blood flow and in some instances completely halted with the
velocity under 0.2 mm/s (Figure 3C, Supplementary Movies 2 and 3: blood flow before and after
photo-thrombosis, respectively).
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Figure 3. Photo-thrombosis of the arterioles: (A) Before photo-thrombosis, white circle demonstrates
the target site of the laser beam; (B) after photo-thrombosis, many black dots (un-labeled RBC) were
noted within the vessel; (C) velocity measurement of the blood flow.

2.3. In Vivo Quantitation of Osteocyte Metabolism

To study the changes of osteocytes metabolism under the ischemic and hypoxic microenvironment,
propidium iodide (PI, sigma-aldrich, St. Louis, Missouri, USA; 1mg/ml) was intravenously
administered to track the live cell state. We took images (shown in Figure 4A) at different time
points (0, 3 and 6 h after photo-thrombosis). Our data indicated that before the photo-thrombosis,
only a few stained cells with PI dye were captured (percentage <10%) (Figure 4B), which might be
caused by the toxicity of staining dyes. Three hours after complete blood supply deprivation following
photo-thrombosis, the percentage of PI stained dead cells were increased to approximately 75%, and
fluorescence intensity ratio of PI/Calcein achieved 0.29 (Figure 4C). After 6 h, the dead cell rates
reached nearly 95% and a PI/Calcein ratio of 2.31. In addition, the cell structure expanded due to cells
lysis (Figure 4A, 6 h).

Simultaneously, NADH auto-fluorescence inside the bone had been collected under 740 nm laser
beam excitation (Figure 5A–D). The NADH signal increased 30 min after the photo-thrombosis initial
response to NADH accumulation caused by ischemia and hypoxia but decreased afterwards due to
blood flow reperfusion (Figure 5E).
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Figure 4. The changes of osteocytes after photo-thrombosis: (A) Osteocytes before they were stained
with Calcein and PI at 0 h 3 h and 6 h after photo-thrombosis; (B) Percentage of dead osteocytes;
(C) The intensity ratio of PI/Calcein. ** p < 0.01, by a two-tailed unpaired t-test; ns, not significant.

Molecules 2018, 23, x FOR PEER REVIEW  5 of 11 

 

 
Figure 4. The changes of osteocytes after photo-thrombosis: (A) Osteocytes before they were stained 
with Calcein and PI  at 0h 3h and 6h after photo-thrombosis; (B) Percentage of dead osteocytes; (C) 
The intensity ratio of PI/Calcein. 

 
Figure 5. Intensity quantification of NADH auto-fluorescence after photo-thrombosis: (A–D) NADH
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2.4. Hypoxic and Apoptotic Analysis of the Avascular Osteonecrosis Tissue

To further verify these findings using two-photon technique, a classic AVN model was performed
with transverse osteotomy. All rats survived the operation. The results showed that after osteotomy,
the avascular femoral head was located in the hypoxic condition with a significant increase in HIF-1α
(Figure 6 A,C), a sensitive indicator for hypoxia. However, we did not observe apoptotic osteocytes
until 6 h after the surgery (Figure 6 B,D), later than our observation using the photo-thrombosis model.
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Figure 6. Histological examination of classic avascular osteonecrosis: (A) Immunohistochemical
manifestation of HIF-1α in different postoperative stages; (B) tunnel staining of femoral heads,
the positive osteocytes are shown with black arrows; (C) HIF-1α mRNA levels analyzed by real-time
PCR; (D) the percentage of Tunnel positive osteocytes. ** p < 0.01, by a two tailed unpaired t-test.

3. Discussion and Conclusions

The pathogenesis of AVN is complex and involves multiple cellular processes [22]. Previous
studies have proposed ways to artificially induce AVN in animal models including pulsed delivery of
corticosteroids [23,24]. However, these methods may cause side effects like thinning bones and
fractures, and it is also unclear whether these models represent similar pathophysiology as AVN
observed in patients. The model system used in our study overcomes these concerns through the
use of a non-invasive thrombo-occlusion procedure to mimic and simulate AVN. The precise use of
high intensity lasers to induce photo-thrombosis of specific arterioles enables close monitoring and
tracking local responses. Recently intravital bone imaging system has been introduced to study
bone homeostasis [25] and NADH was regarded as a marker in metabolism hemostasis [14,16].
Frikha-Benayed et al. also used NADH to measure metabolic oxidative stress in situ from hypoxia
and found that under hypoxia (postmortem), NADH levels could be regarded as a marker to
reflect metabolism change. However, they created extreme hypoxia during postmortem, which
could not mimic a real hypoxic environment in a live animal and these findings were limited to
the dead animals [17]. We also show that there is abundant vesselsdistributed within the bone area.
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This studyuses the photo-thrombosis approach to simulate avascular osteonecrosis (AVN) environment
in live animals, and for the first time, NADH, is used as a new metabolic marker to investigate
osteocytes metabolism under the hypoxia environment in a high spatial resolution using two photon
microscopy systems. Coupled with high-resolution intravital microscopy, our entire setup enabled
real time tracking and monitoring of osteocyte fate and subcellular metabolic responses towards local
stress signals from the ischemia within the bony environment.

Osteocytes are the terminally differentiated osteoblasts and account for over 90% of the entire
cells in bone tissue [26]. The changes in osteocyte quantity and function in the setting of AVN have
been investigated previously [27,28]. However, most studies thus far relied on the histological or
ex vivo analyses of tissue or cells to extract phenotypic changes. In situ, direct observation of osteocyte
response in the setting of ischemic stress is lacking. Our study showed that in real-time, osteocytes
that reside within bones form an interconnected network through cytoplasmic projections [29,30],
as well preferentially line the perivascular space. This observation provided strong and direct evidence
that given the close proximity of osteocytes to blood vessels, avascular condition likely influences the
biological activities of osteocytes.

Sato et al. reported that in a rat model with hip dislocation and osteotomy, the osteocytes
death occurred at 12 h and AVN appeared after 96 h [31]. Using the similar surgical technique,
we observed a few osteocytes death occurred at 6 h and with the majority of cell death at 12 h, which
was consistent with the previous study. However, with the photo-thrombosis technique, we observed
osteocytes beginning to die at 3 h. In this study, different from chronic formation of AVN, the high
intensity stimulation in photo-thrombosis process damaged endothelial cells in the vessel rapidly.
Clotting formation within the arteries was noted within seconds after initiation of laser excitation.
In this context, PI rather than Tunnel assay, was used to assess for cell viability which aimed to manifest
the early changes of osteocytes, which may have attributed to the early detection of osteocytes dying.
In addition, we examined the calvarium and compared it to the femoral head. The differences in
vascular supply as well as underlying biology between femur and calvarium bones may explain part of
the differences of osteocyte responses.

NADH was an intrinsic auto-fluorescent indicator for energy metabolism [16]. In this study,
ischemic and hypoxic condition inside the bone gave rise to the increase of NADH levels within
30 min, suggesting that the disorder of energy metabolism was involved in the early pathogenesis of
AVN. Within 30 min of photo-thrombosis, the blockade of electron transport chains increased
the accumulation of NADH in the cell and increased fluorescence intensity. However, because
photo-thrombosis is transient and reversible [32–34], reperfusion relieved the hypoxic environment
and facilitated the transfer from reduced NADH state to the oxidized NAD state with no
auto-fluorescence [17].

In summary, our study demonstrated that osteocyte structure and function can be imaged in vivo
with two-photon microscopy by applying a combination of endogenous and exogenous fluorophores.
Changes in signal can be monitored in real time after the photo-thrombosis procedure in the bone.
We have shown that this technique could simultaneously facilitate qualitative examination of osteocyte
morphology with detailed quantitative analysis of biological changes in cell function, which could
build a more complete understanding of AVN pathophysiology in the future.

4. Materials and Methods

4.1. Animal Preparation

Six old C57BL/6J mice (6–9-month-old, male) were anesthetized by the inhalation of isoflurane
(4% for induction; 1.5 to 2% for surgery, and 1 to 1.5% for imaging) and immobilized in a custom-made
stereotactic apparatus. After anesthesia, dexamethasone and buprenorphine were subcutaneously
administered to reduce inflammation and pain. Body temperature was monitored by a rectal probe
and maintained at 37.0 ◦C by a heating blanket (Homeothermic blanket systems, Harvard Apparatus,
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Holliston, MA, USA). Hair was removed on the skull to expose the frontoparietal skull section.
Experiments were performed only if the physiological variables remained within normal limits.
All experiments were performed under animal experimental guidelines approval of Mayo Clinic
(A3915, 2015) and Fudan University (No. DF730, 2017).

4.2. Bone Cell and Vasculature Labeling

Calcein AM (Ebioscience, USA; 20 mg/kg, S.C.) was injected 3 days before examination to
track the live osteocytes [25]; and five min before imaging. Dextran (dextran, Texas Red, 70 kDa,
Thermo Fisher Scientific., Waltham, MA, USA; 12.5 mg/kg) was systemically administered to visualize
the vasculature and blood flow in the bone.

To further characterize the damaged cells due to impaired blood supply, 100 µL of a solution of
propidium iodide (PI, Sigma-Aldrich, USA; 1 mg/mL) was intravenously injected into the animal to
label the dead cells.

4.3. Multi-Photon Imaging System and Photo-Thrombosis

The upright laser scanning microscope (BX61WI, Olympus, Tokyo, Japan) attached to a Ti:sapphire
pulsed laser system (80 MHz repetition rate, <100 fs pulse width, Spectra Physics, Santa Clara, CA,
USA) and software (Fluoview1000, Olympus, Japan) was used for two-photon fluorescence imaging.
20× water immersion (NA, 1.00; WD, 2 mm, Olympus), and 40× water-immersion objectives (NA 0.80,
WD; 3.3 mm, Olympus) were selectively chosen for fluorescence imaging in vivo. 830-nm irradiation
wavelength was used to excite calcein and dextran, and emission light was differentiated and detected
with 525/50 and 615/50 filters, respectively. The average laser power for imaging was <30 mW.

Based on vessel diameter and blood flow direction, arterioles were discriminated and chosen as
photo-thrombosis targets. System administration of Rose Bengal (RB, Sigma-Aldrich, USA; 100 µL,
10 mg/mL) was used to induce photo-thrombosis on specific arterioles under 563 nm laser beam
illumination (intensity, 0.8–1.6 mW and stimulation duration, 80–100 s). All the procedure finished in
15 min after RB injection.

4.4. NADH and Extracellular Matrix Imaging

For NADH imaging, Images were taken at 12-bit depth at a resolution of 512 × 512 pixels with
a pixel dwell time of 4 µs. NADH and Texas-Red-dextran were excited at 740 nm and emission
wavelength was separated and detected using 460/50 and 615/50 filter. In addition, due to the
accumulation of minerals (calcium and phosphorus) and collagens in the bone, second harmonic
generation could be used to image extracellular matrix distributions in the bone under the excitation
beam at 890 nm.

4.5. Ischaemic Osteonecrosis Model by Osteotomy Surgery

Fifteen male Sprague-Dawley rats were used to build up the ischaemic osteonecrosis model with
transverse osteotomy. The operation was performed according to the methods used by Sato et al. [31].
The right femoral head of each rat was made surgically avascular while the contralateral side served
as the control. The animals were sacrificed at different postoperative stages and the femoral heads
were obtained for histological examination and hypoxic analysis (HIF-1α). The procedure for the
preparation of samples can be found in our previous report [35].

4.6. Data Analysis

Images were processed using open source software Fiji (NIH, https://fiji.sc/) and an accustomed
written program with MATLAB (Version 8.5.0 R2015a, Mathworks, Natick, Massachusetts, USA).
Registration had been taken to perform the feature-based alignment of images at the different time
point. After image registration, the number of dead osteocytes and fluorescence intensity of NADH

https://fiji.sc/
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were calculated or measured at five random regions of interest following background subtraction.
In addition, radon transform algorithm had been used to measure blood flow velocity in the bone [36].
The data were presented as mean ± SD if possible, and unpaired two-tailed t-test was used with a
p value of <0.05 was deemed as statistically significant.

Supplementary Materials: The following are available online.
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