1		Synthesis of Jacaranone-derived Nitroger	nous								
2	Cyclohexadienones and Their Antiproliferative and										
3		Antiprotozoal Activities									
4	Arn	nin Presser ¹ • Gunda Lainer ¹ • Nadine Kretschmer ²	• Wolfgang								
5	Se	chuehly ² ● Robert Saf ³ ● Marcel Kaiser ^{4,5} ● Marc-Mar	nuel Kalt ¹								
6											
7	1	Institute of Pharmaceutical Sciences, Pharmaceutica	al Chemistry,								
8		University of Graz, Schubertstraße 1, A-8010 Graz, Au	Istria								
9	2	2 Institute of Pharmaceutical Sciences, Pharmacognosy, University of									
10		Graz, Universitätsplatz 4, A-8010 Graz, Austria									
11	3	3 Institute for Chemistry and Technology of Materials (ICTM), Graz									
12		University of Technology, Stremayrgasse 9, A-8010 Graz, Austria									
13	4	4 Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-									
14		4002 Basel, Switzerland									
15	5	University of Basel, Petersplatz 1, 4003 Basel, Switzer	land								
16											
17		Supporting Information									
18		Table of contents									
19											
20	1. Co	mpared overall yields of the key products	S2-S4								
21	2. Ca	lculated physicochemical parameters and models	S5-S9								
22	3. Re	sults of the XTT viability assay	S10-11								
23	3. D a	ta and NMR spectra of the prepared compounds	S12-S45								

- 1 **Table 1:** Synthesis and compared overall yields of compounds **7**, **11** and
- 2 12, final oxidation step to the dienones 13 15

3	4	method A, E or F	OH X N X 7a-j 11a-e 12	i	O HO X N X X X X X X X X X X X X X X X X X
	Entry	Х	Method ^a	Product	Yield/% ^b
	1	0	А	7a	71
	2	0	В	7a	73
	3	0	С	7a	23
	4	0	А	7b	58
	5	0	В	7b	55
	6	0	С	7b	51
	7	0	А	7c	62
	8	0	В	7c	58
	9	0	С	7c	98
	10	0	В	7d	89
	11	0	С	7d	67
	12	Ο	В	7e	90

7e

7f

67

0

С

В

13

14

0

15	0	С	7 f	86
16	Ο	В	7g	0
17	0	С	7g	71
18	0	В	7h	86
19	0	С	7h	79
20	0	В	7i	92
21	0	С	7i	98
22	0	В	7j	79
23	0	С	7j	98
24	Н, Н	B→D	11a	53
25	Н, Н	F	11a	48
27	Н, Н	D	11b	0
28	Н, Н	Е	11b	42
29	Н, Н	F	11b	64
30	Н, Н	D	11c	0
31	Н, Н	F	11c	69
32	Н, Н	D	11d	0
33	Н, Н	F	11d	61
34	Н, Н	B→D	11e	53
35	O, OH	B→D	12	76

Reaction conditions: (*i*) 13a-j, 15: PhI(OAc)₂, CH₃CN/H₂O (12:5), 0 °C, 7
 min (13a: 67%, 13b: 17%, 13c: 55%, 13d: 40%, 13e: 64%, 13f: 19%, 13g:
 18%, 13h: 79%, 13i: 88%, 13j: 49%, 15: 65%); 14a-e: PhI(OAc)₂,

- 1 CH₃CN/H₂O/phosphate buffer (12:3:2), pH = 6.4, 0 °C, 7 min (14a: 16%,
- 2 **14b**: 0%, **14c**: 28%, **14d**: 0%, **14e**: 0%).

^aMethod A: preparation of imides via Mitsunobu reaction; method B:
AcOH-assisted condensation of tyramine; method C: PEG 400-assisted
condensation of tyramine; method D: preparation of amines from imides;
method E: preparation of amines by catalytic amination; method F:
preparation of amines via alkyl bromides

8 ^bIsolated yield.

compd	MW	logP	logS	HBD	HBA	tPSA (A^2)	ASA (A^2)	ASApho (A ²)	$\begin{array}{c} ASApol\\ (A^2) \end{array}$
						pH 7.4	pH 7.4	pH 7.4	pH 7.4
1 3 a	283.28	0.85	-4.38	1	4	74.68	398.81	297.48	101.33
13b	233.22	-0.18	-3.11	1	4	74.68	309.98	200.20	109.77
13c	235.24	-0.60	-2.09	1	4	74.68	347.12	241.44	105.68
13d	352.17	1.89	-5.79	1	4	74.68	433.57	332.23	101.34
13e	302.11	-0.38	-4.12	1	4	74.68	348.25	231.55	116.70
13f	284.27	-0.06	-1.76	1	5	87.57	391.80	273.57	118.23
13g	251.24	-1.13	-2.34	1	5	83.91	361.20	242.04	119.16
13h	289.33	0.81	-3.86	1	4	74.68	395.92	302.04	93.88
13i	287.32	0.66	-4.34	1	4	74.68	400.77	305.51	95.26
13j	287.32	0.55	-3.15	1	4	74.68	371.43	276.99	94.44
1 4 a	255.32	1.89	0.00	1	3	41.74	401.42	337.80	63.62
14c	223.27	0.04	0.58	1	4	49.77	363.97	285.49	78.49
15	291.35	0.58	-3.83	2	4	77.84	397.62	303.73	93.89

1 **Table 2:** Calculated physicochemical properties of the tested compounds.

1 The molecular weight (MW), log*P*, log*S*, hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), topological

- 2 polar surface area (tPSA), accessible surface area (ASA), hydrophobic accessible surface area (ASA*pho*) and polar
- 3 accessible surface area (ASApol) were calculated using Marvin 18.10.0, ChemAxon (https://www.chemaxon.com).

compd	1	P. falciparun	n	T. brucei rhodesiense					
	LE	LLE	LELP	LE	LLE	LELP			
13a	0.35426	4.3071	3.1496	0.37897	4.6853	2.9443			
13b	0.43214	5.9852	-1.4583	0.4574	6.2982	-1.3778			
13c	0.40866	5.4188	-0.86821	0.41635	5.5141	-0.85216			
13d	0.32745	3.1621	7.1088	0.31276	2.9158	7.4427			
13e	0.2981	3.9202	0.6991	0.4076	5.4367	0.51128			
13f	0.29739	4.3834	0.56794	0.28413	4.1803	0.59445			
13g	0.37554	6.1041	-3.1336	0.36695	5.9914	-3.207			
13h	0.36037	4.9418	1.5945	0.37696	5.1957	1.5243			
1 3 i	0.38487	5.2504	1.6655	0.3984	5.4575	1.6089			
13j	0.35311	5.1061	0.84732	0.3928	5.7136	0.76171			
14a	0.39973	4.7611	1.9388	0.45074	5.4676	1.7194			
14c	0.42541	5.0059	-0.10437	0.56335	6.6146	-0.078814			
15	0.3403	4.4189	2.3224	0.38014	5.0287	2.079			

Table 3: Calculated ligand efficiency metrics of the tested compounds.

- 1 The ligand efficiency (LE), lipophilic ligand efficiency (LLE) and ligand efficiency lipophilic price (LELP) are based
- 2 on IC_{50} values in nmol/L and were calculated using the DataWarrior software, version 4.7.2
- 3 (http://www.openmolecules.org/datawarrior.html).

2 **Fig. 1** BOILED-Egg analysis of all synthesized dienones. Substances within the white ellipse (egg white) are

3 anticipated to have good intestinal absorption (passive absorption); the yellow region (yolk) is the physicochemical

4 space of molecules with high probability to permeate the blood-brain barrier. The BOILED–Egg model also reflects the

5 variability in IC_{50} values of our evaluated compounds after altering the dienone skeleton.

6 The plot was prepared by using the free web tool SwissADME (<u>www.swissadme.ch</u>).

compd	CCRF-CEM		MDA-N	MDA-MB-231		HCT 116		251	MR	MRC-5	
	5	50	5	50	5	50	5	50	5	50	
	µg/mL										
120	4.42	1.15	37.76	17.38	55.36	1.76	90.65	3.21	43.74	1.93	
13a	± 1.95	± 0.57	± 3.13	± 1.50	± 4.79	± 0.15	± 4.53	± 0.65	± 4.17	± 0.27	
121	-1.08	3.46	1.71	6.61	0.13	-0.32	95.21	-0.41	14.61	0.62	
13b	± 0.41	± 0.46	± 0.23	± 0.28	± 0.22	± 0.14	± 2.89	± 0.13	± 3.58	± 0.05	
12-	79.06	2.15	79.79	5.72	99.04	1.10	93.33	0.59	139.35	3.55	
130	± 7.04	± 0.08	± 4.02	± 0.95	± 2.69	± 0.14	± 4.65	± 0.06	± 3.57	± 0.63	
	13.80	3.33	28.59	24.84	41.24	0.44	72.11	1.79	46.44	1.01	
130	± 3.18	± 0.82	± 1.24	± 2.30	± 4.07	± 0.13	± 9.10	± 0.51	± 5.26	± 0.14	
12-	-2.60	0.59	81.32	9.53	45.33	-0.43	95.64	1.95	97.01	0.38	
15e	± 0.50	± 0.16	± 1.60	± 0.37	± 5.40	± 0.12	± 2.66	± 0.25	± 5.81	± 0.05	
100	99.83	21.74	112.14	23.02	90.99	92.81	91.76	93.66	108.57	111.87	
131	± 2.36	± 6.20	± 5.31	± 1.33	± 5.01	± 7.25	± 3.22	± 2.82	± 2.95	± 2.68	
12-	86.92	8.05	104.42	7.63	96.00	68.10	94.70	65.60	115.85	89.59	
13g	± 6.14	± 0.88	± 2.43	± 0.24	± 3.74	± 5.16	± 1.74	± 2.29	± 3.68	± 1.80	

1 **Table 4:** Results of the XTT viability assay.

12h	15.70	0.69	70.84	16.36	44.30	0.49	74.92	0.18	57.62	0.76	
1311	± 3.62	± 0.47	± 2.20	± 0.39	± 1.15	± 0.19	± 1.64	± 0.07	± 1.85	± 0.07	
13;	2.26	1.23	32.44	16.56	1.04	0.15	15.92	0.00	5.69	0.51	
131	± 0.96	± 0.31	± 2.46	± 1.75	± 0.50	± 0.16	± 4.35	± 0.06	± 0.18	± 0.06	
12;	89.92	15.39	87.73	89.02	98.62	63.27	96.54	76.65	96.08	50.27	
13 <u>j</u>	± 6.44	± 1.27	± 2.33	± 2.76	± 1.23	± 1.00	± 1.54	± 1.92	± 1.24	± 4.44	
1/0	94.58	57.97	95.02	92.47	97.28	62.12	99.49	95.54	119.49	95.12	
14a	± 7.31	± 6.28	± 4.23	± 4.39	± 2.36	± 1.80	± 0.50	± 2.33	± 4.68	± 2.52	
140	22.81	-0.18	56.75	4.33	87.72	1.58	68.30	1.11	141.03	0.79	
140	± 2.79	± 0.21	± 2.79	± 0.17	± 3.25	± 0.21	± 4.96	± 0.23	± 4.17	± 0.07	
15	42.39	0.57	105.06	6.05	111.43	1.44	97.58	2.24	134.88	4.47	
13	± 2.45	± 0.14	± 7.90	± 0.29	± 6.45	± 0.31	± 3.54	± 0.14	± 2.14	± 0.18	
VBN	CCRI	F-CEM	MDA-M	MDA-MB-231		HCT 116		U251		MRC-5	
(0.01 µg/mL)	23.60 ± 7.62		$42.05 \pm 7.62 \qquad 42.05 \pm 7.97$		38.99	38.99 ± 5.10		45.31 ± 3.81		63.82 ± 5.29	

2 The XTT viability assay included leukemia (CCRF-CEM), breast cancer (MDA-MB-231), colon cancer (HCT-116)

3 and glioblastoma cells (U251) as well as non-tumorigenic lung fibroblasts (MRC-5), the results are expressed as

4 metabolic active cells in % of control, vinblastine (VBN) was used as reference compound.

1 *N-[4-(Thexyldimethylsilyloxy)phenethyl]phthalimide* (6a)

2 Yellowish solid; Yield 90%; $R_f = 0.26$ (CH:EtOAC = 7:1).

1 *N-[4-(Thexyldimethylsilyloxy)phenethyl]maleimide* (6b)

2 Yellowish solid; Yield 70%; $R_f = 0.64$ (CHCl₃:EtOAC = 9:1).

1 *N-[4-(Thexyldimethylsilyloxy)phenethyl]succinimide* (6c)

2 White solid; Yield 77%; $R_f = 0.43$ (CHCl₃:EtOAC = 9:1).

- 1 *N-(4-Hydroxyphenethyl)phthalimide* (7a)
- 2 White solid; Yield 73% (AcOH), 23% (PEG 400); $R_{\rm f} = 0.44$ (CH:EtOAC =
- 3 1:1).

- 1 *N-(4-Hydroxyphenethyl)maleimide* (7b)
- 2 Slightly yellow solid; Yield 55% (AcOH), 51% (PEG 400); $R_{\rm f} = 0.38$

3 (CH:EtOAC = 1:1).

- 1 *N-(4-Hydroxyphenethyl)succinimide* (7c)
- 2 White solid; Yield 58% (AcOH), 98% (PEG 400); $R_{\rm f} = 0.17$ (CH:EtOAC =
- 3 1:1).

- 1 4,5-Dichloro-N-(4-hydroxyphenethyl)phthalimide (7d)
- 2 White solid; Yield 89% (AcOH), 67% (PEG 400); $R_{\rm f} = 0.52$ (CH:EtOAC =
- 3 1:1).

- 1 *3,4-Dichloro-N-(4-hydroxyphenethyl)maleimide* (7e)
- 2 White solid; Yield 90% (AcOH), 67% (PEG 400); $R_{\rm f} = 0.47$ (CH:EtOAC
- 3 = 1:1). HC -6.75 3.81 2.88 2.86 7.84 7.4 7.0 6.8 4.0 5.0 4.8 f1 (ppm) 4.6 4.4 4.2 3.8 3.6 3.0 2.4 4 7.2 6.6 6.4 5.2 3.4 3.2 2.8 2.6 6.2 5.6 5.4 6.0 5.8 ~133.14 _129.92 _129.23 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 f1 (ppm) 75 70 30 5 65 35 85 80 60 55 45 40 50 6

- 1 *N-(4-Hydroxyphenethyl)pyridine-2,3-dicarboximide* (7f)
- 2 White solid; Yield 0% (AcOH), 86% (PEG 400); $R_{\rm f} = 0.40$ (CH:EtOAC =
- 3 1:1).

- 1 *N-(4-Hydroxyphenethyl)morpholine-3,5-dione* (7g)
- 2 White solid; Yield 0% (AcOH), 71% (PEG 400); $R_{\rm f} = 0.36$ (CH:EtOAC =
- 3 1:1). H 6.78 7.11 3.95 2.79 4.0 7.8 7.6 7.4 7.2 7.0 6.8 4.6 4.4 4.2 3.8 2.8 6.6 5.2 5.0 f1 (ppm) 4.8 3.6 3.4 3.2 3.0 2.6 6.4 6.2 6.0 5.8 5.6 2.4 4 5.4 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 ff[[gpm] 5 85 80 75 70 65 40 30 60 55 50 45 35

- 1 *N-(4-Hydroxyphenethyl)hexahydrophthalimide* (7h)
- 2 White solid; Yield 86% (AcOH), 79% (PEG 400); $R_{\rm f} = 0.50$ (CH:EtOAC =
- 3 1:1).

- 1 *N-(4-Hydroxyphenethyl)-3,4,5,6-tetrahydrophthalimide* (7i)
- 2 White solid; Yield 92% (AcOH), 98% (PEG 400); $R_{\rm f} = 0.41$ (CH:EtOAC =
- 3 3:1).

- 1 *N-(4-Hydroxyphenethyl)-1,2,3,6-tetrahydrophthalimide* (7j)
- 2 White solid; Yield 79% (AcOH), 98% (PEG 400); $R_{\rm f} = 0.32$ (CH:EtOAC =
- 3 3:1). HC <0.74 6.72 <7.05 ~7.03 -3.70 -3.68 -3.66 -5.84 -5.83 10.00 -2.18 6.8 3.8 3.6 3.2 7.4 7.2 7.0 4.0 3.4 4 7.6 6.6 6.4 6.2 3.0 2.8 2.6 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 f1 (ppm) 4.4 4.2 2.4 2.2 2.0 1.8 130.06 5 120 110 100 f1 (ppm) 130 190 180 150

Yellow oil, 81%, $R_{\rm f} = 0.70$ (CH:EtOAC = 1:1); ¹H NMR (400 MHz, 2 CDCl₃): $\delta = 7.05$ (d, J = 8.4 Hz, 2H, H-2/6), 6.77 (d, J = 8.5 Hz, 2H, H-3 3/5), 3.52 (t, J = 7.8 Hz, 2H, H-8), 3.08 (t, J = 7.8 Hz, 2H, H-7), 1.72 (hept, 4 J = 6.9 Hz, 1H, CH-(CH₃)₂), 0.94 (d, J = 6.9 Hz, 6H, (CH₃)₂-CH), 0.94 (s, 5 6H, (CH₃)₂-C), 0.21 (s, 6H, (CH₃)₂-Si) ppm; ¹³C NMR (100 MHz, CDCl₃): 6 $\delta = 154.4$ (C-4), 131.5 (C-1), 129.6 (C-2/6), 120.2 (C-3/5), 38.8 (C-7), 34.1 7 (CH-(CH₃)₂), 33.3 (C-8), 25.0 (C-(CH₃)₂), 20.1 ((CH₃)₂-C), 18.6 ((CH₃)₂-8 9 CH), -2.5 ((CH₃)₂-Si) ppm; HRMS (EI) Calcd. for $C_{16}H_{27}SiOBr [M]^+$ = 342.1014; Found: 342.1017. 10

S26

White solid; Yield 60% (proton-sponge[®]), 0% (conventional); $R_{\rm f} = 0.30$ 2 (CH:EtOAC = 1:3). ¹H NMR (400 MHz, DMSO-d₆): δ = 9.15 (s, 1H, 4-3 OH), 7.24 – 7.16 (m, 4H, ArH), 7.05 (d, J = 8.4 Hz, 2H, H-2/6), 6.67 (d, J 4 = 8.3 Hz, 2H, H-3/5), 3.87 (s, 4H, CH₂-N), 2.86 – 2.81 (m, 2H, H-8), 2.69 5 (t, J = 7.7 Hz, 2H, H-7) ppm; ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 155.9$ 6 (C-4), 140.5 (ArC), 130.7 (C-1), 129.9 (C-2/6), 127.0 (ArC), 122.6 (ArC), 7 115.4 (C-3/5), 58.9 (CH₂-N), 57.9 (C-8), 34.3 (C-7) ppm; HRMS (EI) 8 calcd. for $C_{16}H_{17}NO[M]^+ = 239.1310$; Found: 239.1303. 9

2 White solid; Yield 81% (proton-sponge[®]), 86% (conventional); $R_{\rm f} = 0.22$ 3 (CHCl₃:MeOH = 1:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.99$ (d, J = 8.34 Hz, 2H, H-2/6), 6.63 (d, J = 8.3 Hz, 2H, H-3/5), 2.75 (s, 4H, H-7/8), 2.69 – 5 2.62 (m, 4H, CH₂-N), 1.88 – 1.79 (m, 4H, CH₂-CH₂-N) ppm; ¹³C NMR 6 (100 MHz, CDCl₃): $\delta = 155.2$ (C-4), 130.6 (C-1), 129.5 (C-2/6), 115.7 (C-7 3/5), 58.6 (C-8), 54.0 (CH₂-N), 34.2 (C-7), 23.3 (CH₂-CH₂-N) ppm; HRMS 8 (EI) calcd. for C₁₂H₁₇NO [M]⁺ = 191.1310; Found: 191.1304.

1 *N-(4-Hydroxyphenethyl)morpholine* (11c)

White solid; Yield 87% (proton-sponge[®]), 87% (conventional); $R_{\rm f} = 0.27$ 2 CHCl₃:MeOH (15:1); ¹H NMR (400 MHz, DMSO-d₆): $\delta = 9.14$ (s, 1H, 4-3 OH), 6.99 (d, *J* = 8.5 Hz, 2H, H-2/6), 6.65 (d, *J* = 8.5 Hz, 2H, H-3/5), 3.56 4 $(t, J = 4.6 \text{ Hz}, 4\text{H}, \text{CH}_2\text{-O}), 2.62 - 2.57 \text{ (m, 2H, H-7)}, 2.44 - 2.39 \text{ (m, 2H,$ 5 H-8), 2.41 - 2.35 (m, 4H, CH₂-N) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ 6 = 155.9 (C-4), 130.7 (C-1), 129.9 (C-2/6), 115.5 (C-3/5), 66.6 (CH₂-O), 7 61.1 (C-8), 53.8 (CH₂-N), 32.1 (C-7) ppm; HRMS (EI) calcd. for 8 $C_{12}H_{17}NO_2$ [M]⁺ = 207.1259; Found: 207.1255. 9

White solid; Yield 77% (proton-sponge[®]), 79% (conventional); $R_{\rm f} = 0.19$ 2 (CHCl₃:EtOH = 5:2¹H NMR (400 MHz, CDCl₃): δ = 6.93 (d, J = 8.3 Hz, 3 2H, H-2/6), 6.77 (d, J = 8.3 Hz, 2H, C-3/5), 3.18 (dd, J = 10.7, 6.3 Hz, 2H, 4 CH_{2(a)}-N), 3.06 – 3.00 (m, 2H, H-8), 2.93 – 2.87 (m, 2H, CH_{2(b)}-N), 2.86 – 5 6 2.80 (m, 2H, H-7), 2.34 - 2.24 (m, 2H, CH-CH₂), 1.67 - 1.58 (m, 2H, 7 $CH_{2(a)}$ -CH), 1.54 – 1.45 (m, 2H, $CH_{2(a)}$ -CH₂-CH), 1.52 – 1.43 (m, 2H, $CH_{2(b)}$ -CH), 1.39 – 1.31 (m, 2H, $CH_{2(b)}$ -CH₂-CH) ppm; ¹³C NMR (100 8 9 MHz, CDCl₃): $\delta = 156.4$ (C-4), 129.5 (C-2/6), 128.1 (C-1), 115.9 (C-3/5), 59.0 (C-8), 57.1 (CH₂-N), 36.7 (CH-CH₂), 32.3 (C-7), 25.9 (CH₂-CH), 22.5 10 (CH₂-CH₂-CH) ppm; HRMS (EI) calcd. for $C_{16}H_{23}NO[M]^+ = 245.1780;$ 11 12 Found: 245.1772.

1 *N-(4-Hydroxyphenethyl)-4,5,6,7-tetrahydroisoindole* (**11e**)

Slightly yellow oil; Yield 100%; $R_f = 0.69$ (EtOAc); ¹H NMR (400 MHz, 2 CDCl₃): $\delta = 7.00$ (d, J = 8.2 Hz, 2H, H-2/6), 6.75 (d, J = 8.2 Hz, 2H, H-3 3/5), 6.31 (s, 2H, CH-N), 3.97 - 3.91 (m, 2H, H-8), 3.01 - 2.90 (m, 2H, H-4 5 7), 2.59 - 2.52 (m, 4H, CH₂-C=), 1.76 - 1.68 (m, 4H, CH₂-CH₂-C=) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 154.3 (C-4), 130.7 (C-1), 129.8 (C-2/6), 6 119.4 (C=C(H)-N), 115.9 (CH-N), 115.4 (C-3/5), 51.3 (C-8), 37.6 (C-7), 7 24.2 (CH₂-CH₂-C=), 22.0 (CH₂-C=) ppm; HRMS (EI) calcd. for C₁₆H₁₉NO 8 9 $[M]^+ = 241.1467$; Found: 241.1465. 4812<u>5</u> 2.55 2.55 2.54 3.95 2.95 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 f1(ppm) 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 10 5.6 5.4 5.2 5.0 1.2

11

155 150

140 135

145

130 125 120 115

110

S31

90 85 80 f1 (ppm) 30 25 20

1 *3-Hydroxy-N-(4-hydroxyphenethyl)octahydroisoindole-1-one* (12)

2 White solid; Yield 88%; $R_f = 0.28$ (CH:EtOAc = 1:3).

1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]phthalimide)* (13a)

White crystals; Yield 67%; $R_f = 0.42$ (CH:EtOAc = 1:3); mp: 161-162°C; 2 ¹H NMR (300 MHz, DMSO-d₆): δ = 7.88 – 7.80 (m, 4H, ArH), 6.97 (d, *J* = 3 10.2 Hz, 2H, H-2/6), 6.10 (d, J = 10.2 Hz, 2H, H-3/5), 5.88 (s, 1H, 1-OH), 4 3.68 - 3.50 (m, 2H, H-8), 2.08 - 1.88 (m, 2H, H-7) ppm; ¹³C NMR (100) 5 MHz, DMSO-d₆): $\delta = 185.0$ (C-4), 167.7 ((CO)N), 152.2 (C-2/6), 134.4 6 (ArC), 131.7 (ArC), 127.1 (C-3/5), 123.0 (ArC), 67.5 (C-1), 37.8 (C-7), 7 33.1 (C-8) ppm; HRMS (EI) calcd. for $C_{16}H_{13}NO_4$ [M]⁺ = 283.0845; 8 9 Found: 283.0845.

1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]maleimide* (13b)

2 Yellow crystals; Yield 17%; $R_f = 0.40$ (CH:EtOAc = 1:5); mp: 151-152°C; 3 ¹H NMR (300 MHz, DMSO-d₆): δ = 6.99 (s, 2H, CH-(CO)N), 6.91 (d, J =4 10.1 Hz, 2H, H-2/6), 6.08 (d, J = 10.1 Hz, 2H, H-3/5), 5.85 (s, 1H, 1-OH), 5 3.45 - 3.38 (m, 2H, H-8), 1.93 - 1.85 (m, 2H, H-7) ppm; ¹³C NMR (100 6 MHz, DMSO-d₆): δ = 185.0 (C-4), 170.8 ((CO)N), 152.1 (C-2/6), 134.6 7 (CH-(CO)N), 127.1 (C-3/5), 67.4 (C-1), 37.9 (C-7), 32.8 (C-8) ppm; 8 HRMS (EI) calcd. for C₁₂H₁₁NO₄ [M]⁺ = 233.0688; Found: 233.0686.

1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]succinimide* (13c)

2 White solid; Yield 55%; $R_f = 0.51$ (CHCl₃:CH₃CN = 1:3); mp: 128-129°C; 3 ¹H NMR (400 MHz, DMSO-d₆): $\delta = 6.93$ (d, J = 10.2 Hz, 2H, H-2/6), 6.10 4 (d, J = 10.2 Hz, 2H, H-3/5), 5.86 (s, 1H, 1-OH), 2.57 (s br, 4H, CH₂-5 (CO)N), 3.38-3.31 (m, 2H, H-8), 1.89 – 1.77 (m, 2H, H-7) ppm; ¹³C NMR 6 (100 MHz, DMSO-d₆): $\delta = 185.5$ (C-4), 178.0 ((CO)N), 152.6 (C-2/6), 7 127.5 (C-3/5), 67.9 (C-1), 37.5 (C-7), 33.9 (C-8), 28.4 (CH₂-(CO)N) ppm; 8 HRMS (EI) calcd. for C₁₂H₁₃NO₄ [M]⁺ = 235.0845; Found: 235.0826.

- 1 4,5-Dichloro-N-[2-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-
- 2 *yl*)*ethyl*]*phthalimide* (13d)

White crystals; Yield 40%; $R_f = 0.22$ (CH:EtOAc = 1:1); mp: 213-214°C; 3 ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.17$ (s, 2H, ArH), 6.96 (d, J = 10.14 5 Hz, 2H, H-2/6), 6.10 (d, J = 10.1 Hz, 2H, H-3/5), 5.89 (s, 1H, 1-OH), 3.62 - 3.56 (m, 2H, H-8), 2.02 - 1.95 (m, 2H, H-7) ppm; ¹³C NMR (100 MHz, 6 DMSO-d₆): δ = 185.5 (C-4), 166.4 ((CO)N), 152.6 (C-2/6), 137.7 (C(Cl)=), 7 132.1 (C=C(CO)N), 127.6 (C-3/5), 125.6 (ArC), 67.9 (C-1), 38.0 (C-7), 8 34.0 (C-8) ppm; HRMS (EI) calcd. for $C_{16}H_{11}Cl_2NO_4$ [M]⁺ = 351.0065; 9 10 Found: 351.0090.

- 1 3,4-Dichloro-N-[2-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-
- 2 *yl*)*ethyl*]*maleimide* (13e)

Yellowish crystals; Yield 64%; $R_{\rm f} = 0.30$ (CH:EtOAc = 1:1); mp: 168-169°C; ¹H NMR (400 MHz, DMSO-d₆): $\delta = 6.95$ (d, J = 10.1 Hz, 2H, H-2/6), 6.11 (d, J = 10.1 Hz, 2H, H-3/5), 5.91 (s br, 1H, 1-OH), 3.53 – 3.46 (m, 2H, H-8), 1.95 – 1.90 (m, 2H, H-7) ppm; ¹³C NMR (100 MHz, DMSOd₆): $\delta = 185.4$ (C-4), 163.3 ((CO)N), 152.5 (C-2/6), 132.9 (C(Cl)=), 127.6 (C-3/5), 67.8 (C-1), 37.9 (C-7), 34.8 (C-8) ppm; HRMS (EI) calcd. for $C_{12}H_9Cl_2NO_4$ [M]⁺ = 300.9909; Found: 300.9914.

- 1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]pyridine-2,3-*
- 2 *dicarboximide* (13f)

White crystals; Yield 19%; $R_f = 0.37$ (CHCl₃:CH₃CN = 1:1); mp: 167-3 168°C; ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.95$ (dd, J = 5.0, 1.5 Hz, 1H, 4 ArH), 8.27 (dd, J = 7.7, 1.5 Hz, 1H, ArH), 7.77 (dd, J = 7.7, 5.0 Hz, 1H, 5 ArH), 6.98 (d, J = 10.1 Hz, 2H, C-2/6), 6.11 (d, J = 10.1, 2H, H-3/5), 5.88 6 (s, 1H, 1-OH), 3.69 – 3.57 (m, 2H, C-8), 2.05 – 1.94 (m, 2H, H-7) ppm; ¹³C 7 NMR (100 MHz, DMSO-d₆): $\delta = 185.5$ (C-4), 166.6 ((CO)N), 155.2 8 9 (ArC), 152.6 (C-2/6), 152.0 (ArC), 131.6 (ArC), 128.3 (ArC), 127.7 (ArC), 10 127.6 (C-3/5), 68.0 (C-1), 38.1 (C-7), 33.7 (C-8) ppm; HRMS (EI) calcd. for $C_{15}H_{12}N_2O_4$ [M]⁺ = 284.0797; Found: 284.0792. 11

- 1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]morpholine-3,5-*
- 2 *dione* (13g)
- 3 Yellowish solid; Yield 18%; $R_f = 0.33$ (CHCl₃:EtOAc = 1:5); mp: 142-
- 4 143°C; ¹H NMR (400 MHz, DMSO-d₆): $\delta = 6.94$ (d, J = 10.1 Hz, 2H, H-
- 5 2/6), 6.12 (d, J = 10.0 Hz, 2H, H-3/5), 4.36 (s, 4H, CH₂-(CO)N), 3.70 -
- 6 3.56 (m, 2H, H-8), 1.89 1.78 (m, 2H, H-7) ppm; ¹³C NMR (100 MHz,
- 7 DMSO-d₆): $\delta = 185.5$ (C-4), 170.1 ((CO)N), 152.7 (C-2/6), 127.5 (C-3/5),
- 8 68.0 (C-1), 67.4 (CH₂-(CO)N), 37.8 (C-7), 33.8 (C-8) ppm; HRMS (EI)
- 9 calcd. for $C_{12}H_{13}NO_5 [M]^+ = 251.0794$; Found: 251.0794.

- 1 N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-
- 2 yl)ethyl]hexahydrophthalimide (13h)
- 3 Yellow crystals; Yield 79%; $R_f = 0.29$ (CH:EtOAc = 1:3); mp: 135-136°C; ¹H NMR (400 MHz, DMSO-d₆): $\delta = 6.94$ (d, J = 10.1 Hz, 2H, H-2/6), 6.10 4 5 (d, J = 10.1 Hz, 2H, H-3/5), 5.84 (s, 1H, 1-OH), 3.40 - 3.35 (m, 2H, H-8),6 2.93 - 2.82 (m, 2H, CH-(CO)N), 1.85 - 1.80 (m, 2H, H-7), 1.71 (s, 2H, 7 CH_{2(a)}-CH), 1.60 – 1.51 (m, 2H, CH_{2(b)}-CH), 1.42 – 1.32 (m, 2H, CH_{2(a)}-CH₂-CH), 1.31 – 1.21 (m, 2H, CH_{2(b)}-CH₂-CH) ppm; ¹³C NMR (100 MHz, 8 9 DMSO-d₆): $\delta = 185.4$ (C-4), 179.7 ((CO)N), 152.7 (C-2/6), 127.5 (C-3/5), 67.9 (C-1), 39.3 (CH-(CO)N), 37.6 (C-7), 33.8 (C-8), 23.5 (CH₂-CH), 21.6 10 (CH₂-CH₂-CH) ppm; HRMS (EI) calcd. for $C_{16}H_{19}NO_4 [M]^+ = 289.1314$; 11 12 Found: 289.1310.

- 1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]-3,4,5,6-*
- 2 tetrahydrophthalimide (13i)

Orange solid; Yield 88%; $R_f = 0.18$ (CH:EtOAc = 1:1); mp: 93-94°C; ¹H 3 NMR (400 MHz, DMSO-d₆): $\delta = 6.92$ (d, J = 10.1 Hz, 2H, H-2/6), 6.08 (d, 4 5 *J* = 10.1 Hz, 2H, H-3/5), 5.85 (s, 1H, 1-OH), 3.42 – 3.36 (m, 2H, H-8), 2.24 6 -2.17 (m, 4H, CH₂-C=), 1.86 (dd, J = 8.5, 6.8 Hz, 2H, H-7), 1.69 -1.62(m, 4H, CH₂-CH₂-C=) ppm; ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 185.5$ 7 (C-4), 170.9 ((CO)N), 152.6 (C-2/6), 141.5 (C=C(CO)), 127.5 (C-3/5), 8 67.9 (C-1), 38.6 (C-7), 33.0 (C-8), 21.3 (CH₂-CH₂-C=), 19.9 (CH₂-C=) 9 ppm; HRMS (EI) calcd. for $C_{16}H_{17}NO_4 [M]^+ = 287.1158$; Found: 287.1160. 10

- 1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]-1,2,3,6-*
- 2 *tetrahydrophthalimide* (13j)

3 White crystals; Yield 49%; $R_f = 0.28$ (CH:EtOAc = 1:1); mp: 145-146°C; ¹H NMR (400 MHz, DMSO-d₆): $\delta = 6.90$ (d, J = 10.1 Hz, 2H, H-2/6), 6.09 4 5 (d, J = 10.1 Hz, 2H, H-3/5), 5.87 (s, 1H, 1-OH), 5.85 - 5.82 (m, 2H, 6 CH=CH), 3.31 - 3.36 (m, 2H, H-8), 3.11 - 3.06 (m, 2H, CH-(CO)N), 2.39 7 -2.32 (m, 2H, CH_{2(a)}-CH), 2.21 - 2.13 (m, 2H, CH_{2(b)}-CH), 1.79 (td, J =7.5, 1.5 Hz, 2H, H-7) ppm; ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 185.5$ (C-8 9 4), 180.3 ((CO)N), 152.5 (C-2/6), 128.1 (CH=CH), 127.6 (C-3/5), 67.8 (C-1), 38.9 (CH-(CO)N), 37.8 (C-7), 34.1 (C-8), 23.5 (CH₂-CH) ppm; HRMS 10 (EI) calcd. for $C_{16}H_{17}NO_4 [M]^+ = 287.1158$; Found: 287.1154. 11

1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]isoindoline* (14a)

Brownish solid; Yield 16%; $R_f = 0.50$ (CHCl₃:EtOH = 1:5); mp: 103-2 104°C; ¹H NMR (400 MHz, DMSO-d₆): $\delta = 7.24 - 7.12$ (m, 4H, ArH), 3 6.99 (d, J = 10.1 Hz, 2H, H-2/6), 6.06 (d, J = 10.1 Hz, 2H, H-3/5), 3.81 -4 5 3.77 (m, 4H, CH₂-N), 2.70 – 2.62 (m, 2H, H-8), 1.93 – 1.85 (m, 2H, H-7) ppm; ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 185.3$ (C-4), 153.2 (C-2/6), 6 139.8 (ArC), 126.5 (ArC), 126.3 (C-3/5) 122.0 (ArC), 68.0 (C-1), 58.3 7 (CH₂-N), 50.0 (C-8), 38.6 (C-7) ppm; HRMS (EI) calcd. for C₁₆H₁₇NO₂ 8 9 $[M]^+ = 255.1259$; Found: 255.1251.

1 *N-[2-(1-Hydroxy-4-oxocyclohexa-2,5-dien-1-yl)ethyl]morpholine* (14c)

Brownish solid; Yield 28%; $R_f = 0.37$ (EtOAc:EtOH = 1:1); mp: 98-99°C; ¹H NMR (400 MHz, DMSO-d₆): δ = 6.95 (d, J = 10.0 Hz, 2H, H-2/6), 6.04 (d, J = 10.0 Hz, 2H, H-3/5), 3.56 - 3.46 (m, 4H, CH₂-O), 2.32 - 2.26 (m, 4H, CH₂-N), 2.25 - 2.20 (m, 2H, H-8), 1.79 (t, J = 7.6 Hz, 2H, H-7) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ = 185.8 (C-4), 153.8 (C-2/6), 126.8 (C-7 3/5), 68.5 (C-1), 66.6 (CH₂-O), 53.7 (CH₂-N), 53.4 (C-8), 37.0 (C-7) ppm; 8 HRMS (EI) calcd. for C₁₂H₁₇NO₃ [M]⁺ = 223.1208; Found: 223.1201.

1 3-Hydroxy-N-[2-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-

2 *yl*)*ethyl*]*octahydroisoindole-1-one* (15)

Beige solid; Yield 65%; $R_f = 0.14$ (EtOAc); mp: 127-128°C; ¹H NMR (400 3 4 MHz, DMSO-d₆): $\delta = 6.97 - 6.91$ (m, 2H, H-2/6), 6.08 (d, J = 11.0 Hz, 2H, 5 H-3/5), 5.90 (d, J = 6.6 Hz, 1H, 9'-OH), 5.82 (s, 1H, 1-OH), 4.55 (d, J = 6.6 6 Hz, 1H, H-9'), 3.39 - 3.31 (m, 1H, H-8_(a)), 3.05 - 2.96 (m, 1H, H-8_(b)), 2.63 7 -2.56 (m, 1H, H-3'), 2.06 - 1.98 (m, 1H, H-8'), 1.89 - 1.82 (m, 1H, H-7_(a)), 8 1.83 - 1.77 (m, 1H, H-4'_(a)), 1.80 - 1.72 (m, 1H, H-7_(b)), 1.72 - 1.66 (m, 1H, H-7'_(a)), 1.49 - 1.35 (m, 3H, H-4'_(b)/5'_(a)/6'_(a)), 1.19 - 1.06 (m, 1H, H-9 $6'_{(b)}$), 0.95 – 0.89 (m, 1H, H-5'_{(b)}), 0.91 – 0.83 (m, 1H, H-7'_{(b)}) ppm; ¹³C 10 11 NMR (100 MHz, DMSO-d₆): $\delta = 185.6$ (C-4), 175.2 (C-2'), 153.2 (C-2/6), 12 127.3 (C-3/5), 85.6 (C-9'), 68.1 (C-1), 40.8 (C-8'), 38.5 (C-3'), 38.1 (C-7), 13 35.2 (C-8), 26.3 (C-7'), 23.3 (C-6'), 23.2 (C-4'), 23.1 (C-5') ppm; HRMS (EI) calcd. for $C_{16}H_{21}NO_4 [M]^+ = 291.1471$; Found: 291.1469. 14

S45