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Abstract: A novel anti-cancer drug sensitivity testing (DST) approach was developed based on
in vitro single-cell Raman spectrum intensity (RSI). Generally, the intensity of Raman spectra (RS)
for a single living cell treated with drugs positively relates to the sensitivity of the cells to the drugs.
In this study, five cancer cell lines (BGC 823, SGC 7901, MGC 803, AGS, and NCI-N87) were exposed
to three cytotoxic compounds or to combinations of these compounds, and then they were evaluated
for their responses with RSI. The results of RSI were consistent with conventional DST methods.
The parametric correlation coefficient for the RSI and Methylthiazolyl tetrazolium assay (MTT) was
0.8558 ± 0.0850, and the coefficient of determination was calculated as R2 = 0.9529 ± 0.0355 for fitting
the dose–response curve. Moreover, RSI data for NCI-N87 cells treated by trastuzumab, everolimus
(cytostatic), and these drugs in combination demonstrated that the RSI method was suitable for
testing the sensitivity of cytostatic drugs. Furthermore, a heterogeneity coefficient H was introduced
for quantitative characterization of the heterogeneity of cancer cells treated by drugs. The largest
possible variance between RSs of cancer cells were quantitatively obtained using eigenvalues of
principal component analysis (PCA). The ratio of H between resistant cells and sensitive cells was
greater than 1.5, which suggested the H-value was effective to describe the heterogeneity of cancer
cells. Briefly, the RSI method might be a powerful tool for simple and rapid detection of the sensitivity
of tumor cells to anti-cancer drugs and the heterogeneity of their responses to these drugs.
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1. Introduction

Anti-tumor drug sensitivity testing (DST) is essential for cancer treatment, especially for
individualized cancer therapy (ICT) [1–3]. Cancer cells from the same patients or from the same
populations of cancer cell lines have significant differences, and this functional and phenotypic
heterogeneity is virtually universal. In addition, patients respond uniquely despite the similarity of
their cancer histological phenotypes. Drug responses in different treatment phases may vary for the
same patient [4–7]. These variations may result in therapeutic failure or toxicity and patient death.
Thus, cancer is difficult to cure due to this heterogeneity. ICT is a method directed against cancer
heterogeneity, and DST provides an experimental basis of evaluating sensitivity or resistance to ICT in
advance [1,8].
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DST can be performed in vivo or in vitro by comparing the therapeutic efficacies of candidate
drugs against surgically removed tumor to identify optimal drug selection. For in vivo DST, tumors
are xenografted into immune-deficient mice, and drug treatments are applied and evaluated [9,10].
DST in vivo is labor intensive, expensive, and technically demanding, which limits its clinical
application. DST in vitro is easier and more accessible. There are various sorts of drug sensitivity testing
methods in vitro [3], and the MTT assay is commonly used to assess cell viability [11–13]. In vitro
DST methods have limitations, including interference of normal cells and chemicals. Traditional DST
is based on bulk experimentation which reflects the overall state of the cell samples, so intrasample
heterogeneity cannot be quantified. Significant quantity changes of cancer cells are highly important in
these measurements, so overlooking malignant tumor cells may cause crucial issues in cancer treatment.
Also, targeted (cytostatic) anticancer drugs have fewer inhibitory effects on tumor proliferation
compared to cytotoxic anticancer drugs, so conventional DST is unsuitable for evaluating targeted
anticancer drugs [3]. Currently, sensitivity to targeted drugs is usually evaluated with molecular
biological methods, such as gene mutation analysis [14], gene polymorphism analysis, and detection
of gene expression [15]. A recent study also showed the potential of RS to monitor targeted anticancer
drug resistance [16].

Single-cell Raman spectrum intensity (RSI) measurements for anti-cancer drug sensitivity assays
could overcome the limitations mentioned above. Single-cell Raman spectroscopy (SCRS) can provide
detailed quantitative information about individual living cells. It may be used to observe different cells
and to detect cellular dynamic variation on the single cell level [17,18]. Previously, it was proposed
that the therapeutic efficacy of conventional therapy, including chemotherapy, radiotherapy, etc., is
affected by the number or the functions of cancer stem cells in tumors, because the cancer treatments
induce the cancer stem cells to differentiate into drug resistant cells [3,19–21]. Because stem cells and
their derivatives may be distinguished from cancer cells using Raman spectroscopy [22–24], combining
this with drug sensitivity testing may present advantages over conventional DST. More importantly,
the intensity of SCRS is positively correlated with cell survival state after drug treatment [25–28].
In addition, protein denaturation and DNA degradation related to cell death also can be evaluated by
the variability of RSI measurements. Previous experiments have shown that all peaks of SCRS were
significantly decreased after cells were treated with chemotherapeutic drugs compared to a control
group, and the results obtained with the RSI method were consistent with traditional cytotoxicity
assays [25]. Chemotherapeutic drugs typically induce oncosis, which will show up as decreased RS
intensity due to cell swelling and its resulting lower density. Furthermore, cancer cell proliferation
is decreased after molecularly-targeted drug treatment. The intracellular spatial distribution and
metabolism of molecularly-targeted drug in different cancer cells can also be studied by using Raman
imaging [29]. In our study, HER2 and mTOR were used as targets for estimating molecularly-targeted
drug effects. HER2, a member of the human epidermal growth factor receptor family, is aberrantly
expressed in certain malignancies, including breast and gastric cancer, primarily due to HER2 genomic
amplification. In HER2-positive malignancies, this protein can stimulate downstream RAS-RAF-ERK
and PI3K-PTEN-AKT signaling, and plays a key role in cell proliferation [30]. HER2 is the preferred
therapeutic target in such cancers. Trastuzumab is an anti-HER2 monoclonal antibody and a standard
therapy for HER2-positive cancers [31–33]. The mammalian target of rapamycin (mTOR) pathway
is a central sensor for nutrient and energy availability. It regulates the cell cycle, growth, and
proliferation through the PI3K-AKT-mTOR signaling pathway. Everolimus (RAD001) is a rapamycin
derivative which inhibits the serine/threonine kinase activity of mTOR, and significantly inhibits
tumor growth [34].

Furthermore, unlike the traditional DST method, SCRS measures individual cell responses to
drugs. This has advantages for quantitative analysis of cellular heterogeneity. Cellular heterogeneity
describes the observation that different tumor cells can show distinct morphological and phenotypic
profiles, including cellular morphology, gene expression, metabolism, motility, proliferation, and
metastatic potential. Using chemometrics, such as principal component analysis (PCA), the
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heterogeneous characteristics of cancer cells can be quantitatively evaluated after anti-cancer drug
treatment. Moreover, RS is label-free and non-contacting, and it can identify cellular abnormal
alteration in molecular structure and biochemical compositions prior to cellular morphological changes.
RS is thus rapid, low-interference, and has minimal sample requirements.

In this study, we used RSI to assay human gastric carcinoma cells’ responses to chemotherapeutic
drugs, and compared it to MTT to verify its stability and reproducibility in anti-cancer drug sensitivity
assays. The parametric correlation coefficient of drug responses derived from MTT and RSI data
were calculated with Pearson’s correlation coefficient, and a two-tailed Student’s t-test was used to
assess statistical differences. Pharmacologically, the dose–response relationship describes the change
in effect on an organism, tissue, or cells caused by differing levels of exposure (doses) to a drug after a
certain exposure time [35], and dose–response curves are often fit to a classical Hill equation [36]. Here,
we fit the relationship between drug dose and the cell response (RSI). The results indicated that our
experimental data meet the dose–response relationship. Furthermore, we show that RSI can be used
for sensitivity testing of targeted anti-cancer drugs. In brief, we propose a new method of quantifying
heterogeneous characteristics of cancer cells by treating cells with drugs. This method supplements
the existing DST method.

2. Materials and Methods

2.1. Confocal Raman Spectroscopy

We constructed an optical configuration for the back-scattering RS system (Figure S1 in the
Supporting Information) as described previously [37,38]. In brief, a single continuous wave laser of
532 nm (Excelsior-532-200, Spectra-Physics, Santa Clara, CA, USA) with working power of 40 mW was
coupled into an inverted microscope (Axiovert 200, Zeiss, Oberkochen, Germany). A 100 ×/1.25 oil
objective (N-Achroplan, Zeiss, Oberkochen, Germany) with a working distance of 0.29 mm was used
for RS measurement. Overall, considering the signal-to-noise ratios (SNR) of RS and photodamage to
the cell, an optimal laser power of 20 mW on the cancer cell was used. The back-scattering Raman
light was collected with the same objective and was directed into a spectrometer (SpectraPro2300i,
1200 g/mm blazed at 500 nm, Acton Research Co., Acton, MA, USA). A pinhole of 100 µm diameter
was used to create a confocal system. A notch filter (532 nm, Thorlabs, Newton, NJ, USA) was placed
before the entrance of the spectrometer to filter Rayleigh scattered light from the sample. Each RS
was recorded with a high sensitivity liquid nitrogen-cooled spectroscopic CCD (Spec-10:400BR/LN,
Princeton Instruments, Trenton, NJ, USA).

2.2. Cell Culture

Five human gastric carcinoma cell lines (BGC 823, SGC 7901, MGC 803, AGS, and NCI-N87) from
Beijing Cancer Hospital were used. Prior to experiments, each cell line was placed in standard culture
medium: RPMI-1640 medium (Macgene, Hangzhou, China) supplemented with 10% fetal bovine
serum (Tianhang Biological Technology Co. Ltd., Beijing, China) without antibiotics and cultured at
37 ◦C with a relative humidity of 95% and 5% CO2. Cell lines were expanded (less than five passages)
for RS measurements and cryopreserved to conserve the seed stocks.

2.3. Anti-Cancer Drug Treatment of Cancer Cells

Cancer cells from one passage were cultured, transferred to culture plates in the logarithmic
growth phase, and incubated at 37 ◦C in 5% CO2 before RS measurements. After cells reached 50%
confluence, drugs were added to the cancer cell plates, and then the drugs and cells were fully mixed
by slightly swaying the cell plate. Control groups of cells were used with the same volume of culture
medium (with RPMI-1640 medium and fetal bovine serum) and incubated together with experimental
groups (drug treatment groups). Before RS measurements, 0.25% trypsin (Macgene, China) was added
to remove cells. Then, 2 mL complete medium was added to terminate the digestion. Then, cells were
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transferred via pipette to PBS and transferred to a 15 mL centrifuge tube. Both control and drug-treated
cells were washed with PBS three times by centrifugation at 1000 rpm (800× g). It should be noted
that the dead and disrupted cells were removed during the wash, which ensures that all the cells for
the RS measurement were alive. Supernatants were discarded after the wash, and post-centrifugation
cells were diluted in 5 mL PBS and mixed well. Finally, 80 µL of each group was measured for RS
measurement. For targeted drug treatment for a long duration, culture medium with targeted drugs
was renewed every 48 h.

The molecularly-targeted anti-cancer drugs, trastuzumab and everolimus, were applied to human
gastric cancer cells NCI-N87, which express HER2 and mTOR simultaneously. The drug effects were
assayed using the RSI method.

2.4. RS Measurements

To collect RS signals with high SNR, a sample chamber was designed. A cleaned quartz coverslip
(CFS-1010, UQG Ltd., Milton, Cambridge, UK, thickness 0.1 mm) was fixed at the bottom of the
sample chamber (top diameter 8 mm; bottom diameter 6 mm, depth 2 mm). Another quartz coverslip
was placed on top of the chamber during the experiment to prevent evaporation and contamination.
Washed and rinsed cell samples diluted in PBS were placed into the sample chamber. To ensure
consistent spectra collection for individual cells, the laser was focused on the cell center (nucleus) for
every Raman excitation. The integration time of the CCD was 30 s for each spectral collection. Living
cancer cells were randomly selected for RS data collection at room temperature, and each cell was
measured once. No less than 30 isolated cells were measured for each group, and the background
spectra surrounding the cells were acquired at the same time.

2.5. CCK-8 (MTT) Assay and Direct Cell Counting

The cholecystokinin (CCK-8) assay and direct cell counting are common methods to evaluate
drug effects. Here, we used these methods to compare with RSI to verify the RSI method. The 50%
concentration of inhibition (IC50) values from published data and our experimental results were
used as reference drug doses [39,40]. For cytotoxicity testing, cancer cells were seeded in 96-well
plates which had different gradient concentrations of drugs, and were incubated in order to create
dose–response curve. Cells used for RS and CCK-8 assay were incubated under the same conditions.
After incubation, cytotoxicity was measured with a CCK-8 kit (Sigma Aldrich, St. Louis, MO, USA) [12].
Optical density at 450 nm (OD450) was recorded with a Synergy HTX multi-mode reader (BioTek,
Winooski, VT, USA). Then, direct cell counting was performed in sync with RS data collection using
a hemocytometer. The cell counts were determined as the means of 8 cell groups from two gridded
chambers of the hemocytometer.

2.6. In Vitro Growth Inhibition Assays

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to
measure cell death using a ratio of light absorption between experimental and control groups. Here,
we defined the RS intensity ratios between experimental and control groups as a drug response.
Meanwhile, we used a four-parameter dose–response (logistic) curve (4PL) to evaluate the RSI method.
The model equation is:

y = b +
t − b

1 + 10(Log IC50−x)×h
, (1)

where x is log-dose or concentration (log mol/L), and y is the response or decline in RS intensity or OD
450 for MTT. IC50 is the concentration of drug that gives a response halfway between the maximum
and minimum responses. h is the Hill or slope factor (dimensionless), and t and b are the plateaus of the
maximum and minimum responses (the maximal and minimal inhibition ratio from three independent
assays), respectively.
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2.7. Quantitative Measurements of the Heterogeneous Drug Responses

Principle Component Analysis (PCA) finds variables (components) accounting for as much as
possible of the variance in multivariate data using. The largest possible variance between RSs of
cancer cells were quantitatively calculated by using PCA. PCA uses eigenvalues and eigenvectors of
variance-covariance or correlation matrices. Eigenvalues tell the variance accounting for corresponding
eigenvectors (components). Full RS data for cancer cells within 450–1800 cm−1 was inputted as PCA
variables for each test group, and PAST software [41] was used. An averaged heterogeneity coefficient
H was defined as Equation (2):

H =
∑i=n PCEi

n
, (2)

where n is the cell number in the measurement group; PCEi is the eigenvalues of principal components.
By calculating the H ratio (heterogeneity ratio) between drug-treated and control group cancer cell, we
can obtain changes in heterogeneity of cancer cells after drug treatment.

2.8. Experimental Consistency Control

It is important to keep experimental condition consistency for drug sensitivity assays with the
RSI method. Consistency mainly depends on the focus position on the cells with the laser beam,
the laser power, and the stability of the Raman spectral setup. The RS system was standardized by
measurement of the intensity and peak shift of the RS using a standard 5 µm polystyrene bead before
each experiment.

The size of the spot of a Raman exciting laser beam on samples can be theoretically calculated
by a Bassel function (~0.61λ/NA). This spot is about 520 nm in diameter, which is smaller than
actual laser spot size. The size of the cancer cells in our experiment were ~(10–15) µm, as these
cells had large nuclei. For RS measurements, the laser spot was focused on the cellular nucleus to
avoid relative “position difference effects”. Thus, we created a stable RS curve and blocked organelle
interference. Wavelength correction was carried out using a polystyrene bead prior to cell experiments
too. For intensity corrections, the laser power before the objective and its relative position on the
entrance slit of the spectrometer were held constant in all experiments. RSI fluctuation resulting from
the bias of laser focus position on the cells was less than 3%, which was much less than the change
caused by the drug (Figure S2 in Supporting Information). All these above-mentioned measures
ensured that the RSI data reflected true cell activity.

2.9. Data Processing

RSI data processing was performed using a homemade software based on MATLAB
(The MathWorks, Inc., Natick, MA, USA). Spectra were calibrated via the wavelength dependence of
a standard 1001 cm−1 vibrational band of polystyrene beads before the RS measurements. For each
spectrum, the background noise including the quartz contribution was removed by subtracting the
background spectra from the raw spectral data. To do this and remove the effect due to instrument, the
raw spectra data need to be normalized. In detail, we applied one inherent Raman peak of 413 cm−1

rooted from immersion oil in all measurements (including background RS) as an interior label, and all
raw spectra were normalized by this peak. For every processed RS, the intensity of the main Raman
peaks that corresponded to different chemical components related to cell death was extracted for drug
response analyses. In addition, the area under the curve (AUC) of RS between 450–1800 cm−1, which
represented the ensemble of various components within a cell, was obtained by RS curve integrals.

In this study, we used the changes both of the AUC and the single typical component peaks to
evaluate drug effects. The biochemical phenomena related to cell apoptosis or oncosis are very complex.
The Nomenclature Committee on Cell Death (NCCD) has proposed that specific biochemical analyses
should not be employed as exclusive means to define apoptosis or oncosis, because different types
of cell death can occur with different biochemical changes [42]. Moreover, the manner of cell death
may obscure biochemical and functional heterogeneity. There may be distinct subtypes of one type
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of cell death which may be morphologically similar but are triggered through different biochemical
routes [42–44]. The AUC contained all the changes in the components, which might result in a more
accurate and suitable evaluation of the effects of drug treatments.

3. Results and Discussion

The chemotherapy-induced cancer cell death that we observed had the typical morphological
features of oncosis, including the fact that these cells became bigger than normal living cells, and
cellular volume obviously increased with the drug concentration (Figure 1). The averaged Raman
spectra for several cancer cells treated with different drugs are shown in Figure 2(a1–e1). The RS
peaks correspond to molecular vibrations of cellular components, including nucleic acids, proteins,
lipids, and carbohydrates. In eukaryotic cells, the 783 cm−1 band corresponds to the nucleic acid
components of RNA or αDNA, namely, the uracil (U), thymine (T), and cytosine (C) ring vibrations.
Therefore, major changes related to DNA can be observed at this peak [27,28]. Bands at 1001, 1245,
and 1654 cm−1 can be attributed to proteins. The sharp band at 1001 cm−1 corresponds to a symmetric
ring-breathing mode of phenylalanine [26,27], which is sensitive to cell death [25,45,46] and can be
used for determining whether the cells are dead. The 1245 cm−1 band corresponds to amide III (bonds
in β sheets), and the 1654 band cm−1 corresponds to amide I (α-helix), which are basic components
of protein structure [18,47]. The 1446 cm−1 band corresponds to CH2 bending vibrations in proteins,
carbohydrates, lipids, and DNA [25,27,28]. This demonstrates the single-cell RS intensity changes as
a whole.
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Figure 1. The bright field images of BGC823 cells under conditions of different concentrations of
PTX treatment for 48 h. (a) Control group without PTX treatment; (b–i) The morphological change in
BGC823 cells with increasing PTX concentrations. The cellular volume obviously increased with the
drug concentration.

3.1. Chemotherapy Drug Dose-Effect Assay

To evaluate the utility of RSI, we measured drug effects for different cell lines. Figure 2 shows
the changes in the mean RS of several cell lines treated with different drugs (Figure 2(a1–e1)) at 24 h,
shown the change of their AUCs (Figure 2(a2–e2)), and a typical 1001 cm−1 band (Figure 2(a3–e3)) as
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drug concentration increases. The results showed that the RS peaks of drug-treated cells compared
to the peaks form the control group decreased with increasing drug concentration, which suggests
that the amount or density of nucleic acid, protein, and lipid could be lower during drug-induced
cell death. This spectral presentation was consistent with the fact that the chromatin of the nucleolus
and other cellular components is highly fragmented in the oncosis process as the drug concentration
increases [25–28]. The quantitative change of the RSI-AUC and the 1001 cm−1 band from drug treated
cancer cells express dose-response relationships. To verify the feasibility of RSI we compared RSI with
MTT, the results are shown in Table 1, and the coefficient of determination, R2, was calculated from
Equation (1). The mean coefficients of determination (computed by the least squares method) for the
AUC were greater than that of RS-1001 cm−1 and lower than the MTT values. All R2 values were high,
indicating that the MTT and RSI methods fitted the dose–response curves well.
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Figure 2. Dose–response relationships for different cancer cell lines with different anti-cancer drug
treatments (expressed as drug(s): cell). (a–e), BGC823, SGC7901, MGC803, AGS, or MGC803 cells
treated with concentration gradients of the drugs PTX, DDP, PTX, and combinations of DDP and 5 Fu,
or PTX and 5 Fu, respectively; (a1–e1), the averaged RS from different drug concentrations; (a2–e2),
the averaged RS area; (a3–e3), the 1001 cm−1 band; the averaged RSs and bar graphs present mean ±
s.d., n ≥ 30 cells per condition. p < 0.001 for all groups (a one-way ANOVA).
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Table 1. Coefficient of determination (R2) for RSI and MTT fitting.

Test Groups AUC RSI-1001 cm−1 CCK-8 (MTT)

PTX: BGC 823 0.9960 0.9995 0.9726
DDP: SGC 7901 0.9721 0.9518 0.9961
PTX: MGC 803 0.9424 0.8528 0.9761

DDP + 5-Fu: AGS 0.9531 0.9540 0.9949
PTX + 5-Fu: MGC 803 0.9009 0.9009 0.8838

Mean R2 0.9529 ± 0.0355 0.9315 ± 0.0565 0.9647 ± 0.0465

Furthermore, regression analyses of the correlation coefficients between RSI and MTT, which
express the correlation between RSI and MTT, were performed and the data are presented in Table 2.
For the AUC and RSI-1001 cm−1, the correlation coefficients were highly consistent for all kind of cells
and drugs, and for the AUC and MTT it was also consistent. The results indicate that both the AUC
of RS and RAI-1001 can be used to evaluate drug sensitivity like MTT can. Meanwhile, we noticed
that there are a few smaller correlation coefficients between the MTT and RSI methods, such as the
case of the MGC803 cells treated with PTX, with a comparison between RSI-1001 cm−1 and MTT. This
suggests that RSI is not exactly same as MTT in drug sensitivity assays because they have different
evaluation criteria. Moreover, we observed that the difference between the RSI and MTT increased
with drug dose. MTT was more sensitive at higher doses, due to the fact that the number of living
cells decreased rapidly as drug concentration increased, while RSI evaluated the survival state of
living cells.

Table 2. Regression analyses for correlation coefficients between the RSI and MTT methods.

Test Groups AUC: MTT RSI-1001 cm−1:MTT AUC:RSI-1001 cm−1

PTX: BGC823 0.9267 (p 1 = 0.008) 0.9051 (p = 0.013) 0.9956 (p < 0.000)
DDP: SGC7901 0.7352 (p = 0.096) 0.7713 (p = 0.072) 0.9961 (p < 0.000)
PTX: MGC803 0.9316 (p = 0.007) 0.6963 (p = 0.124) 0.9021 (p = 0.014)

DDP + 5Fu: AGS 0.8832 (p = 0.019) 0.8705 (p = 0.024) 0.9986 (p < 0.000)
PTX + 5Fu: MGC803 0.8024 (p = 0.054) 0.8171 (p = 0.047) 0.9992 (p < 0.000)

1 p value: the two-tailed probabilities that two testing results were uncorrelated.

3.2. Quantification of Heterogeneous Drug Responses

We used the H ratio between drug-treated and control cells to describe the heterogeneous drug
responses quantitatively. Figure 3 shows the RSI changes with cell drug exposure time for BGC823
cells treated with PTX and AGS cells treated with 5-FU. RS was collected every 6 h for 48 h. The results
showed that cancer cells exposed to high concentrations of drugs for a long time became resistant.
The numbers of living cells declined over 48 h due to drug-induced cell death (Figure S3 in Supporting
Information). However, the RSI first decreased and then increased over the drug treatment time.
For BGC823 cells, the RSI diminished initially and then increased after 24 h compared to controls.
For AGS cells, likewise, the RSI became the lowest at 30 h. We think that the decrease in RSI resulted
from drug-induced cell oncosis. Subsequent RSI increases were likely due to drug resistance of cells,
because drug-sensitive cells were dead and were removed in the cell washing and centrifugation
process. This was probably due to poor adaptation during long times of drug treatment, only the
remaining drug-resistant cells were assayed with RSI. Other researchers have also reported similar
results [27]. Since longer drug treatment times correlated to higher proportions of drug-resistant cell,
the mean RSI increased with drug treatment time after 24 h. Moreover, the heterogeneity ratio between
treated and control cells significantly increased with drug treatment time after 24 h for BGC823 and
30 h for AGS (Figure 3c,f), just as RSI increased. It follows that the heterogeneous characteristics of
cancer cells became highlighted as drug-resistant characteristics increased.
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Figure 3. Drug response and heterogeneity changes for different cancer cell lines treated with
anti-cancer drugs for multiple culture durations. (a,b), BGC 823 cells treated with 140 ng/mL PTX
(~IC50). (d,e), AGS cells treated with 30 µg/mL PTX (~2 × IC50). Bars represent the mean ± s.d. (c,f),
the heterogeneity ratio changes with drug treatment time for BGC 823 and AGS cells. The curve is a
result of quadratic function fitting. Cell number was n ≥ 30 in each group. Data were collected every
6 h for 48 h.

3.3. Targeted Drug Growth/Inhibitor Evaluations

In order to evaluate the feasibility of RSI applied in the targeted drug sensitivity assay,
trastuzumab and everolimus were applied to NCI-N87 cells. Bright field images showed no significant
difference in morphological features between treated and control groups for either of the targeted
drugs, but there was a significant difference in RSI. This indicates that cell morphological change
measurements are not reliable for evaluating effects of targeted anti-cancer drugs, especially for drug
induced non-oncosis cell death. Figure 4 shows the RSI measurement results for NCI-N87 cells treated
with trastuzumab or everolimus alone and in combination for 24, 48, and 72 h. The response of
the cells treated with trastuzumab was not significantly different at 24 and 72 h, but at 48 h, it had
a significant difference between treated and control groups. While for NCI-N87 cells treated with
everolimus alone or in combination, the responses of the treated groups were significantly different
from controls at all time points (p < 0.0001). In addition, in comparison to trastuzumab, everolimus
has a significantly inhibitory activity on the proliferation of NCI-N87 cells, although the inhibitory
effects were the most obvious for the combination of the two drugs. These results are in agreement
with published data [48,49].
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Figure 4. The RSI method to measure molecularly targeted anti-cancer drug effects. Trastuzumab
(250 nM) and everolimus (20 nM, referring to the plasma concentration) were used singly or together.
Bars represent mean ± s.d. of drug treated cells to control cells, n ≥ 30 cells per group. Data were
collected at 24, 48, and 72 h. p value: two-tailed Student’s t-test.

The long-term inhibitory effect of everolimus and heterogeneous characteristics of NCI-N87 were
studied using RSI. NCI-N87 cells were treated with 20 nM everolimus, and data were collected every
24 h for 7 days (See Figure 5). In spite of the fact that the cell number grew with time, the proliferation
rates of NCI-N87 cells in the everolimus group was clearly lower than in the control group (Figure 5a),
which indicated that the targeted drug had significant inhibitory effects. However, this indicated that
unlike chemotherapeutics, the targeted drug did not induce cancer cell death but inhibited cancer
cell proliferation. Moreover, RSI also showed that everolimus significantly inhibited the growth of
NCI-N87 cells compared to controls (Figure 5c,d). Compare to the cytotoxic drug treatment (Figure 3c,f),
the heterogeneous ratio fluctuations were not obvious over the 7 days (Figure 5b), illustrating that
molecularly targeted drugs have less possibility to induce drug resistance.
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Figure 5. The long-term inhibitory effect and changes in heterogeneous characteristics due to
everolimus treatment of NCI-N87. (a) Exponential fittings of proliferation rates of NCI-N87 cells.
The rate constant for the control group was 0.2904 and the doubling-time was 2.387 days, with
R2 = 0.9785. The rate constant for the everolimus group was 0.2684, with a doubling-time of 2.853 days
and R2 = 0.9622; (b) Changes in the heterogeneous characteristics of NCI-N87 cells with the everolimus
treatment time. The s.d. of the heterogeneity obtained from control groups over 7 days; (c) The drug
response of NCI-N87 cells with everolimus treatment (RSI-AUC); (d) The drug response of NCI-N87
cells with everolimus treatment (RSI-1001 cm−1). Bars represent the mean ± s.d. of drug treated cells
to control cells, n ≥ 30.
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4. Conclusions

We proposed a drug sensitivity testing method using RSI which is consistent with conventional
DST methods, such as MTT and direct cell counting. The RSI method can overcome the limitations of
conventional DST methods, such as being unsuitable for targeted drugs. RSI can provide a new method
for quantifying the heterogeneity of cancer cell responses to anti-cancer drugs. RSI gives a possible
approach for molecularly targeted anti-cancer drug sensitivity testing by measuring cell viability.
This research shows that label-free RSI is a sensitive and multi-functional method for anti-cancer
drug sensitivity.

Supplementary Materials: Supplementary materials are available online: Figure S1: Configuration of the Raman
spectroscopy. A single laser beam at the wavelength of 532 nm is directed to the microscope via dichroic mirrors
(D1) and coupled into the objective with free working distance of 0.29 mm. The back scattering Raman light is
collected by the same objective and then delivered into the spectrometer via a dichroic mirror (D2). A pinhole
with a diameter of 100 µm was used to create a confocal system. A notch filter is placed before the entrance of
the spectrometer to filter the Rayleigh scattered light from the sample. The RS is finally recorded with a liquid
nitrogen (LN)-cooled spectroscopic CCD, Figure S2: The focusing position controls under a bright light view
of the cell. The axial position can be controlled with ~1 µm precision by observing the edge of the cell under a
bright light view. When focusing on the center of the cell accurately, a bright and fine ring is seen on the edge
of the cell due to the bright light. The ring would become dark and wide when out of focus. (a–e), The axial
focusing position from 2 µm above the cell center to 2 µm below the cell center. (f) The RS corresponding to (a–e).
The differences in the area under the curves and between lines at 0 µm and ±1 µm were less than 2.8%. This is
less than the change caused by the drug, Figure S3: Cell counts of cancer cells over drug treatment every 6 h for
48 h. (a) BGC 823 cells under 140 ng/mL PTX treatment. (b) AGS cells under 30 µg/mL PTX treatment.
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