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Abstract: The increase in environmental pollution due to the excessive use of fossil fuels has prompted
the development of alternative and sustainable energy sources. As an abundant and sustainable
energy, solar energy represents the most attractive and promising clean energy source for replacing
fossil fuels. Metal organic frameworks (MOFs) are easily constructed and can be tailored towards
favorable photocatalytic properties in pollution degradation, organic transformations, CO2 reduction
and water splitting. In this review, we first summarize the different roles of MOF materials in the
photoredox chemical systems. Then, the typical applications of MOF materials in heterogeneous
photocatalysis are discussed in detail. Finally, the challenges and opportunities in this promising
field are evaluated.
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1. Introduction

A significant and ongoing challenge is the increasing pollution associated with the highly
increased global energy consumption [1,2]. The exploration of more sustainable and clean energy
sources has become an extremely important and challenging task that humanity needs to address
urgently, as CO2 and other pollutants have a detrimental effect on our climate and health. As an
abundant and sustainable energy source, solar energy represents the most attractive clean energy
source to replace fossil fuels. Photosynthesis is a transformation process where a plant can harvest
solar radiation and convert carbon dioxide (CO2) and water (H2O) into carbohydrates. Great efforts
have been devoted to developing artificial photosynthetic systems (or simply photocatalytic systems)
for chemical transformations by using inorganic or/and organic materials. The first photocatalytic
system was achieved by Fujishima and Honda in their pioneering work on water splitting with
TiO2 under UV light irradiation [3]. Since then, various types of materials have been studied and
employed for the application of photocatalysis [4]. However, the nanostructures and functionalization
of these materials need to be optimized to maximize utilization of sunlight as well as increase their
photocatalytic performance.

The classical photocatalytic process consists of the following three fundamental steps:
(1) photosensitizers absorb solar irradiation to create charge-separated excited states; (2) redox
equivalents (mobile electrons and holes) are produced and migrate to catalytic centers; (3) redox
equivalents react with substrates at the reactive centers. Therefore, an excellent photocatalyst ought to
possess the following features: (1) strong absorption of sunlight; (2) a long lifetime of excited state;
(3) high yield of charge-separated states; and (4) good charge mobility.
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Metal organic frameworks (MOFs) are a new class of functional hybrid crystalline materials,
which are assembled by metal centers or clusters and organic ligands, forming one-, two-, or
three-dimensional extended coordination networks. The structural diversity, high porosity, framework
flexibility, large surface area, as well as tunable pore surface properties provide them with
unique functions for diverse applications. This includes luminescence [5–7], gas separation and
adsorption [8–10], magnetism [11], chemical sensing [12–14], proton conductivity [15,16], energy
storage and conversion [17–19], and biomedicine [20,21]. In addition, heterogeneous catalysis is one of
the most distinct fields of MOFs because of their uniform, tailorable, controllable and post-modifiable
porous structures [22–24]. In recent years, MOFs have also emerged as promising candidates for
photocatalysis. Firstly, MOFs can integrate photosensitizers and catalytic components in a single
material by immobilizing the active sites on metal nodes, organic linkers, or encapsulated guest
molecules inside the pores. The limitless choices of metal nodes and organic linkers in MOFs offer the
possibility to improve the use of the visible spectrum of sunlight. Secondly, the high porosity of MOFs
allows fast transport and diffusion of substrates and products from catalytic sites. The well-defined
crystalline nature of MOFs provides a unique platform to investigate the energy transfer mechanism of
the photocatalytic process, which is difficult to study in other photocatalytic systems. Thirdly, unlike
homogeneous photocatalysts, MOFs can be easily separated from the reaction systems and can be
reused multiple times. Therefore, it will extend the lifetime of the photocatalysts and reduce waste
and contamination.

The thermal and chemical stabilities of MOFs is an important part of why they can be used
as catalysts or catalyst hosts. MOF-based materials should be stable under catalytic conditions,
particularly in water, and be resistant to moderately acidic or basic solutions. In recent years, a series
of robust MOFs have been reported. For example, Zr-based MOFs showed high stability in water due
to the strong coordination between the Zr nodes and the organic linkers [25]. Zeolitic imidazolate
frameworks (ZIFs), which are constructed by the use of anionic, nitrogen-containing ligands, are
stable in water [26]. This can be ascribed not only to the strong bond of the nitrogen-containing
linkers with metal nodes, but also to the effective physical shielding of metal nodes by the coordinated
nitrogen-containing linkers. In addition, decorating fluorinated, sulfonic, or phosphonate substituents
in the organic linkers can contribute to stability in water [27].

In this review, we first discuss the different roles that MOFs play in photocatalytic systems, such
as photocatalysts, hosts, or precursors. Then, we summarize and highlight the latest developments
of MOF materials in photocatalytic applications, including degradation of pollutants, organic
transformations, CO2 reduction and water splitting. This review presents a comprehensive discussion
and investigation of the rational design of MOF-based photocatalysts to provide insights for the future
developments of novel and highly efficient photocatalysts.

2. The Functions of MOFs in Photocatalytic Systems

2.1. MOFs as Photocatalysts

Previous work using MOFs for photocatalysis was mainly based on their semiconducting
properties because MOFs are a class of analogues of inorganic semiconductors [28,29]. In 2007,
Garcia’s group provided experimental evidence for the behavior of MOF-5 as a semiconductor [30].
The Zn4O clusters of MOF-5 can be considered as semiconductor dots, which are isolated and
distributed regularly in the framework. The terephthalate linkers can absorb light to bring
these dots to their excited state, and then transfer the photoinduced electrons to Zn2+ through
ligand-to-metal charge transfer (LMCT). A charge-separated state of MOF-5 was observed and
the band gap was estimated to be 3.4 eV. Since then, a variety of MOFs have been employed for
photocatalysis, such as UiO-66(Zr) [31] and MIL-125(Ti) [32]. These MOFs are typically used for the
degradation of organic pollutants. They showed low efficiency of light energy utilization due to
the large effective band gap. This can be improved by modification of the organic linkers. Li and
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coworkers synthesized an amine-functionalized MIL-125(Ti) homologue Ti8O8(OH)4(BDC-NH2)6

(NH2-MIL-125(Ti)) (BDC-NH2 = 2-amino-benzene-1,4-dicarboxylate) simply by using BDC-NH2 as
the organic linker [33]. The light energy absorption of NH2-MIL-125(Ti) is significantly changed
by the amino functionality (Figure 1a). NH2-MIL-125(Ti) exhibits an absorption band edge at
around 550 nm, falling in the visible region, while MIL-125(Ti) shows an absorption edge at 350
nm. The significant red-shift in light absorption enhances the photocatalytic activity for visible
light irradiation. The photocatalytic reduction of CO2 is then realized by using NH2-MIL-125(Ti) as
the photocatalyst under visible light irradiation (Figure 1b). A similar strategy was also used for
synthesizing NH2-UiO-66 and NH2-MIL-101(Cr), which were used as photocatalysts for hydrogen
production from water [34,35]. Hereafter, much research was dedicated to synthesizing refined organic
linkers with a better photon antenna effect to improve the photocatalytic activity of MOF materials.

Molecules 2018, 23, x FOR PEER REVIEW  3 of 22 

 

energy absorption of NH2-MIL-125(Ti) is significantly changed by the amino functionality (Figure 1a). 

NH2-MIL-125(Ti) exhibits an absorption band edge at around 550 nm, falling in the visible region, 

while MIL-125(Ti) shows an absorption edge at 350 nm. The significant red-shift in light absorption 

enhances the photocatalytic activity for visible light irradiation. The photocatalytic reduction of CO2 

is then realized by using NH2-MIL-125(Ti) as the photocatalyst under visible light irradiation (Figure 

1b). A similar strategy was also used for synthesizing NH2-UiO-66 and NH2-MIL-101(Cr), which were 

used as photocatalysts for hydrogen production from water [34,35]. Hereafter, much research was 

dedicated to synthesizing refined organic linkers with a better photon antenna effect to improve the 

photocatalytic activity of MOF materials.  

 

Figure 1. (a) UV/Vis spectra of (a) MIL-125(Ti) and (b) NH2-MIL-125(Ti). The inset shows the samples. 

(b) Proposed mechanism for the photocatalytic CO2 reduction over NH2-MIL-125(Ti) under visible 

light irradiation. Reproduced with permission from Reference [33]. Copyright 2012 Wiley-VCH 

Verlag GmbH & Co. KGaA, Weinheim (c) UV/Vis solid-state absorption spectra of H2TCPP[AlOH]2 

and Zn0.986(12)H2TCPP[AlOH]2. (d) The photocatalytic reaction using Zn0.986(12)H2TCPP[AlOH]2. (i) 

Reaction involving Zn0.986(12)H2TCPP[AlOH]2, methyl viologen, colloidal platinum, and sacrificial 

EDTA. (ii) Reaction involving Zn0.986(12)H2TCPP[AlOH]2, colloidal platinum, and sacrificial EDTA. 

Reproduced with permission from Reference [36]. Copyright 2012 Wiley-VCH Verlag GmbH & Co. 

KGaA, Weinheim. 

Porphyrins are known to be light harvesting compounds and have been used as building blocks 

to synthesize MOFs with an excellent photocatalytic performance [37]. Rosseinsky and coworkers 

reported a red porphyrin-based MOF H2TCPP[AlOH]2(DMF3-(H2O)2) by using the free-base meso-

tetra(4-carboxyl-phenyl) porphyrin (H2TCPP) as the organic linker [36]. Due to the zero occupancy 

of the Al atom at the center of porphyrin ligand, H2TCPP[AlOH]2 reacted with anhydrous Zn(AC)2 

through porphyrin metalation, generating a purple material Zn0.986(12)H2TCPP[AlOH]2. 

H2TCPP[AlOH]2 exhibits a strong absorption band at 415 nm, belonging to the S0→S2 absorption 

process. Another four Q bands at lower energies were originated from the π-π* transitions in the free-

base porphyrin ligand (Figure 1c). After porphyrin metalation, Zn0.986(12)H2TCPP[AlOH]2 exhibits a 

slight red shift in the absorption edge at 425 nm. Due to the higher symmetry of the now metalated 

material, there are only two Q bands left. As the porphyrin-based MOFs are photocatalytically active 

Figure 1. (a) UV/Vis spectra of (a) MIL-125(Ti) and (b) NH2-MIL-125(Ti). The inset shows the samples.
(b) Proposed mechanism for the photocatalytic CO2 reduction over NH2-MIL-125(Ti) under visible
light irradiation. Reproduced with permission from Reference [33]. Copyright 2012 Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim (c) UV/Vis solid-state absorption spectra of H2TCPP[AlOH]2

and Zn0.986(12)H2TCPP[AlOH]2. (d) The photocatalytic reaction using Zn0.986(12)H2TCPP[AlOH]2.
(i) Reaction involving Zn0.986(12)H2TCPP[AlOH]2, methyl viologen, colloidal platinum, and sacrificial
EDTA. (ii) Reaction involving Zn0.986(12)H2TCPP[AlOH]2, colloidal platinum, and sacrificial EDTA.
Reproduced with permission from Reference [36]. Copyright 2012 Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim.

Porphyrins are known to be light harvesting compounds and have been used as building
blocks to synthesize MOFs with an excellent photocatalytic performance [37]. Rosseinsky and
coworkers reported a red porphyrin-based MOF H2TCPP[AlOH]2(DMF3-(H2O)2) by using the
free-base meso-tetra(4-carboxyl-phenyl) porphyrin (H2TCPP) as the organic linker [36]. Due to the zero
occupancy of the Al atom at the center of porphyrin ligand, H2TCPP[AlOH]2 reacted with anhydrous
Zn(AC)2 through porphyrin metalation, generating a purple material Zn0.986(12)H2TCPP[AlOH]2.
H2TCPP[AlOH]2 exhibits a strong absorption band at 415 nm, belonging to the S0→S2 absorption
process. Another four Q bands at lower energies were originated from the π-π* transitions in the
free-base porphyrin ligand (Figure 1c). After porphyrin metalation, Zn0.986(12)H2TCPP[AlOH]2 exhibits
a slight red shift in the absorption edge at 425 nm. Due to the higher symmetry of the now metalated
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material, there are only two Q bands left. As the porphyrin-based MOFs are photocatalytically active
in the visible light region, the authors evaluated the photocatalytic performance of the two MOFs for
hydrogen evolution from water (Figure 1d).

Another class of famous building blocks for MOFs is dye molecules, especially metallo-organic
dyes such as Ru(bpy)3

2+, [Ir(ppy)2(bpy)]+ (bpy = 2′2-bipyridine, ppy = 2-phenylpyridine) [38,39].
Due to their strong visible light absorption and long-lived excited states, they have been used as
homogeneous photocatalysts. The incorporation of the photoredox-capable dyes into MOF frameworks
could broaden and deepen the photocatalytic applications of MOFs. Meanwhile, the self-quenching
induced by aggregation of dye-photocatalysts in homogeneous systems can be avoided thanks to the
highly ordered distribution of dye-photocatalysts in MOF structures.

2.2. MOFs as Co-Catalysts and/or Hosts

MOFs can act as hosts for photoredox species. They benefit from their high porosity, which
provides additional possibilities for photocatalytic applications. Photocatalytically active species
can be encapsulated into the pores of MOFs as guest molecules, provided that they obtain the right
properties. These host MOFs display enhanced photocatalytic performance compared to homogeneous
photocatalysts. This effect is due to the isolation of guest molecules and the mutual effect on the
framework of MOFs. MOFs can act either as mere hosts or participate in photocatalytic processes.
The high porosity of MOFs provides the necessary space for the interaction between the embedded
catalytically active species and the substrates. Moreover, the very uniform pore size can result in
reactant or product shape selectivity. Among the species that can be encapsulated are precious
metals, semiconductor nanoparticles (NPs), as well as molecule catalysts which obtain the appropriate
size [40,41].

The encapsulation of precious metals (Such as Pt, Pd and Au) into MOFs can inhibit the
recombination between the photogenerated electrons and holes [42,43]. Due to the formation of
a Schottky barrier at the junction between MOFs and precious metals, the photogenerated electrons
in the conduction band (CB) of MOFs can transfer to the precious metals. This results in the efficient
separation of the photogenerated charge carriers [44]. This way, the photocatalytic performance of
MOF-based materials can be significantly enhanced. In 2014, Li and coworkers reported a series of
M/NH2-MIL-125(Ti) materials (M = Pt and Au), which were used for CO2 reduction under visible light
irradiation [45]. The Pt/NH2-MIL-125(Ti) exhibits an improved photocatalytic performance compared
to NH2-MIL-125(Ti), while Au exhibits a detrimental effect on this reaction. The hydrogen-assisted
formed Ti3+ plays a positive role in photocatalytic formate production. However, the ESR signal
of Ti3+ was only observed in Pt/NH2-MIL-125(Ti). Neither in Au/NH2-MIL-125(Ti) nor in pure
NH2-MIL-125(Ti) was the ESR signal observed, resulting in different effects on CO2 reduction.
Interestingly, Jiang and coworkers incorporated uniform Pt NPs into MIL-125(Ti), followed by coating
with Au nanorods (NRs) on the MIL-125(Ti) surface to form Pt@MIL-125(Ti)/Au (Figure 2) [46]. This
integrated both the plasmonic effect of Au nanorods and a Schottky junction in a single MOF for the
first time. The spatial separation of Au NRs and Pt NPs by MIL-125(Ti) steers the charge flow and
greatly accelerates the charge migration, resulting in an exceptionally high photocatalytic performance
of H2 evolution under visible light irradiation. These results show that with the appropriate use and
distribution of precious metals in MOF materials, this is a very promising approach to improve the
photocatalytic performance of MOFs.
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Semiconductor NPs such as TiO2, CdS and ZnO, have a strong quantum-size effect and exhibit
high photocatalytic activity [47]. Semiconductor NPs also have several disadvantages, including
the aggregation in reactions, high recombination rate of photogenerated electron-hole pairs, and
difficult separation from reaction systems. These are limiting their possible photocatalytic applications
when used individually [48]. Hybrid materials between semiconductor NPs and MOFs do not only
possess advantages from both two components, but also can overcome their individual limitations.
The pioneering research on semiconductor NPs-MOF hybrid materials including CdSe/ZnS-MOF [49]
and GdN/ZIF-8 [50], has mainly focused on enhancing light harvesting. Recently, Zhu and
coworkers solvothermally synthesized a novel CdS NPs attached MOF material by using cadmium
acetate as the CdS precursor and MIL-100(Fe) as the support [51]. The resulting CdS-MIL-100(Fe)
nanocomposites showed remarkable photocatalytic efficiency in the selective oxidation of benzyl
alcohol to benzaldehyde under visible light irradiation. The improved photocatalytic performance
can be ascribed to the combined effect of enhanced light harvesting, high separation efficiency of
photogenerated electron-hole pairs, as well as high dispersion of CdS NPs in MIL-100(Fe). The results
indicate that the combination of semiconductors and MOF materials shows to be a promising approach
for converting solar-energy into chemical energy.

Polyoxometalates (POMs), a subclass of metal oxides, have attracted extensive attention in various
fields because of their highly negative charges, various structural characteristics, and excellent redox
ability [52]. Recently, POMs were encapsulated into MOFs. The specific interaction between the two
led to reversible multiple electron transfer reactions without structural degradation of the framework.
A porphyrinic MOF-545 containing the sandwich-type POM [(PW9O34)2Co4(H2O)2]10− was recently
used for visible-light-driven water oxidation [53]. The high photocatalytic activity of this hybrid
material was speculatively ascribed to the synergistic effect of the photoactive porphyrin ligands
and the cobalt POM’s catalytic sites that immobilized in the pore of MOF-545. Another example of
POM-based MOF-101 hybrid material contains P2W15V3, P2W17Ni, or P2W17Co polyoxianions [54]
which behaves as a photocatalyst in hydrogen production.

In some cases, MOF-based heterogeneous catalysts showed a reduced catalytic performance
compared to homogeneous catalysts because the framework of MOFs can block the access of reactants
to the catalytic sites. The reuse of MOF-based heterogeneous catalysts can extend the lifetime of the
photocatalysts and reduce waste and contamination. The long term stability of MOFs as catalyst hosts
under photocatalytic conditions is of great importance, and remains an issue. More efforts should be
devoted to synthesizing robust MOFs that are stable in water or even acidic and basic solutions.
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2.3. MOFs as Precursors

In recent years, MOFs have served as sacrificial templates or precursors in preparing more stable
and conductive porous carbon, metal oxides, or porous carbon/metal oxides composite nanomaterials
via a simple pyrolysis process [19]. MOFs have an inherent high porosity and a uniform dispersion
of metal nodes in their network. Because of this, the MOF-derived nanomaterials keep the high
porosity and the high surface area, and also show uniform heteroatom doping and adjustable
morphology [55]. Therefore, the MOF-derived nanomaterials are promising candidates for catalytic
applications. Zhao and coworkers successfully prepared TiOx/C composites by direct pyrolysis of
MIL-125(Ti) under Ar atmosphere at different temperatures [56]. Among all the TiOx/C samples, T10,
which was pyrolyzed at 1000 ◦C, possessed the highest photocatalytic activity for the photodegradation
of methylene blue (MB). This was due to the reduced Ti3O5 composition, the conductive carbon
support, as well as the high surface area. The incorporation of cocatalysts into TiO2 semiconductor
photocatalysts has been applied for promoting charge separation and enhancing the photocatalytic
performance. Xiong and coworkers synthesized a Cu/TiO2 octahedral-shell photocatalyst derived from
Cu3(BTC)2/TiO2 core-shell structures (BTC = benzene-1,3,5-tricarboxylate) [57]. The Cu3(BTC)2 MOF
not only serves as the sacrificial precursor to form the hollow structure but is also used as a Cu source
to prepare the Cu/TiO2 composite. Because Cu can function as a cocatalyst, the Cu/TiO2 composites
show improved electron-hole separation and can be used as a photocatalyst for hydrogen production

3. The Photocatalytic Applications of MOFs

3.1. MOFs for Photocatalytic Degradation of Organic Pollutants

There are various approaches to remove organic pollutants from industrial wastewater:
electrochemical oxidation, photocatalysis, adsorption, and biodegradation [58–63]. Photocatalytic
degradation is considered as one of the most competitive methods for organic pollutants removal,
due to its high efficiency, utilization of renewable solar energy, and environmental-friendliness [64].
In 2007, Garcia and coworkers demonstrated that MOF-5 exhibited photocatalytic activity for phenol
degradation under UV light irradiation [65]. Since then, many MOF-based materials have been studied
as photocatalysts for organic pollutants degradation (Table 1). For instance, MIL-53(M) (M = Fe, Al,
Cr) was used to decolorize MB following first-order kinetics [66]. Recently, Wang and coworkers
reported a pillared-layer MOF NNU-36 with broad-range visible light absorption and good chemical
stability, which exhibits an efficient photocatalytic performance for aqueous Cr(VI) reduction and
Rhodamine B (RhB) degradation [67]. Zhang et al. constructed two 3D MOFs [Cu(4,4’-bipy)Cl]n

and [Co(4,4’-bipy)·(HCOO)2]n with photocatalytic activity for MB degradation under visible light
irradiation [68]. Upon adding H2O2 electron acceptors, the photocatalytic performance of MB
degradation was remarkably enhanced, following the LMCT mechanism. These results show that
MOFs exhibit potential in photocatalytic organic pollutants degradation. However, it is still a great
challenge to develop highly efficient MOF-based photocatalysts for organic pollutants degradation.

Several methods have been explored to improve the photocatalytic activity of MOF-based
materials for organic pollutants degradation. For example, metal NPs loading and photocatalytically
active composites modification. Karmaoui and coworkers modified the band gap of NH2-MIL-125(Ti)
with Ag3PO4 NPs because of its narrow band gap [69]. The hybrid material NH2-MIL-125(Ti)@Ag3PO4

was synthesized by coating Ag3PO4 NPs on the edge of NH2-MIL-125(Ti) to form a core-shell
structure, which was confirmed by the results of transmission electron microscopy (TEM) (Figure 3a).
The band gap of NH2-MIL-125(Ti) in the hybrid material was decreased to 2.39 eV, indicating their
potential for photocatalytic applications. The photocatalytic MB and RhB degradation under visible
light irradiation were used to evaluate the photocatalytic activity of NH2-MIL-125(Ti)@Ag3PO4.
As expected, NH2-MIL-125(Ti)@Ag3PO4 exhibits remarkably enhanced photocatalytic performance
compared to P25 (P25 = Evonik commercial mixed anatase-rutile phase TiO2 nanophosphor),
Ag3PO4 andNH2-MIL-125(Ti). This can be ascribed to the formation of an heterojunction
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between NH2-MIL-125(Ti) and Ag3PO4 (Figure 3b,c). Considering the surface plasmon resonance
(SPR) of Ag NPs, Mehraj and coworkers developed a novel three-component photocatalyst
Ag/Ag3PO4/HKUST-1 [70]. The deposition of Ag3PO4 NPs in this heterostructured system extends
the light absorption to the visible region. Furthermore, the strong SPR effect of Ag NPs helps to
boost the electron-hole separation at the interface of this composite, resulting in the drastically
enhanced photocatalytic performance of HKUST-1. Photocatalytic degradation of Ponceau BS (PBS)
was used to investigate the photocatalytic activity of the Ag/Ag3PO4/HKUST-1 system. It exhibited
87% degradation as compared to 60% by Ag3PO4/HKUST-1 and 40% by HKUST-1 (Figure 3d).
The enhanced photocatalytic performance of the prepared system was attributed to the synergistic
effects of the sequential energy transfer through the Z-scheme mechanism and the SPR effect of Ag NPs
(Figure 3e). Additionally, the Ag/Ag3PO4/HKUST-1 system is highly stable and reusable (Figure 3f).
These results indicate that the application of metal NPs on MOF-based materials is a potential approach
to enhance the photocatalytic activity of MOFs.
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Figure 3. (a) TEM of (a) MIL-125-NH2, (b) Ag3PO4 NPs, (c) Ag3PO4@NH2-MIL-125, and (d) high
magnification of the particle edge of Ag3PO4@NH2-MIL-125. (b) Photocatalytic decompositions
of MB with Ag3PO4, NH2-MIL-125, Ag3PO4@NH2-MIL-125 composites and commercial TiO2

(P25) under visible-light irradiation. (c) Photocatalytic decompositions of RhB with Ag3PO4,
NH2-MIL-125, Ag3PO4@NH2-MIL-125 composites and commercial TiO2 (P25) under visible-light
irradiation. Reproduced with permission from Reference [69]. Copyright 2017 Elsevier B.V. (d) The
degradation efficiency (Ct/C0) of PBS in presence of Pristine HKUST-1, Ag3PO4/HKUST-1 and
Ag/Ag3PO4/HKUST-1. (e) Schematic diagram showing the band structure and Z-Scheme separation
of photoinduced electron hole pairs at the interface of the Ag/Ag3PO4/HKUST-1 catalyst under
visible light irradiation. (f) The repeated experiments of photocatalytic degradation of PBS over the
Ag/Ag3PO4/HKUST-1 catalyst. Reproduced with permission from Reference [70]. Copyright 2017
Elsevier B.V.

Graphitic carbon nitride (g-C3N4) has been studied intensively because of its appealing electronic
structure and high chemical stability [71]. More importantly, g-C3N4 possesses appropriate band
positions and gap (2.7 eV) for light absorption up to 450 nm. Therefore, g-C3N4 can be used as a
photocatalyst for organic pollutants degradation and many other reactions. Wen and coworkers
designed a novel hybrid photocatalyst of protonated g-C3N4 coated MIL-100(Fe) frameworks through
an in-situ protonation followed by a dip-coating procedure [72]. As compared with the parent materials,
the protonated g-C3N4 coated MIL-100(Fe) material showed improved photocatalytic performance in
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MB and RhB degradation, as well as in oxidative denitrogenation for pyridine by molecular oxygen
under visible light irradiation. The excellent photocatalytic activity of this hybrid material can be
attributed to the enhanced absorption ability by introducing protonated g-C3N4 on MIL-100(Fe)
frameworks and the enhanced photogenerated electron-hole separation through the coating effect.
Another study on carbon nitrides and MOFs hybrid materials for photocatalysis was reported by
Dontsva and coworkers [73]. In this study, the potassium poly(heptazine imide)/MIL-125-NH2

(PHIK/MIL-125-NH2) composites were prepared through the dispersion of both materials in water.
The results of the surface ζ-potentials of the parent solids suggested that the driving forces of
composite formation are the K+ ions diffusion from PHIK to MIL-125-NH2 and the electrostatic
interactions between the solids. The formation of this composite was further confirmed by the analysis
of FTIR, photoluminescence spectra, as well as SEM. The composites exhibited a remarkable enhanced
photocatalytic performance in RhB degradation under blue light irradiation. The reaction rate of this
composite was twofold higher than the reaction rate of the parent MOF compound and it displayed a
sevenfold enhancement in comparison to the pristine PHIK. Based on the results of EPR studies and
Mott-Schottky analysis, the excellent photocatalytic activity of the composite was due to the charge
transfer from MIL-125-NH2 to PHIK. Except for carbon nitrides, many other kinds of photocatalytically
active composites are being extensively explored to improve the photocatalytic activity of MOFs in
recent years [74–76].

By calcination of MOFs, various carbons, metal or metal oxides, and nanomaterials with different
properties can be easily fabricated. Chen and coworkers synthesized ZnO NPs with N-doped
nanoporous carbon (N-NpC) via a simple approach of encapsulation and carbonization using ZIF-8
as the carbon source [77]. In the fabrication of ZnO@ZIF-8, ZnO NPs not only acts as the support,
but also serves as the Zn source for synthesizing ZIF-8 (Figure 4a). The ZnO@N-NpC core-shell
heterostructures were obtained after calcination under N2 atmosphere at 700 ◦C. As expected, the
prepared ZnO@N-NpC core-shell composites exhibited excellent absorption and photocatalytic MB
degradation over the pure ZnO. MB dyes were almost completely degraded in the presence of
ZnO@N-NpC core-shell composites under UV light irradiation after 20 min (Figure 4b). Furthermore,
this hybrid composite could be reused for five cycles (Figure 4c) and stored for 2 months, indicating
its potential in practical photocatalytic applications. Xiao and coworkers successfully synthesized
core-shell-structured Fe3O4@C/Cu and Fe3O4@CuO composites through direct calcinations of
magnetic Fe3O4@HKUST-1 under N2 or air (Figure 4d) [78]. The analysis of UV-vis diffuse reflectance
spectroscopy (UV-vis DRS) showed the calcined composites could absorb visible light up to 700 nm.
The calculated band gap energy (Eg) value of Fe3O4@C/Cu was around 1.75 eV, lower than that of
Fe3O4@CuO (1.82 eV), g-C3N4 (2.7 eV) [79], and TiO2 (3.2 eV) [80]. This can be ascribed to the SPR
effect of Cu NPs. Cu NPs can accept the photoinduced electrons from Fe3O4 microsphere, while the
photoinduced holes remain on Fe3O4 microspheres, therefore promoting the effective charge separation
and decreasing electron-hole recombination. As a result, the Fe3O4@C/Cu composites exhibited
excellent photocatalytic activity for MB degradation in comparison with Fe3O4@CuO, g-C3N4, and
TiO2 under visible light irradiation in the presence of H2O2 (Figure 4e). Furthermore, the magnetic
Fe3O4@C/Cu composites could be easily separated from the reaction media with the help of an external
magnetic field (Figure 4f) and be reused five times while preserving the reactivity under photocatalytic
conditions. These results show that novel nanocomposites derived from MOF-based materials through
a simple calcination procedure, show high stability and superior photocatalytic activity for organic
pollutants degradation. This can be used for degrading organic pollutants from industrial waste water.
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Figure 4. (a) Schematic illustration of ZnO@N-NpC formation. (b) Photodegradation cures of MB
as a function of UV irradiation time in the presence of catalysts commercial ZnO, ZIF-8, ZIF-8(700N)
and ZnO@N-NpC(24 h). (c) The MB photocatalysis repeatability test. Reproduced with permission
from Reference [77]. Copyright 2017 Elsevier Inc. (d) TEM images of (a) Fe3O4@HKUST-1 core–shell
microspheres, (b) Fe3O4@CuO, (c and d) Fe3O4@C/Cu. (e) Photodegradation of different catalytic
conditions under visible light irradiation. (f) Hysteresis loops recorded at 300 K of (a) Fe3O4@CuO,
(b) Fe3O4@C/Cu and (c) the as-prepared Fe3O4@HKUST-1 (inset: separation of Fe3O4@CuO and
Fe3O4@C/Cu from solution under an external magnetic field). Reproduced with permission from
Reference [78]. Copyright 2013 Elsevier B.V.

Table 1. A summary of MOFs mentioned in this review for pollutant degradation.

MOF Cocatalyst Light Source Electron
Acceptor

Pollutant
Degradation Ref.

MOF-5 / UV light / Phenol degradation [59]

MIL-53 / UV-vis light H2O2, KBrO3,
(NH4)2S2O8

MB degradation [60]

NNU-36 / Visible light H2O2
Cr(VI) reduction
RhB degradation [61]

[Cu(4,4’-bipy)Cl]n
[Co(4,4’-bipy)·(HCOO)2]n

/ Visible light H2O2 MB degradation [62]

NH2-MIL-125(Ti) Ag3PO4 Visible light / MB and RhB
degradation [63]

HKUST-1 Ag, Ag3PO4 Visible light / PBS degradation. [64]

MIL-100(Fe) g-C3N4 Visible light / MB and RhB
degradation [66]

MIL-125-NH2
potassium

poly(heptazine imide) Visible light / denitrogenation for
pyridine [67]

MIL-125-NH2 CTAB Visible light Visible light RhB degradation [69]

3.2. MOFs for Organic Photocatalysis

The use of MOF-based materials for light-induced organic transformations has attracted extensive
interest due to the solar-energy based “green” organic synthesis condition. In comparison to other
photocatalytic applications, photocatalytic transformations always need precise control of the adequate
reaction rates and selectivity. Therefore, it is a great challenge to fabricate a MOF-based photocatalytic
system with high selectivity. Due to the remarkable activity of TiO2 in photocatalysis [81], Ti-containing
MOFs have been investigated for photocatalytic oxidation of amines, hydrazine, alkylphenols, alcohols
and so on [82,83]. Mechanistic studies suggest that Ti3+ centers are generated upon UV-vis excitation,
accompanying the oxidation of alcohols. When the highly active Ti3+ centers are oxidized into Ti4+,
the O2 are reduced into superoxide diatomic ·O2

−, which then reacts with the carbon-centered radicals
to form aldehydes or imines. Zr-containing MOFs, particularly the UiO-type MOFs, are extensively
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explored in photocatalysis because of their ultra-high stability in water. In 2012, Wang and coworkers
used NH2-UiO-66(Zr) as photocatalysts for aerobic oxygenation of various organic compounds, such
as cyclic alkanes, olefins, and alcohols with high efficiency and selectivity [84]. The Fe-containing
MOFs have received increasing attention in photocatalytic applications because the extensive Fe-O
clusters in Fe-containing MOFs can be directly excited by visible light. Two Fe-containing MOFs,
MIL-100(Fe) and MIL-68(Fe), were reported for photocatalytic hydroxylation of benzene to phenol
with high selectivity under visible light irradiation [85]. A maximal benzene conversion of 30.6% was
achieved under optimal conditions (H2O2:Benzene = 3:4, CH3CN:H2O = 1:1 (v/v)) over MIL-100(Fe)
after 24 h irradiation. This work shows the potential of Fe-containing MOFs as photocatalysts for
benzene hydroxylation with H2O2 as an oxidant, leading to a green and economical process for
phenol production.

Incorporation of metalloligand complexes like Ru(bpy)3
2+ and Ir(ppy)2(bpy)+ into MOFs can

extend the MOF-based photocatalytic transformations to Aza-Henry reactions, oxidation of sulfides
and arylboronic acids, as well as oxidative coupling of amines [86,87]. The resulting MOFs have
exhibited slightly lower photocatalytic activity in comparison to the homogeneous catalysts, while
excellent yields and reusability were achieved for these MOF materials.

Porph-MOFs show great potential in photocatalysis. For instance, Wu and coworkers
synthesized a tin-porphyin MOF [Zn2(H2O)4SnIV(TPyP)(HCOO)2]·4NO3·DMF·4H2O
(SnIVTPyP = 5,10,15,20-tetra(4-pyridyl)-tin(IV)-porphyrin) [88] showing excellent photocatalytic
activity for the oxygenation of sulfides and phenols with higher selectivity than that of the
homogeneous catalyst SnIV(OH)2TPyP. Zhou and coworkers designed a porph-MOF (SO-PCN)
with 1,2-bis(2-methyl-5-(pyridin-4-yl)thiophen-3-yl)cyclopent-1-ene (BPDTE) as a photochromic
switch and TCPP as a photosensitizer [89]. This exhibits reversible control of 1O2 generation and
can be applied in 1,5-dihydroxynaphthalene (DHN) photo-oxidation (Figure 5). In 2014, Zhang and
coworkers prepared an anionic porph-MOF UNLPF-10 with in-situ metalation in porphyrin using
tetrakis 3,5-bis[(4-carboxy)-phenyl]phenylporphine (H10tbcppp) as organic linkers [90]. UNLPF-10
can be used as a photocatalyst for the selective oxygenation of sulfides with excellent yields (Figure 6).
It also showed high stability and preserved its crystalline nature after reactions. These studies show
that the immobilization of photoactive sites on/in MOFs can result in a remarkable photocatalytic
performance for organic transformations.
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Figure 5. (a) Proposed mechanism of energy transfer (EnT) in SO-PCN. (b) Illustration of switching
operation in SO-PCN. (c) Photo-oxidation of DHN catalyzed by SO-PCN in the presence of oxygen
and light irradiation. (d) UV/Vis spectra of photo-oxidation of DHN in CH3CN catalyzed by SO-PCN.
Inset: Absorbance of juglone (λ = 419 nm) as a function of reaction time. Reproduced with permission
from Reference [89]. Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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2014 American Chemical Society.

In 2016, Li and coworkers prepared a Pd@MIL-100(Fe) catalytic system by a double-solvent
impregnation, followed by a photo-reduction process [91]. TEM images revealed that Pd NPs are
dispersed inside the MIL-100(Fe) cavity with an average size of 1.7 nm. After encapsulation of Pd
NPs, the UV-vis DRS spectrum of Pd@MIL-100(Fe) exhibited an enhanced absorption in the range of
200–550 nm. This can be compared to the pure MIL-100(Fe), with the absorption edge extending to
around 650 nm. Therefore, the Pd@MIL-100(Fe) composites show significant superior photocatalytic
activity for N-alkyation of amines with alcohols under visible light irradiation. The Pd@MIL-100(Fe)
catalytic system exhibited the highest conversion of aniline of 88%, and a selectivity to N-benzylaniline
of 76% with the aniline/benzyl alcohol ratio of 1:30 after 24 h irradiation. Recently, the same group
prepared a bimetallic PdAu@MIL-100(Fe) catalytic system for the light-induced tandem reaction
between amines and alcohols to produce N-alkyl amines (Figure 7) [92]. This can be ascribed to the
promoting effect in the photocatalytic alcohol-to-aldehyde dehydrogenation of metallic Au. Non-noble
metal NPs incorporated MOF composites were also applied for photocatalytic transformations. Wu
and coworkers reported that CdS-NH2-UiO-66 composites decorated CdS NRs on the surface of
NH2-UiO-66 via a facile photo deposition approach [93]. This work showed that the CdS-NH2-UiO-66
composites can be used as a potential photocatalyst for the selective oxidation of alcohols to their
corresponding aldehydes with O2 as the oxidant under visible light irradiation. The large specific
surface area of NH2-UiO-66 and the effective charge separation could be responsible for the improved
photocatalytic performance.
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3.3. MOFs for Photocatalytic CO2 Reduction

The solar transformation of CO2 into desirable organic products such as CO, methane (CH4),
methanol (CH3OH), and HCOOH is a promising approach to reduce the green-house effect and
produce renewable energy. Therefore, MOFs are very promising in the field of CCU (Carbon Capture
and Utilization). Considerable research has been done in recent years (Table 2) [94].

Recently, Wang and coworkers reported a visible light-driven catalytic system using a
cobalt-containing zeolitic imidazolate framework (Co-ZIF-9) as a robust MOF co-catalyst and
[Ru(bpy)3]Cl2·6H2O as a photosensitizer [95]. This photocatalytic system could reduce CO2 to CO
with triethanolamine (TEOA) as a sacrificial electron donor at 20 ◦C and 1 atm CO2. Upon visible-light
irradiation, the CO and H2 production rates were 1.4 and 1.0 µmolmin−1, respectively. However,
the CO2 reduction could not occur in the dark or without the ruthenium-based photosensitizer.
Moreover, it was hindered drastically when the photocatalytic system was operated without Co-ZIF-9.
Furthermore, the CO and H2 evolution decreased sharply when the residues of ZIF-9 after calcination
at 1200 ◦C in helium gas were applied in this system. The results show that the framework of ZIF-9
plays a vital role in CO2 reduction through the promotion of the substrate concentration and carrier
transfer. Later, the same group used nanoscale ZIF-67 instead of Co-ZIF-90 as the cocatalyst for CO2

splitting [96]. The new hybrid CO2 reduction system achieved an enhanced photocatalytic performance
with a CO and H2 evolution rate of 37.4 and 13 µmol/30 min, respectively, which indicated that ZIF-67
was a novel and efficient cocatalyst for photocatalytic CO2 reduction.

Atomically dispersed photocatalysts, including mononuclear metal compounds or single
metal atoms anchored on supports, exhibit the maximum efficiency of metal atoms and allow
to investigate the photocatalytic process at the molecular level [97]. Yaghi and coworkers
fabricated in 2017 a Re-containing UiO-67 (Ren-MOF) by covalently attaching ReI(CO)3(BPYDC)(Cl)
(ReTC, BPYDC = 2,2′-bipyridine-5,5′-dicarboxylate) to a zirconium MOF for CO2-to-CO conversion
(Figure 8a) [98]. The precise and quantitative control of the density of photoactive Re centers in the MOF
unit could change the photocatalytic activity. Re3-MOF, in which each MOF cell unit contains three
ReTCs, was found to exhibit the highest photocatalytic activity. Additionally, coating plasmonic Ag NPs
on Re3-MOFs enhanced CO conversion by seven times under visible light irradiation with long-term
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stability up to 48 h (Figure 8b). This exceptional photocatalytic performance of CO2-to-CO conversion
was ascribed to the synergistic effect of the spatially confined photoactive Re sites and the plasmonic Ag
NPs. A Zr-MOF Zr6O4(OH)4(TCPP-H2)3 (MOF-525, TCPP = 4,4′,4′ ′,4′ ′ ′-(porphyrin-5,10,15,20-tetrayl)
tetrabenzoate) constructed by Zr6 clusters and light-harvesting porphyrin linkers, was selected
by Ye and coworkers as MOF support, because of its high CO2 capture capacity and visible-light
utilization [99]. A new composite (MOF-525-Co) with single Co sites was generated by incorporating
unsaturated Co centers into the porphyrin units. The active Co sites in MOF-525-Co were isolated by
the porphyrin linkers and exposed to molecular CO2 simultaneously. As a result, MOF-525-Co showed
significantly enhanced photocatalytic CO2 conversion. The CO and CH4 evolution rate of 200.6 and
36.76 mmolg−1h−1 respectively, were 3.13 times higher than those of the parent MOF-525 (CO: 64.02
mmolg−1h−1; CH4: 6.2 mmolg−1h−1). The incorporated single Co sites in MOF-525 enhanced the CO2

capture capacity and increased the charge separation efficiency in porphyrin linkers. This results in
a significantly enhanced photocatalytic performance of CO2 conversion. These results indicate that
the rational introduction of atomically dispersed photocatalysts into MOF frameworks is a promising
approach for CO2 conversion.
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μmolg−1h−1. This was a 66fold enhancement compared to the commercial ZnO (0.015 μmolg−1h−1) and 
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Figure 8. Structures of Ren-MOF and Ag⊂Ren-MOF for plasmon-enhanced photocatalytic CO2

conversion. (a) Zr6O4(OH)4(−CO2)12 secondary building units are combined with BPDC and ReTC
linkers to form Ren-MOF. The structure of Re3-MOF identified from single-crystal X-ray diffraction is
shown. The 12 coordinated Zr-based metal clusters are interconnected by 21 BPDC and three ReTC
linkers in a face-centered cubic array. Atom labeling scheme: C, black; O, red; Zr, blue polyhedra; Re,
yellow; Cl, green; H atoms are omitted for clarity. (b) Ren-MOF coated on an Ag nanocube for enhanced
photocatalytic conversion of CO2. Reproduced with permission from Reference [98]. Copyright 2016
American Chemical Society.

Besides their use as cocatalysts or supports, MOF-derived nanomaterials are also very promising
for photocatalytic CO2 conversion. Wang et al. converted the core-shell ZIF-8@ZIF-67 crystals into a
novel porous ZnO@Co3O4 composite through a seed-mediated growth process followed by a two-step
calcination process (Figure 9a–c) [100]. The resultant porous ZnO@Co3O4 composite exhibited a much
higher photocatalytic performance of CO2 conversion with a CH4 evolution rate of 0.99 µmolg−1h−1.
This was a 66fold enhancement compared to the commercial ZnO (0.015 µmolg−1h−1) and 367fold
enhancement compared to commercial TiO2 (P25) (0.0027 µmolg−1h−1) (Figure 9d). The exceptional
photocatalytic activity of ZnO@Co3O4 composite was ascribed to its advantageous porous structure
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and the cocatalytic function of Co3O4 NPs. Additionally, Co3O4 NPs can significantly decrease the
ZnO photocorrosion and thus, improve its photocatalytic stability. Zhang and coworkers prepared a
ZnO/NiO porous hollow sphere with sheet-like subunits through thermal treatment of Ni-Zn MOFs
for CO2 conversion [101]. The NiO content in the ZnO/NiO porous hollow spheres was optimized
to improve the special surface, CO2 uptake, and the electron-charge separation of the composites.
The excess NiO decreased the incident light absorption and accelerated charge recombination,
therefore decreasing the photocatalytic activity. As a result, ZnO/NiO composites with 30% Ni2+,
denoted as ZN-30, exhibited excellent photocatalytic CO2 conversion with the CH3OH evolution
of 1.57 µmolg−1h−1. This was due to the highly specific surface area, CO2 capture capacity, and
increased light absorption of the porous hollow structure. Additionally, the authors believed that
the n-type ZnO and n-type NiO were derived from Zn-Ni MOFs mixed together homogeneously,
leading to the formation of various p-n heterojunctions which could boost the electron-hole separation.
These results demonstrate the design of a novel heterogeneous composite with a special structure,
by using MOFs as templates, providing new insights to fabricate new photocatalysts with high CO2

reduction performance.

Molecules 2018, 23, x FOR PEER REVIEW  14 of 22 

 

structure and the cocatalytic function of Co3O4 NPs. Additionally, Co3O4 NPs can significantly 

decrease the ZnO photocorrosion and thus, improve its photocatalytic stability. Zhang and coworkers 

prepared a ZnO/NiO porous hollow sphere with sheet-like subunits through thermal treatment of 

Ni-Zn MOFs for CO2 conversion [101]. The NiO content in the ZnO/NiO porous hollow spheres was 

optimized to improve the special surface, CO2 uptake, and the electron-charge separation of the 

composites. The excess NiO decreased the incident light absorption and accelerated charge 

recombination, therefore decreasing the photocatalytic activity. As a result, ZnO/NiO composites 

with 30% Ni2+, denoted as ZN-30, exhibited excellent photocatalytic CO2 conversion with the CH3OH 

evolution of 1.57 μmolg−1h−1. This was due to the highly specific surface area, CO2 capture capacity, 

and increased light absorption of the porous hollow structure. Additionally, the authors believed that 

the n-type ZnO and n-type NiO were derived from Zn-Ni MOFs mixed together homogeneously, 

leading to the formation of various p-n heterojunctions which could boost the electron-hole 

separation. These results demonstrate the design of a novel heterogeneous composite with a special 

structure, by using MOFs as templates, providing new insights to fabricate new photocatalysts with 

high CO2 reduction performance. 

 

Figure 9. TEM images of ZnO@Co3O4 prepared from ZIF-8@ZIF-67: (a) before and (c) after 

photocatalytic CO2 reduction. Schematic illustration of the photocatalytic CO2 reduction with (b) 

ZnO@Co3O4. (d) CH4 evolution over various samples under UV-vis irradiation. Reproduced with 

permission from Reference [100]. Copyright the Royal Society of Chemistry 2016. 

Table 2. A summary of MOFs mentioned in this review for CO2 reduction. 

MOF 
Cocatal

yst 
Photosensitizer 

Light 

Source 

Sacrificial 

Agent 
CO2 Reduction Ref. 

Co-ZIF-9 / [Ru(bpy)3]Cl2·6H2O 
Visible 

light 
Triethanolamine 

CO 1.4 μmol min−1 

H2 1.0 μmol min−1 
[89] 

ZIF-67 / [Ru(bpy)3]Cl2·6H2O 
Visible 

light 
Triethanolamine 

CO 1.25 μmol min−1 

H2 0.43 μmol min−1 
[90] 

Ren-MOF Ag NPs / 
Visible 

light 
Triethanolamine CO [92] 

Zr6O4(OH)4(TCPP-H2)3 
Single 

Co sites 
/ 

Visible 

light 
Triethanolamine 

CO 200.6 mmolg−1 h−1 

CH4 36.76 mmolg−1 

h−1 

[93] 

ZIF-8@ZIF-67 / / 
UV-vis 

light 
/ CH4 0.99 μmolg−1 h−1 [94] 

Ni-Zn MOFs / / 
Full- 

spectrum 
/ 

CH3OH  

1.57 μmolg−1 h−1. 
[95] 

3.4. MOFs for Water Oxidation 

Photocatalytic water splitting into hydrogen and oxygen is a promising and effective strategy to 

transfer solar energy into chemical energy. To date, many MOF-based materials have been employed 

as photocatalysts for hydrogen production (Table 3). Du and coworkers reported a Cu2I2-based MOF, 

Cu-I-bipy, for hydrogen production by UV light with TEOA as a sacrificial agent [102]. It exhibited 

highly efficient photocatalytic hydrogen evolution with an average rate of 7.09 mmolg−1h−1. This 

exceeds most of the reported MOF-based materials [103]. The Cu2I2 clusters of Cu-I-bipy, serving as 

the photoelectron generators, can accelerate the Cu(I) hydride interaction, thus providing redox 

Figure 9. TEM images of ZnO@Co3O4 prepared from ZIF-8@ZIF-67: (a) before and (c) after
photocatalytic CO2 reduction. Schematic illustration of the photocatalytic CO2 reduction with (b)
ZnO@Co3O4. (d) CH4 evolution over various samples under UV-vis irradiation. Reproduced with
permission from Reference [100]. Copyright the Royal Society of Chemistry 2016.

Table 2. A summary of MOFs mentioned in this review for CO2 reduction.

MOF Cocatalyst Photosensitizer Light
Source

Sacrificial
Agent CO2 Reduction Ref.

Co-ZIF-9 / [Ru(bpy)3]Cl2·6H2O Visible light Triethanolamine CO 1.4 µmol min−1

H2 1.0 µmol min−1 [89]

ZIF-67 / [Ru(bpy)3]Cl2·6H2O Visible light Triethanolamine CO 1.25 µmol min−1

H2 0.43 µmol min−1 [90]

Ren-MOF Ag NPs / Visible light Triethanolamine CO [92]

Zr6O4(OH)4(TCPP-H2)3
Single Co

sites / Visible light Triethanolamine CO 200.6 mmolg−1 h−1

CH4 36.76 mmolg−1 h−1 [93]

ZIF-8@ZIF-67 / / UV-vis light / CH4 0.99 µmolg−1 h−1 [94]
Ni-Zn MOFs / / Full-spectrum / CH3OH 1.57 µmolg−1 h−1. [95]

3.4. MOFs for Water Oxidation

Photocatalytic water splitting into hydrogen and oxygen is a promising and effective strategy to
transfer solar energy into chemical energy. To date, many MOF-based materials have been employed
as photocatalysts for hydrogen production (Table 3). Du and coworkers reported a Cu2I2-based MOF,
Cu-I-bipy, for hydrogen production by UV light with TEOA as a sacrificial agent [102]. It exhibited
highly efficient photocatalytic hydrogen evolution with an average rate of 7.09 mmolg−1h−1. This
exceeds most of the reported MOF-based materials [103]. The Cu2I2 clusters of Cu-I-bipy, serving
as the photoelectron generators, can accelerate the Cu(I) hydride interaction, thus providing redox
reaction sites for hydrogen production, which is responsible for the excellent photocatalytic activity for
hydrogen generation. Furthermore, Cu-I-bipy can be reused at least five times with negligible loss of
catalytic activity, indicating it could be a practical application in water splitting.
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Table 3. A summary of MOFs mentioned in this review for water oxidation.

MOF Cocatalyst Light Source Sacrificial
Agent

H2 Evolution
(mmol·g−1·h−1) Ref.

(Cu3(BTC)2(H2O)3) ZnO/GO UV light Methanol 0.129 [68]

Cu-I-bipy / UV light Triethanolamine 7.09 [96]

NH2-MIL-125(Ti) 0.75CN/Ni15.8Pd4.1 Visible light Triethanolamine 7.84 [98]

(AlOH)2H2TCPP single Pt atoms (0.07
wt%) Visible light Triethanolamine 0.129 [99]

[Ir(ppy)2(bpy)]+-derived
UiO-MOF [Ni4(H2O)2(PW9O34)2]10− Visible light Methanol 4.4 [100]

NH2-MIL-125(Ti) ZnIn2S4 Visible light Na2SO3, Na2S 2.2 [101]

Integration of appropriate co-catalysts like metal NPs, POMs, metal oxides and carbon nitrides
has proved to be a potential approach to improve the photocatalytic performance for water
splitting. Wang and coworkers reported a NH2-MIL-125(Ti)/0.75CN/Ni15.8Pd2.1 photocatalytic
system, exhibiting enhanced photocatalytic activity for hydrogen production under visible light
irradiation [104]. It exhibited a high hydrogen evolution rate of 8.7 mmolg−1h−1, 332 and 1.3 times
higher than those of NH2-MIL-125(Ti)/0.75CN and NH2-MIL-125(Ti)/Ni15.8Pd4.1, respectively.
The improved photocatalytic activity of hydrogen production was ascribed not only to the strong
light-absorbing capacity and increased charge transfer of loaded NiPd NPs, but also to the enhanced
electron holes separation of heterostructure between NH2-MIL-125(Ti) and CN.

Due to the maximized atomic efficiency, single-atom catalysts have exhibited excellent catalytic
activity for various reactions, such as electrocatalysis, oxidation, water-gas shift, and hydrogenation.
A highly stable porph-MOF Al-TCPP, formulated as (AlOH)2H2TPCC, was used as the support
to anchor Pt(II) into the porphyrin centers (Figure 10a) [105]. Thus, a single Pt atom catalyst
(Al-TCPP-Pt) was easily synthesized through a simple reduction process of Al-TCPP-Pt(II). As expected,
Al-TCPP-0.1Pt exhibited an excellent photocatalytic performance for hydrogen evolution under visible
irradiation, using TEOA as the sacrificial agent. The hydrogen evolution rate of Al-TCPP-0.1Pt was
129 µmolg−1h−1 and the calculated turnover frequency (TOF) of Al-TCPP-0.1Pt reached 35 h−1,
30 times higher than that of Al-TCPP-PtNPs (Figure 10b). The results of spectroscopic characterizations
and DFT calculations confirmed that the single Pt atoms anchored into porphyrin centers of Al-TCPP
open a channel for highly efficient electron transfer, and enhance the hydrogen binding energy,
thus resulting in the enhanced photocatalytic performance of hydrogen evolution.
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Figure 10. (a) Schematic illustration showing the synthesis of Al-TCPP-Pt for photocatalytic
hydrogen production. (b) Photocatalytic hydrogen production rates of Al-TCPP, Al-TCPP-PtNPs, and
Al-TCPP-0.1Pt (inset: the calculated TOFs of Al-TCPP-PtNPs and Al-TCPP-0.1Pt). Reproduced with
permission from Reference [105]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Recently, Lin and coworkers incorporated a Ni-containing POM [Ni4(H2O)2(PW9O34)2]10− (Ni4P2)
into highly stable [Ir(ppy)2(bpy)]+-derived UiO-MOFs (MOF-1) or [Ru(bpy)3]2+-derived UiO-MOFs
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(MOF-2) [106]. Ni4P2-MOF-1 exhibited excellent catalytic activity of hydrogen evolution in an acidic
aqueous solution (pH = 1.2) with MeOH as the sacrificial electron donor under visible light irradiation.
The hydrogen evolution rate of Ni4P2-MOF-1 was 4.4 mmolg−1h−1, and the turnover number (TON) of
Ni4P2-MOF-1 reached 1476 in 72 h irradiation. However, Ni4P2-MOF-2 only produced trace amounts
of hydrogen after 20 h irradiation under identical conditions. They believed that the proximity of
Ni4P2 to multiple photosensitizers in Ni4P2-MOF realizes the multi-electron transfer and enhances the
photocatalytic hydrogen evolution performance. Electrochemical and photophysical studies revealed
that Ni4P2 can only oxidatively quench the excited state of [Ir(ppy)2(bpy)]+ as the initiating step of
hydrogen evolution, resulting in the drastic differences of photocatalytic performance between the
two Ni4P2-MOF systems.

To use semiconductor NPs as cocatalysts for photocatalytic hydrogen evolution, Ao and coworkers
reported a series of heterostructured ZnIn2S4@NH2-MIL-125(Ti) composites with ZnIn2S4 nanosheets
highly dispersed on the surface of NH2-MIL-125(Ti) [107]. The heterostructure between ZnIn2S4

nanosheets and NH2-MIL-125(Ti) could have increased the capacity of electron transfer and promoted
the photogenerated charge separation, resulting in the enhanced photocatalytic performance of
hydrogen evolution. Tang and coworkers encapsulated the Cu-BTC MOF into a ZnO/graphene
oxide (GO) photocatalytic system through electrostatic interaction to form the electrostatic interaction
assembly of ZnO/GO and Cu-BTC, which exhibited enhanced photocatalytic activity of hydrogen
evolution [74]. In this prepared heterostructure, ZnO acted as the photoelectron generator, and
GO served as the channel of photoelectron transfer from ZnO to Cu-BTC as well as the supporting
matrix for ZnO and Cu-BTC (Figure 11). The electron spin resonance (ESR) results have revealed
that the Cu-BTC could extend the lifetime of free radicals and boost the H recombination to form
H2, enhancing the photocatalytic performance of hydrogen evolution. As a result, the electrostatic
interaction assembly of ZnO/GO and Cu-BTC showed the highest hydrogen evolution rate of
129 µmolg−1h−1, which is ninefold and threefold higher than that of ZnO/GO and ZnO/(Cu-BTC)/GO
complex, respectively.
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4. Conclusions

In this review, we have discussed the functions of MOF materials in the photoredox chemical
systems. MOFs can be used as photocatalysts due to the facile modification of organic linkers with
photocatalytic active groups such as amine and porphyrin. In addition, the high porosity of MOFs
makes them capable to act as hosts for photoredox species, like precious metals, semiconductor
NPs, and POMs, providing additional possibilities for photocatalytic applications. In recent years,
MOFs have served as sacrificial templates or precursors in preparing more stable and conductive
porous carbon, metal oxides, or porous carbon/metal oxides composite nanomaterials via simple
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pyrolysis processes. MOFs have an inherent high porosity and a uniform dispersion of metal nodes
in their network. Because of this, the MOF-derived nanomaterials keep their high porosity and the
high surface area, and show uniform heteroatom doping and adjustable morphology. Therefore, the
MOF-derived nanomaterials are promising candidates for photocatalytic applications. The typical
applications of MOFs in heterogeneous photocatalysis were summarized in detail, indicating that
MOFs are promising candidates for heterogeneous photocatalysis. These applications were including
pollutants degradation, organic transformations, CO2 reduction, and water splitting. There are still
some problems that need to be solved. Only a tiny fraction of the many MOFs that have been
reported are suitable for photocatalysis. Therefore, new MOFs with redox active metals and/or
functional organic ligands should be designed and fabricated for heterogeneous photocatalysis.
The photocatalytic efficiencies of MOFs do not yet meet the requirements for practical applications.
It is of great importance to improve the photocatalytic efficiencies of MOFs. Finally, cost-effective
photocatalytic systems should avoid the use of expensive precious metals, and replace them by
abundant transition metals or by metal-free variants.
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Abbreviations

BDC-NH2 2-amino-benzene-1,4-dicarboxylate
Bipy 4,4′-bipyridine
BPDTE 1,2-bis(2-methyl-5-(pyridin-4-yl)thiophen-3-yl)cyclopent-1-ene
bpy 2′2-bipyridine
BTC benzene-1,3,5-tricarboxylate
CB conduction band
CH4 methane
CH3OH methanol
CO2 carbon dioxide
DHN 1,5-dihydroxynaphthalene
Eg band gap energy
ESR electron spin resonance
g-C3N4 graphitic carbon nitride
H4L1 bis(3,5-dicarboxyphenyl)isophthalamide
H2O water
H10tbcppp 3,5-bis[(4-carboxy)-phenyl]phenylporphine
H2TCPP meso-tetra(4-carboxyl-phenyl) prophyrin
LMCT ligand-to-metal charge transfer
MB methylene blue
MOFs metal organic frameworks
N-NpC N-doped nanoporous carbon
NPs nanoparticles
NRs nanorods
P25 Degussa commercial mixed anatase-rutile phase TiO2 nanophosphor
PBS Ponceau BS
PHIK potassium poly(heptazine imide)
POMs polyoxometalates
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ppy 2-phenylpyridine
RhB Rhodamine B
SnIVTPyP 5,10,15,20-tetra(4-pyridyl)-tin(IV)-porphyrin)
SPR surface plasmon resonance
TCPP 4,4′,4′ ′,4′ ′ ′-(porphyrin-5,10,15,20-tetrayl) tetrabenzoate
TEM transmission electron microscopy
TEOA triethanolamine
TOF turnover frequency
TON turnover number
UV-vis DRS UV-vis diffuse reflectance spectroscopy
ZIF Zeolitic imidazolate framework
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