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Abstract: Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Alzheimer’s
disease, and Parkinson’s disease, are characterized by the progressive loss of neurons in specific
regions of the brain and/or spinal cord. Neuronal cell loss typically occurs by either apoptotic
or necrotic mechanisms. Oxidative stress and nitrosative stress, along with excitotoxicity and
caspase activation, have all been implicated as major underlying causes of neuronal cell death.
Diverse nutraceuticals (bioactive compounds found in common foods) have been shown to have
neuroprotective effects in a variety of in vitro and in vivo disease models. In the current study,
we compared the neuroprotective effects of two polyphenolic compounds, rosmarinic acid and
carnosic acid, which are both found at substantial concentrations in the herb rosemary. The capacity
of these compounds to rescue primary cultures of rat cerebellar granule neurons (CGNs) from a
variety of stressors was investigated. Both polyphenols significantly reduced CGN death induced
by the nitric oxide donor, sodium nitroprusside (nitrosative stress). Rosmarinic acid uniquely
protected CGNs from glutamate-induced excitotoxicity, while only carnosic acid rescued CGNs
from caspase-dependent apoptosis induced by removal of depolarizing extracellular potassium
(5K apoptotic condition). Finally, we found that carnosic acid protects CGNs from 5K-induced
apoptosis by activating a phosphatidylinositol 3-kinase (PI3K) pro-survival pathway. The shared and
unique neuroprotective effects of these two compounds against diverse modes of neuronal cell death
suggest that future preclinical studies should explore the potential complementary effects of these
rosemary polyphenols on neurodegenerative disease progression.
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1. Introduction

According to a 2015 United Nations report, the number of people over 60 is expected to double in
the next 35 years to almost 2.1 billion people. As our population shifts to a larger proportion of elderly
individuals, neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), Parkinson’s
disease (PD), and Alzheimer’s disease (AD) will continue to become more prevalent. Because most
neurodegenerative diseases are primarily sporadic in nature, an effective method of treatment would
be to prevent or slow the dying of neurons in affected brain regions. Inflammation, misfolded
proteins, mitochondrial dysfunction, oxidative stress, nitrosative stress, apoptosis, and excitotoxicity
are all considered major factors underlying the pathology of various neurodegenerative diseases [1,2].
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Thus, therapeutic agents that target several of these disease mechanisms may be the most viable
treatment options.

Since ancient times, plants have been used as natural treatments for acute and chronic disorders.
Over the last few decades, natural compounds possessing medicinal benefits (i.e., nutraceuticals) have
been proposed as promising treatment options for many diseases due to their intrinsic antioxidant
abilities in scavenging reactive oxygen species (ROS) and reactive nitrogen species (RNS) [3,4].
The activities of many of these compounds, such as rosmarinic acid and carnosic acid, have been
extensively investigated using in vitro and in vivo models [5]. Manufactured or commercially synthesized
drugs sometimes display more activity than natural compounds. However, natural compounds often
produce long term benefits and generally elicit fewer side effects [6]. Many nutraceuticals are classified
as (poly)phenolic antioxidant compounds, like phenolic acids, flavonoids, tannins, and lignans [7,8].

The rosemary shrub (Rosmrinus officinalis) is a member of the mint family (Lamiaceae) found originally
in the Mediterranean region, and now found abundantly throughout the world. Commonly used
as an herbal spice in food, rosemary has long been used as an alternative therapy for different
illnesses including headaches, inflammatory diseases, and stomach problems [9,10]. Rosemary has
a significant intrinsic antioxidant activity due to its molecular components, such as rosmarinic acid
and carnosic acid, and both compounds have demonstrated neuroprotective effects in different
neurodegenerative diseases. The main constituent, rosmarinic acid (Figure 1A), is a naturally
occurring hydroxylated polyphenol molecule found in several plant families, including Lamiaceae,
Boraginaceae, and Blechnaceae [11,12]. It has been shown to have antioxidant, anti-inflammatory,
anti-viral, anti-mutagenic, and anti-angiogenic capabilities [9,10,13–17]. Moreover, rosmarinic acid
appears to be neuroprotective and has been demonstrated to induce neuroprotection from reactive
glial cells in in vitro models of AD, spinal cord injury, and PD by inhibiting nitric oxide (NO)
production [18–20]. Rosmarinic acid protected against memory deficits in ischemic mice and alleviated
neurological symptoms in the G93A mutant hSOD1 mouse model of ALS [21–23].

Carnosic acid (Figure 1B), a polyphenolic compound also found in the rosemary herb, possesses
many of the biological activities discussed above. The robust antioxidant activity of carnosic acid may
be related to its ability to up-regulate endogenous free radical scavenging enzymes via activation of the
Nrf2 transcriptional pathway [24,25]. In several in vitro models, carnosic acid has been shown to have
protective effects against neurotoxicity by promoting pro-survival pathways including modulation
of apoptosis, autophagy, and regulation of the parkin pathway [26,27]. Carnosic acid showed a
neuroprotective effect both in vitro and in vivo in a mouse model of neurotoxicity and in a rat model
of PD [28,29].
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Figure 1. Structural comparison of rosmarinic acid (A) and carnosic acid (B).

The purpose of this study was to directly compare the neuroprotective effects of rosmarinic
acid and carnosic acid against cell death induced by nitrosative stress, excitotoxicity, and caspase
activation in an in vitro model of primary rat cerebellar granule neuron (CGN) cultures. Apoptosis was
measured morphologically by Hoechst staining to visualize nuclear size and morphology, in addition
to bright field imaging or immunocytochemistry to visualize neuronal processes and the microtubule
network, respectively. To further investigate the pro-survival pathway that carnosic acid activates
to block caspase-dependent cell death, we used several different inhibitors, including wortmannin
to inhibit PI3K, PD98059 to block MAPK (MEK1/2), and Akt inhibitor XIII to inhibit Akt-dependent
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pro-survival signaling. Our data demonstrate that rosmarinic acid and carnosic acid show overlapping
and unique neuroprotective effects against diverse stressors that cause neuronal cell death. The unique
neuroprotective effects of these two polyphenols has direct implications for designing future preclinical
studies to evaluate the therapeutic potential of these compounds in neurodegenerative diseases.

2. Results

2.1. Carnosic Acid and Rosmarinic Acid Each Protect CGNs from Nitrosative Stress

Rosmarinic acid and carnosic acid each protect CGNs from nitrosative stress induced by sodium
nitroprusside (SNP), an NO donor, which results in the formation of RNS and cell death. The efficacy
of rosmarinic acid and carnosic acid to protect CGNs against SNP-induced nitrosative stress was
examined. By assessing the nuclear morphology and by examining the state of the neuronal processes
under bright field imaging, we show cytotoxic effects of SNP on CGNs. When incubated with
SNP, the nuclei become condensed and fragmented compared to the nuclei of untreated control
cells (Figure 2A). Additionally, the neuronal cell bodies are drastically diminished in size and the
neuronal processes are essentially destroyed by SNP (Figure 2A). These detrimental effects of RNS were
substantially reduced by co-incubating the CGNs with either 50 µM rosmarinic acid or 10 µM carnosic
acid (Figure 2A). Quantification of these results is shown in Figure 2B as the percentage of apoptotic
cells counted using Hoechst staining to assess nuclear morphology. Rosmarinic acid significantly
reduced apoptotic cell death at concentrations of 50 µM and 100 µM. Carnosic acid demonstrated
a more potent protective effect from RNS at concentrations of only 10 µM and 20 µM. Interestingly,
for both compounds, the protection observed was somewhat greater at the lower concentration tested.
Of note, at concentrations of over 20 µM and 100 µM for carnosic acid and rosmarinic acid, respectively,
the compounds were somewhat toxic on their own to CGNs (data not shown).
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Figure 2. Rosmarinic acid and carnosic acid each protect cerebellar granule neurons (CGNs) from 
nitrosative stress. (A) CGNs were co-incubated for 24 h in serum-free culture medium containing 25 
mM KCl (Control; Con) alone, or with rosmarinic acid (ROS; 50 µM) or carnosic acid (CAR; 10 µM) 
and sodium nitroprusside (SNP; 100 µM), or SNP alone. Following incubation, CGNs were fixed and 
stained with Hoechst dye to visualize the nuclei. Decolorized (black & white) panels are shown to 
emphasize nuclear morphology and gray panels show the bright field images of the same fields. Scale 
bar indicates 10 µm. (B) Quantitative assessment of cellular apoptosis for CGNs in untreated controls, 
SNP alone, and SNP plus ROS or CAR. Cells were quantified by counting as either living or apoptotic 
based on nuclear morphology, and the percentage of cells showing apoptotic nuclei (either condensed 
or fragmented morphology) was determined. Data are expressed as the means ± SEM, n = 4. ### 

Figure 2. Rosmarinic acid and carnosic acid each protect cerebellar granule neurons (CGNs) from
nitrosative stress. (A) CGNs were co-incubated for 24 h in serum-free culture medium containing
25 mM KCl (Control; Con) alone, or with rosmarinic acid (ROS; 50 µM) or carnosic acid (CAR; 10 µM)
and sodium nitroprusside (SNP; 100 µM), or SNP alone. Following incubation, CGNs were fixed
and stained with Hoechst dye to visualize the nuclei. Decolorized (black & white) panels are shown
to emphasize nuclear morphology and gray panels show the bright field images of the same fields.
Scale bar indicates 10 µm. (B) Quantitative assessment of cellular apoptosis for CGNs in untreated
controls, SNP alone, and SNP plus ROS or CAR. Cells were quantified by counting as either living or
apoptotic based on nuclear morphology, and the percentage of cells showing apoptotic nuclei (either
condensed or fragmented morphology) was determined. Data are expressed as the means ± SEM,
n = 4. ### indicates p < 0.001 compared to control, *** indicates p < 0.001 compared to SNP alone as
determined using one-way ANOVA with a post hoc Tukey’s test.

2.2. Rosmarinic Acid Uniquely Protects CGNs against Excitotoxicity

Glutamate and its co-agonist glycine, cause excitotoxicity in CGN cultures by causing an
influx of calcium. The molecules bind to ionotropic glutamate receptors, allowing calcium to enter
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facilitating depolarization of the cell. This increase in intracellular calcium can activate calpains,
form ROS and RNS, and cause the neuron to fire more action potentials, resulting in further cell
depolarization [30]. Induction of excitotoxicity by glutamate/glycine resulted in a marked increase
in apoptotic CGNs and severe damage to neuronal processes (Figure 3A). Rosmarinic acid was
protective against excitotoxicity; however, carnosic acid was not protective, and in fact appeared
to exacerbate the effects of glutamate/glycine-induced excitotoxicity (Figure 3A). The percentage
of apoptotic cells was determined for each treatment and the quantitative results are shown in
Figure 3B. We performed a MTT assay of cell viability to confirm the protective effects of rosmarinic acid
against glutamate/glycine-induced excitotoxicity. We show that CGNs incubated in glutamate/glycine
resulted in significant cell death by excitotoxicity when compared to controls (Figure 3C). Furthermore,
co-incubation of CGNs with glutamate/glycine and rosmarinic acid restores cell viability levels
to control levels (Figure 3C). Our data confirm the protective effects of rosmarinic acid against
glutamate/glycine-induced excitotoxicity. Rosmarinic acid significantly protected CGNs from
excitotoxicity at 20 µM and 50 µM concentrations. In contrast, carnosic acid at concentrations of
10 µM and 20 µM enhanced CGN cell death in the presence of glutamate, though this effect did not
reach statistical significance.
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Figure 3. Rosmarinic acid, but not carnosic acid, protects CGNs from excitotoxicity. (A) CGNs were
co-incubated for 24 h in serum-free culture medium containing 25 mM KCl (Control; Con) alone
or with rosmarinic acid (ROS; 20 µM) or carnosic acid (CAR; 10 µM) and glutamate/glycine (G/G;
100 µM/10 µM final concentrations), or G/G alone. Following incubation, CGNs were fixed and
stained with Hoechst dye to visualize the nuclei. Decolorized (black & white) panels are shown to
emphasize nuclear morphology and the gray panels show the bright field images of the same fields.
Scale bar indicates 10 µm. (B) Quantitative assessment of cellular apoptosis for CGNs in untreated
controls, G/G alone, and G/G plus ROS or CAR. Cells were quantified as either living or apoptotic
based on nuclear morphology, and the percentage of cells showing apoptotic nuclei (either condensed
or fragmented morphology) was determined. (C) MTT cell viability assay was used to confirm the
protective effects of ROS against G/G excitotoxicity. CGNs were co-incubated with 100 µM glutamate
and 10 µM glycine (G/G), G/G + ROS and percentage of viability was calculated against control
treatment. Data are expressed as the means ± SEM, n = 4. ### indicates p < 0.001 compared to control,
* indicates p < 0.05 compared to G/G alone, *** indicates p < 0.001 as determined using one-way
ANOVA with a post hoc Tukey’s test.
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2.3. Carnosic Acid Uniquely Protects CGNs against Caspase-Dependent Apoptosis

5K apoptotic medium is a non-depolarizing, low potassium medium that causes cellular
stress and subsequent caspase activation in CGNs [31,32]. Caspases induce apoptotic cell death
when activated. There are several pro-survival signaling pathways that can be inactivated by 5K
medium to allow caspase activation resulting in cell death. Stimulation of these pathways under 5K
conditions can therefore lead to cell survival and neuroprotection. The specific pathways we tested in
subsequent experiments were the pro-survival PI3K/Akt pathway and PI3K-dependent activation of
a MEK/ERK pathway. As expected, incubation in 5K medium induced apoptosis of CGNs as seen
by the characteristic nuclear condensation and microtubule disruption (Figure 4A). Carnosic acid
co-incubation significantly protected CGNs against 5K-induced apoptosis. These results were again
quantified from Hoechst-stained images and the percentage of apoptotic cells was determined
(Figure 4B). To confirm the protective effects of carnosic acid against caspase-dependent apoptosis,
we performed an MTT assay of cell viability. CGNs incubated in 5K medium caused significant
cell death and cell viability is restored when co-incubated with carnosic acid (Figure 4C). Our data
confirm the protective effects of carnosic acid against low potassium induced caspase-dependent
apoptosis. In contrast to the results described above for excitoxicity, rosmarinic acid did not display
any discernible protective effect against caspase activation while carnosic acid nearly completely
protected against the 5K apoptotic insult at 10 µM and 20 µM concentrations.
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Figure 4. Carnosic acid, but not rosmarinic acid, protects CGNs from caspase-dependent apoptosis.
(A) CGNs were co-incubated for 24 h in serum-free culture medium containing 25 mM KCl (Control;
Con). Treated cells had 25 mM KCl medium replaced with a non-depolarizing, low potassium medium
(5 mM KCl; 5K apoptotic medium) either alone or with carnosic acid (CAR; 20 µM). Following
incubation, CGNs were fixed and stained with Hoechst (blue) and β-tubulin antibody (green) to
visualize the nuclei and microtubule network, respectively. Scale bar indicates 10 µm. (B) Quantitative
assessment of cellular apoptosis for CGNs in untreated controls, 5K apoptotic medium, and 5K plus
ROS or CAR. Cells were quantified as either living or apoptotic based on nuclear morphology, and the
percentage of cells showing apoptotic nuclei (either condensed or fragmented morphology) was
determined. (C) MTT cell viability assay was used to confirm the protective effects of CAR against
caspase-dependent apoptosis. CGNs were co-incubated with 5K, 5K + CAR and percentage of viability
was calculated against control treatment. Data are expressed as the means ± SEM, n = 4. ### indicates
p < 0.001 compared to control, *** indicates p < 0.001 compared to 5K apoptotic condition alone as
determined using one-way ANOVA with a post hoc Tukey’s test.
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2.4. Carnosic Acid Protects CGNs from 5K-Induced Apoptosis through PI3K Activation, But Not Downstream
Akt or MEK/ERK Signaling

Once it was determined that carnosic acid protected CGNs against 5K-induced, caspase-dependent
apoptosis, we attempted to determine if these protective effects were due to activation of specific
pro-survival pathways that would inhibit caspase activation. The PI3K pathway has known
pro-survival effects. To investigate if carnosic acid acts through a PI3K-dependent mechanism, we used
wortmannin, an irreversible inhibitor of PI3K. Bright field imaging and nuclear staining clearly showed
that co-incubation with wortmannin counteracted the protective effects of carnosic acid against
low-potassium cellular stress with 5K medium (Figure 5A). To quantify the induction of apoptosis in
CGNs, we evaluated nuclear morphology which demonstrated that wortmannin effectively blocked
the protective effect of carnosic acid seen in 5K apoptotic conditions (Figure 5B). This demonstrates
that carnosic acid utilizes a PI3K-dependent mechanism of neuroprotection.
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Figure 5. Carnosic acid protects CGNs from caspase-dependent apoptosis through the PI3K
pro-survival pathway. (A) CGNs were incubated for 24 h in serum-free culture medium containing
25 mM KCl (Control; Con). Treated cells had the plating medium replaced with a non-depolarizing,
low potassium medium (5 mM KCl; 5K apoptotic medium) either alone or co-treated with carnosic
acid (CAR; 20 µM) or with CAR + wortmannin (Wort; 100 nM). Following incubation, CGNs were fixed
and stained with Hoechst dye to visualize the nuclei. Decolorized (black & white) panels are shown to
emphasize nuclear morphology and the gray panels show the bright field images of the same fields.
Scale bar indicates 10 µm. (B) Quantitative assessment of cellular apoptosis for CGNs in untreated
controls, 5K, 5K + CAR, and 5K + CAR + Wort. Cells were quantified by counting as either living or
apoptotic based on nuclear morphology, and the percentage of cells showing apoptotic nuclei (either
condensed or fragmented morphology) was determined. Data are expressed as the means ± SEM,
n = 4. ### indicates p < 0.001 compared to control, *** indicates p < 0.001 compared to 5K apoptotic
medium, xxx indicates p < 0.001 compared to 5K + CAR, as determined using one-way ANOVA with a
post hoc Tukey’s test.
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The pro-survival effects of PI3K are typically initiated through downstream phosphorylation and
activation of the serine/threonine kinase Akt. Above we show carnosic acid exerts its neuroprotective
effects in a PI3K-dependent manner. To determine if the neuroprotective effects are initiated through
PI3K activation of Akt, we used the potent inhibitor, Akt Inhibitor XIII. Quantitative assessment of
CGN apoptosis showed that surprisingly, the protective effect of carnosic acid was sustained even in
the presence of the Akt inhibitor (Figure 6A). These results demonstrate that carnosic acid protects
CGNs from 5K-induced apoptosis independently of the Akt pro-survival pathway.

Next, we investigated if the PI3K-dependent neuroprotective effect of carnosic acid was caused
by a PI3K-dependent activation of Ras and subsequent downstream activation of the MAPK pathway.
PI3K signaling through the Ras/MAPK pathway can promote cell survival. Using PD98059, a MEK1/2
inhibitor, we inhibited MAPK activation by binding and inactivating MEK1/2 and preventing
downstream phosphorylation events [33]. Carnosic acid significantly protected CGNs from 5K-induced
apoptosis even in the presence of PD98059 (Figure 6B). This result shows that carnosic acid protects
CGNs from caspase-dependent apoptosis through a mechanism that is independent of the Ras/MAPK
signaling pathway.
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Figure 6. Carnosic acid protects CGNs from caspase-dependent apoptosis independently of the
AKT or MEK/ERK pro-survival pathways. CGNs were incubated for 24 h in serum-free culture
medium containing 25 mM KCl (Control; Con). Treated cells had the plating medium replaced with a
non-depolarizing, low potassium medium (5 mM KCl; 5K apoptotic medium) either alone or co-treated
with carnosic acid (CAR; 15 µM) alone or (A) CAR + AKT inhibitor (AKT inh; 10 µM) or (B) CAR +
MEK inhibitor PD98059 (PD; 10 µM). Following incubation, CGNs were fixed and stained with Hoechst
dye to visualize nuclei. (A,B) Quantitative assessment of cellular apoptosis for CGNs in untreated
controls, 5K, 5K + CAR, 5K + CAR + AKT inh, and 5K + CAR + PD. Cells were quantified by counting as
either living or apoptotic based on nuclear morphology, and the percentage of cells showing apoptotic
nuclei (either condensed or fragmented morphology) was determined. Data are expressed as the
means ± SEM, n = 4. ### indicates p < 0.001 compared to control, *** indicates p < 0.001 compared to
5K apoptotic medium alone, as determined using one-way ANOVA with a post hoc Tukey’s test.

3. Discussion

Rosmarinic acid and carnosic acid have many bioactivities, including neuroprotective, antioxidant,
and anti-inflammatory effects, that may make them viable therapeutic options to diminish the
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underlying pathophysiology of various neurodegenerative diseases. In the current study, we compared
the neuroprotective effects of rosmarinic acid and carnosic acid against insults modeling nitrosative
stress, excitotoxicity, and caspase-dependent apoptosis in cultured rat CGNs, a well-established
in vitro model to examine neuronal cell death [34]. Moreover, we studied diverse mechanisms that
may underlie the neuroprotective effects of carnosic acid against intrinsic apoptosis.

Our data show that rosmarinic acid and carnosic acid protect CGNs from an in vitro model of
nitrosative stress induced by SNP. This compound is a NO donor which can promote the formation of
toxic RNS [35]. The formation of RNS causes extensive cellular damage resulting in cell death [35].
The neuroprotective effects of rosmarinic acid against nitrosative stress in vivo likely involves its
capacity to downregulate NF-kB and inhibit NO production from activated glial cells [36–39]. However,
the effects observed in vitro in CGNs are likely due to rosmarinic acid directly scavenging NO.
Moreover, both rosmarinic acid and carnosic acid share a structural motif; a catechol moiety that
acts as a hydrogen donor to free radicals and uses oxygen as an electron acceptor [40]. Indeed, we have
shown that polyphenols containing catechol moieties demonstrate robust neuroprotective effects
against NO-induced toxicity [41,42]. Our results are also consistent with a previous study in which
rosmarinic acid inhibited NO production in RAW2647 mouse macrophages [43]. In a similar manner,
carnosic acid has been shown to inhibit NO production induced by LPS in microglial cells [44]. Thus,
both rosmarinic acid and carnosic acid appear to mitigate nitrosative stress via two mechanisms. First,
these compounds blunt NO production from macrophages and microglia. Second, they act as direct
scavengers of RNS, including NO.

Excitotoxicity has been shown to play a role in these diseases and therefore, we tested these
agents to determine their neuroprotective effects against glutamate/glycine-induced toxicity in
CGNs [45]. To replicate excitotoxicity in vitro, CGNs were exposed to glutamate and its co-agonist
glycine, to cause excitotoxicity by causing an influx of calcium. The molecules bind to ionotropic
glutamate receptors, allowing calcium to enter, facilitating depolarization of the cell. One consequence
of excitotoxicity is neuronal nitric oxide synthase (nNOS) activation and increase in NO, leading to
nitrosative and oxidative stress [35]. We show that rosmarinic acid displays a neuroprotective effect
against glutamate/glycine-induced excitotoxicity. This result has been substantiated in another study
performed in human neuroblastoma cells [46]. Conversely, carnosic acid exacerbated the excitotoxic
cell death in CGN cultures. The opposing effects of these compounds on excitotoxic cell death are
striking and are not readily explained. Additional studies are necessary to define the mechanisms
underlying this result.

In our study, we found that carnosic acid exacerbated the effects of excitotoxicity in CGNs.
Other studies have shown it to antagonize intracellular calcium mobilization in leukocytes,
and interestingly, it provided anti-excitotoxic effects in vivo and in vitro in HT-22 hippocampal
cells [25,47]. The contrasting findings between our study and these prior reports may be due to
differences in how the excitotoxic cell death is executed within the distinct cell types being tested.
Regardless of these effects, carnosic acid did significantly protect CGNs against 5K apoptotic conditions,
whereas rosmarinic acid did not.

To further characterize the protective effects of carnosic acid against intrinsic apoptosis, three
different inhibitors were used to test the involvement of specific cell survival pathways. Inhibition of
the PI3K pro-survival pathway with wortmannin blocked the protective effects of carnosic acid seen
in 5K apoptotic medium. This demonstrated that the neuroprotective effects of this compound are
dependent upon activation of a PI3K signaling pathway. Downstream of PI3K, two major pro-survival
pathways can be activated, the Akt pathway and the Ras/MAPK pathway. When we inhibited Akt
downstream of PI3K, carnosic acid still significantly protected CGNs against 5K-induced apoptosis
suggesting that neuroprotection is not through Akt activation. Next, we examined the Ras/MAPK
pathway by inhibiting MEK1/2 with PD98059. As with the Akt inhibitor, carnosic acid protected
against 5K-induced apoptosis even in the presences of PD98059. This result shows that carnosic acid
protects against intrinsic apoptosis independently of the Ras/MAPK pro-survival pathway.
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We have tested two major pro-survival cell signaling pathways activated downstream of PI3K (Akt
and Ras/MAPK) and shown that neither was essential to the protective effects of carnosic acid against
intrinsic apoptosis, indicating that carnosic acid must protect CGNs through another PI3K-dependent
pathway. One PI3K-dependent mechanism not tested, but potentially neuroprotective, is activation of
the Nrf2 pathway. Previous studies reported that pretreating IMR-32 cells with wortmannin decreases
Nrf2 nuclear translocation [48]. Furthermore, Satoh et al. have reported that carnosic acid activates Nrf2
in vivo and in vitro by activating the transcriptional antioxidant response element (ARE) modulating
the cellular redox state [24,25]. Thus, the PI3K-dependent neuroprotection by carnosic acid against
intrinsic apoptosis observed in CGNs may involve activation of the Nrf2 pathway. Another possibility
is a PI3K-dependent activation of Rac GTPase and subsequent activation of p21-activated kinase
(PAK), which we have previously shown to have pro-survival effects in CGNs [49–51]. Future studies
will be necessary to examine if carnosic acid activates Rac/PAK pro-survival signaling in CGNs via
PI3K and if this pathway is ultimately responsible for the protective effects of this polyphenol against
intrinsic apoptosis.

In summary, rosmarinic acid and carnosic acid displayed both shared and unique neuroprotective
effects when evaluated in cultured CGNs. Both compounds provided significant neuroprotection
against the NO donor SNP, likely due to their shared catechol structural motif. On the other hand,
only rosmarinic acid protected CGNs from excitotoxicity while carnosic acid uniquely protected
CGNs from caspase-dependent apoptosis. Both of these compounds have been shown to have
impressive antioxidant and neuroprotective effects and these effects nicely complement one another.
Therefore, future preclinical studies should explore not only the individual therapeutic actions of
these compounds, but also the potential complementary effects of these rosemary polyphenols on
neurodegenerative disease progression.

4. Materials and Methods

4.1. CGN Culture

Cerebellar granule neurons (CGNs) were isolated as previously described [52] from seven-day-old
Sprague Dawley rat pups. Cells were plated on poly-L-lysine coated six-well plates (35 mm-diameter),
with a density of approximately 2 × 106 cells/well in Basal Medium Eagle’s supplemented with 25 mM
potassium chloride, 2 mM L-glutamate, 10% fetal bovine serum, and 2 mM penicillin-streptomycin
(100 U/mL/100 µg/mL). Cytosine arabinoside (10 µM) was added to the culture medium 24 h after
plating to inhibit the growth of non-neuronal cells. Cultures were ~95% pure for granule neurons.
The resulting CGNs were then incubated at 37 ◦C in 10% CO2 for six to seven days in culture prior to
experimentation. All animal manipulations were performed in accordance with a protocol approved
by the University of Denver Institutional Animal Care and Use Committee.

4.2. Reagents

Sodium nitroprusside (SNP) and PD98059 were obtained from Calbiochem (San Diego, CA, USA).
Carnosic acid ((4aR,10aS)-5,6-Dihydroxy-1,1-dimethyl-7-propan-2-yl-2,3,4,9,10,10 a-hexahydrophenanthrene-
4a-carboxylic acid) and rosmarinic acid ((R)-O-(3,4-dihydroxy- cinnamoyl)-3-(3,4-dihydroxyphenyl)
lactic acid, 3,4-Dihydroxycinnamic acid (R)-1-carboxy-2-(3,4-dihydroxyphenyl) ethyl ester) were
obtained from AG Scientific (San Diego, CA, USA). Glutamic acid was purchased from MP biomedical
(Santa Ana, CA, USA). Glycine, Hoechst, wortmannin, and monoclonal antibody to β-tubulin were
obtained from Sigma Aldrich (St. Louis, MO, USA). Akt Inhibitor XIII was purchased from Calbiochem
(San Diego, CA, USA).

4.3. Treatment Protocols

Treatment with glutamate/glycine and SNP:CGNs were co-treated with either carnosic acid or
rosmarinic acid and the stressors SNP (100 µM) or glutamate/glycine (100 µM/10 µM), for 24 h before
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fixation and Hoechst staining for quantification of cell death. For all experiments, an untreated control
and an SNP- or glutamate/glycine-only control was used to compare cell death and neuroprotection.
Prior to treatment, the plating medium was removed and replaced with serum free medium containing
25 mM potassium chloride to prevent any potential protective effects of the serum.

4.3.1. Treatment with 5K Apoptotic Medium

CGNs were co-treated with either carnosic acid or rosmarinic acid and 5K apoptotic medium.
Prior to treatment, the plating medium was aspirated, and the cells were washed once with 5K
apoptotic medium to remove any leftover serum. 5K apoptotic medium contains Basal Medium Eagle’s
supplemented with 5 mM potassium chloride, 2 mM L-glutamate, and 2 mM penicillin-streptomycin
(100 U/mL/100 µg/mL). After the first wash with 5K, the medium was removed and replaced with
1 mL of 5K apoptotic medium, which was left in each well. Wells in which the plating medium
was never replaced, and wells containing 5K apoptotic medium alone were used as controls. In the
remaining experimental wells, the appropriate concentration of rosmarinic acid or carnosic acid was
added and the wells were left in an incubator at 3 ◦C for 24 h before fixation and staining with Hoechst
for quantification of apoptosis.

4.3.2. Protocol for Treatment with Inhibitors

CGNs were co-treated with varying concentrations of carnosic acid, and then either 5K apoptotic
medium alone or containing 10 µM PD98059, 100 nM wortmannin, or 10 µM AKT Inhibitor XIII.
Wells in which the plating medium was never replaced, and wells containing 5K apoptotic medium
alone were used as controls. Wells containing 5K apoptotic medium plus the wortmannin, PD98059,
and AKT Inhibitor XIII without carnosic acid were also included as controls. Cells were treated and
then left in an incubator for 24 h before fixation, Hoechst staining, and quantification of apoptosis.

4.4. Fixation, Hoechst Staining, and Immunocytochemistry

Following treatment, CGNs were washed once with phosphate buffered saline (PBS; pH = 7.4) and
fixed for one hour at room temperature in 4% paraformaldehyde. Cells were then washed again with
PBS and stained with Hoechst at a concentration of 10 µg/mL. After washing with PBS, the cells were
imaged using a Zeiss Axiovert-200M epi-fluorescence microscope. Five images were taken per well to
assess apoptosis, with either duplicate or triplicate wells per experiment. Cells were counted and scored
as either living or apoptotic based on nuclear morphology; CGNs having condensed or fragmented
nuclei were counted as apoptotic. In some cases, the microtubule network was visualized by staining
with an antibody to β-tubulin and a fluorescein isothiocyanate (FITC)-conjugated secondary antibody.

4.5. MTT Cell Viability Assay

As an alternative means of assessing cell death, some experiments were evaluated using an MTT
viability assay. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is a tetrazolium
dye which is reduced by NAD(P)H-dependent cellular oxidoreductase enzymes, primarily within the
mitochondria of viable cells, to yield an insoluble formazan derivative which can be solubilized and
assayed colorimetrically as an indicator of cell viability. MTT data presented were obtained from four
wells per treatment.

4.6. Data Analysis

Each experiment was performed using either duplicate or triplicate wells for each treatment,
with each experiment being performed four independent times. Data are presented as the means ± SEM
of the total number of experiments. Data was analyzed using a one-way ANOVA with a post hoc
Tukey’s test. A p value of <0.05 was considered statistically significant.
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