Influence of hydroxyl functional group on the structure and stability of xanthone: a computational approach

Vera L. S. Freitas 1,*, Maria D. M. C. Ribeiro da Silva 1

- ¹ Centro de Investigação em Química da Universidade do Porto (CIQUP), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal; mdsilva@fc.up.pt (M.D.M.C.R.S.)
- * Correspondence: vera.freitas@fc.up.pt; Tel.: +35-122-040-2538

Received: date; Accepted: date; Published: date

Appendix A

Table of Contents

page

A4

- **Table A1.** Absolute standard enthalpies, $H_{298,15 \text{ K}}^{\circ}$, and entropies, $S_{298,15 \text{ K}}^{\circ}$, obtained by G3(MP2)//B3LYP composite method for 1-hydroxyxanthone (1OHXT), 2-hydroxyxanthone (2OHXT), 3-hydroxyxanthone (3OHXT), and 4-hydroxyxanthone (4OHXT), conformers, and the corresponding derived gas-phase standard molar enthalpies, $\Delta_f H_m^{\circ}(g)$, entropies, $\Delta_f S_m^{\circ}(g)$, and Gibbs energy of formation, $\Delta_f G_m^{\circ}(g)$, at T = 298.15 K, and the conformational composition, $\chi_1 \dots \Lambda_2$
- **Table A2.** Gas-phase absolute standard Gibbs energies, $G_{298.15K}^{\circ}$, obtained by G3(MP2)//B3LYP composite method for keto and enol forms of monohydroxyxanthones isomers, and the theoretically predicted gas-phase standard molar Gibbs energies, $\Delta_r G_m^{\circ}(g)$, for the keto-enol equilibrium, at T = 298.15 K, with the corresponding fractions (x) of the two tautomers

Acronims used throughout this supplementary data: 1OHXT for 1-hydroxyxanthone 2OHXT for 2-hydroxyxanthone 3OHXT for 3-hydroxyxanthone 4OHXT for 4-hydroxyxanthone

Standard thermodynamic property:

The standard state of a pure gas refers to its standard state is that of an ideal gas at p of 0.1 MPa (or, which is equivalent, that of a real gas at p = 0).

Standard states will be denoted by a superscript "o".

Table A1. Absolute standard enthalpies, $H_{298,15 \text{ K}}^{\circ}$, and entropies, $S_{298,15 \text{ K}}^{\circ}$, obtained by G3(MP2)//B3LYP composite method for 1-hydroxyxanthone (1OHXT), 2-hydroxyxanthone (2OHXT), 3-hydroxyxanthone (3OHXT), and 4-hydroxyxanthone (4OHXT), conformers, and the corresponding derived gas-phase standard molar enthalpies, $\Delta_{f}H_{m}^{\circ}(g)$, entropies, $\Delta_{f}S_{m}^{\circ}(g)$, and Gibbs energy of formation, $\Delta_{f}G_{m}^{\circ}(g)$, at T = 298.15 K, and the conformational composition, χ_{i} . 1 a. u. (Hartree) corresponds to 2625.50 kJ·mol⁻¹.

Specie	Conformation ^a	$H_{298.15K}^{\circ}$ b / a.u.	Δ _f H _m [°] (g) ^c / kJ·mol ⁻¹	S°298.15K ^d / J·K ⁻¹ ·mol ⁻¹	Δ _f S [°] _m (g) ^e / J·K ⁻¹ ·mol ⁻¹	$\Delta_{\rm f} G^{\circ}_{ m m}({ m g})^{f}/{ m kJ\cdot mol^{-1}}$	Xi ^g
10HXT		-724.833530	-301.5 ± 2.9	429.22	-475.8	-159.6	1.000
	agta agta agta agta	-724.814707	-252.1 ± 2.9	439.20	-465.9	-113.2	0
2OHXT	and a standard Jagan ang as	-724.821536	-270.0 ± 2.9	438.09	-467.0	-130.8	0.834
	ng dag dag dag dag dag dag dag dag dag da	-724.819853	-265.6 ± 2.9	439.40	-465.7	-126.8	0.166
зонхт	and a standard Angle Angle	-724.823791	-276.0 ± 2.9	438.08	-467.0	-136.8	0.558
	Jan and	-724.823601	-275.5 ± 2.9	437.83	-467.20	-136.2	0.442
4OHXT	and a starting of the starting	-724.821967	-271.2 ± 2.9	437.59	-467.7	-131.8	0.991
	and a start of a	-724.817464	-259.3 ± 2.9	438.49	-466.6	-120.2	0.009

^{*a*}Spheres color code: grey, C; red, O; white, H.

^bObtained from G3(MP2)//B3LYP method [1]

^cEstimated from 19 working reactions presented on Table 1 of manuscript;

^dObtained from B3LYP/6-31G(*d*) method for a frequency factor scale of 1.0029 [2];

^{*e*}Calculated from $\Delta_{f}S_{m}^{\circ}(g) = S_{298.15K}^{\circ}$ (conformer *i*) $-\sum S_{298.15K}^{\circ}$ (elements), considering the standard absolute entropy elements values, at 298.15 K, $S_{298.15K}^{\circ}(H_{2}, g) = 130.680 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$, $S_{298.15K}^{\circ}(C, \text{ graphite}) = 5.740 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$ and $S_{298.15K}^{\circ}(O_{2}, g) = 205.147 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$ taken from ref. [3];

 \mathcal{I} Calculated from $\Delta_{\rm f} G_{\rm m}^{\circ}({\rm g}) = \Delta_{\rm f} H_{\rm m}^{\circ}({\rm g}) - T \Delta_{\rm f} S_{\rm m}^{\circ}({\rm g});$

s Calculated from $\chi_i = e^{-[\Delta_f G_m^{\circ}(g)/RT]/\sum_i^n e^{-[\Delta_f G_m^{\circ}(g)/RT]}}$.

Table A2. Gas-phase absolute standard Gibbs energies, $G_{298.15K}^{\circ}$, obtained by G3(MP2)//B3LYP composite method for keto and enol forms of monohydroxyxanthones isomers, and the theoretically predicted gas-phase standard molar Gibbs energies, $\Delta_r G_m^{\circ}(g)$, for the keto-enol equilibrium, at T = 298.15 K, with the corresponding fractions (*x*) of the two tautomers. 1 a. u. (Hartree) corresponds to 2625.50 kJ·mol^{-1.a}

	10HXT		2OHXT	
	keto form	enol form	keto form	enol form
			n da	and a state of the
$G_{298.15K}^{\circ}$ /a. u.	-724.883106	-724.866965	-724.872146	-724.816688
$\Delta_{\rm r} G_{\rm m}^{\circ}({ m g}) {}^{\it b}/{ m kJ}{ m \cdot mol}^{-1}$	-42.4		-145.6	
fraction ^c	$x_{\text{keto}} = 1.0$	$x_{\text{enol}} = 0$	$x_{\rm keto} = 1.0$	$x_{\text{enol}} = 0$
	3OHXT			
	30H	IXT	401	HXT
	3OF keto form	IXT enol form	4OI keto form	HXT enol form
	3OF keto form	IXT enol form	40H keto form	HXT enol form
$G_{298.15K}^{\circ}$ /a. u.	3OF keto form -724.874401	IXT enol form -724.845105	40H keto form -724.872519	HXT enol form -724.814434
$G_{298.15K}^{\circ}$ /a. u. $\Delta_{\mathrm{r}}G_{\mathrm{m}}^{\circ}(\mathrm{g})^{b}$ / kJ·mol ⁻¹	3OF keto form -724.874401 -76	IXT enol form -724.845105	40H keto form -724.872519 -15	HXT enol form -724.814434

^a Most stable conformation; Spheres color code: grey, C; red, O; and white, H.

^b Calculated from $\Delta_{\rm r} G_{\rm m}^{\circ}({\rm g}) = G_{298,15\,\rm K}^{\circ}({\rm keto}) - G_{298,15\,\rm K}^{\circ}({\rm enol});$ ^c Calculated according: $x_{\rm keto} = \frac{e^{-[\Delta_{\rm f} G_{\rm m}^{\circ}({\rm g})/RT]}}{1 + e^{-[\Delta_{\rm f} G_{\rm m}^{\circ}({\rm g})/RT]}}$ and $x_{\rm enol} = 1 - x_{\rm keto}.$

Compound	Molecular structure	$H_{298.15\mathrm{K}}^{\circ}$ / a. u. (χ i) ^a	$\Delta_{\rm f} H^{\circ}_{ m m}({ m g}) / { m kJ} \cdot { m mol}^{-1}$	
acridin-9(10H)-one	O N H	-629.817480	50.0 ± 5.0 [4]	
anthracene		-538.606511	230.9 ± 2.2 [5]	
1-anthrol	OH	-613.758408 (0.847) -613.756318 (0.153)	50.3 ± 5.3 [6]	
2-anthrol	OH	-613.758495 (0.721) -613.757394 (0.279)	50.6 ± 5.3 [6]	
9-anthrol	OH	-613.756647	56.5 ± 5.3 [6]	
anthrone	O C C C C C C C C C C C C C C C C C C C	-613.762341	36.1 ± 3.2 [7]	
benzene	\bigcirc	-231.835164	82.6 ± 0.7 [5]	
4H-chromen-4-one		-496.270967	-126.1 ± 2.5 [8]	
cyclohexane	\bigcirc	-235.407852	-123.3 ± 0.8 [5]	
cyclohexanol	OH	–310.557138 (0.717) –310.556391 (0.283)	-295.7 ± 1.2^{a} [9,10]	
cyclohexanone	O O	-309.367618	$-226.1 \pm 2.1 [5]$	
9,10-dihydroacridine	N H	-555.840773	198.7 ± 4.4 [11]	

Table A3. G3(MP2)//B3LYP enthalpies, $H_{298.15K}^{\circ}$, with corresponding conformer composition (χ i), and experimental gas-phase standard ($p^{\circ} = 0.1$ MPa) molar enthalpies of formation, $\Delta_{\rm f} H_{\rm m}^{\circ}({\rm g})$, at T = 298.15 K, for monohydroxyxanthone isomers and for the auxiliary species. 1 a. u. (Hartree) corresponds to 2625.50 kJ·mol⁻¹.

Table A3. (Continuation)

Compound	Molecular structure	$H_{298.15\mathrm{K}}^{\circ}$ / a. u. (χ i) ^a	$\Delta_{\rm f} {\it H}_{\rm m}^{\circ}(g) / kJ{\cdot}{\rm mol}^{{\cdot}{\rm 1}}$	
9,10-dihydroanthracene		-539.796179	159.7 ± 4.3 [5]	
3-hydroxycoumarin	OH	-571.443052	-367.7 ± 1.9 [12]	
1-hydroxynaphthalene (or 1-naphthol)	OH	-460.375351	-30.4 ± 1.6 [13]	
2-hydroxynaphthalene	ОН	-460.375409	-29.9 ± 1.7 [13]	
naphthalene		-385.223772	150.3 ± 1.4 [5]	
phenol	OH	-306.986472	-96.4 ± 0.9 [5]	
pyridine		-247.873432	$140.4 \pm 0.7 [5]$	
pyridin-4-ol	OH	-323.027334	-40.8 ± 5.3 [14]	
tetrahydro-2H-thiopyran	S	-593.928601	-63.5 ± 1.0 [5]	
tetrahydro-2H-pyran	\bigcirc	-271.303681	$-223.8 \pm 1.0 \ [5]$	
tetrahydro-4 <i>H</i> -thiopyran- 4-one	o s	-667.886742	-164.6 ± 2.0 [15]	
tetrahydro-4 <i>H</i> -pyran-4- one		-345.262186	-328.7 ± 2.6 [16]	
thioxanthene	S	-898.319446	218.7 ± 4.2 [17]	

.../...

Table A3. (Continuation)

Compound	Molecular structure	$H_{298.15\mathrm{K}}^{\circ}$ / a. u. (χ i) ^a	$\Delta_{\rm f} H_{\rm m}^{\circ}({ m g}) / { m kJ} \cdot { m mol}^{-1}$
thioxanthone	o S	-972.285527	91.9 ± 2.4 [15]
xanthene		-575.697906	41.8 ± 3.5 [7]
xanthone		-649.670982	-94.0 ± 4.6 [16]
xanthydrol	OH	-650.845504	-121.2 ± 4.6 [18]

a Calculated from the standard molar enthalpy of formation in the liquid phase given in ref. [9] and from the standard molar enthalpy of vaporization given in ref. [10], at T = 298.15 K,

References

- 1. Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-3 theory using density functional geometries and zero-point energies. *J. Chem. Phys.* **1999**, *110*, 7650-7657 [http://dx.doi.org/10.1063/1.478676]
- 2. Merrick, P.; Moran, D.; Radom, L. An evaluation of harmonic vibrational frequency scale factor, *J. Phys. Chem. A* 2007, 111 11683-11700 [http://dx.doi.org/ 10.1021/jp073974n]
- 3. Chase Jr., M.W. Nist-Janaf Thermochemical Tables. *J Phys Chem Ref Data* **1998**, Monograph 9 (part I and II), 1-1951. Available online: <u>https://janaf.nist.gov/</u> (accessed on 29 september 2018).
- 4. Freitas, V.L.S.; Ferreira, P.J.O., Ribeiro da Silva, M.D.M.C. Experimental and computational thermochemical studies of acridone and *N*-methylacridone. *J. Chem. Thermodyn.* **2018**, *118*, 115-126 [http://dx.doi.org/10.1016/j.jct.2017.11.002].
- 5. Pedley J.B. Thermochemical data and structures of organic compounds, Vol. 1; College Station, Thermodynamics Research Centre: Texas, USA, 1994, ISBN: 9781883400019.
- 6. Notario, R.; Roux, M.V.; Liebman, J.F. The energetics of the isomeric anthrols. *Mol. Phys.* 2004, *102*, 623–625 [http://dx.doi.org/10.1080/00268970410001671549].
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Energetic effects of ether and ketone functional groups in 9,10-dihydroanthracene compound. *J. Chem. Thermodyn.* 2010, 42, 1248-1254. [http://dx.doi.org/10.1016/j.jct.2010.04.027].
- 8. Matos, M.A.R.; Sousa, C.C.S.; Miranda, M.S.; Morais, V.M.F.; Liebman, J.F. Energetics of coumarin and chromone. J. Phys. Chem. B 2009, 113, 11216-11221 [http://dx.doi.org/10.1021/jp9026942].
- 9. Kelley, K.K. Cyclohexanol and the third law of thermodynamics. J. Am. Chem. Soc. 1929, 51, 1400-1406 [http://dx.doi.org/10.1021/ja01380a014].
- Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K. Vapor Pressure, heat capacity, and density along the saturation line, measurements for cyclohexanol, 2-cyclohexen-1-one, 1,2-dichloropropane, 1,4-di-*tert*butylbenzene, (±)-2-ethylhexanoic acid, 2-(methylamino)ethanol, perfluoro-*n*-heptane, and sulfolane. *J. Chem. Eng. Data* 1997, 42, 1021-1036 [http://dx.doi.org/10.1021/je9701036].
- Freitas, V.L.S.; Gomes, J.R.B.; Liebman, J.F.; Ribeiro da Silva, M.D.M.C. Energetic and reactivity properties of 9,10dihydroacridine and diphenylamine: a comparative overview. *J. Chem. Thermodyn.* 2017, *11*, 5276-284 [http://dx.doi.org/10.1016/j.jct.2017.08.001].
- 12. Sousa, C.C.S.; Morais, V.M.F.; Matos, M.A.R. Energetics of the isomers: 3- and 4-hydroxycoumarin. *J. Chem. Thermodyn.* **2010**, *42*, 1372-1378 [http://dx.doi.org/10.1016/j.jct.2010.06.003].
- Ribeiro da Silva, M.A.V.; Ribeiro da Silva, M.D.M.C.; Pilcher, G Enthalpies of combustion of 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 1,2-, 1,3-, 1,4-, and 2,3-dihydroxynaphthalenes. J. Chem. Thermodyn. 1988, 20, 969-997 [http://dx.doi.org/10.1016/0021-9614(88)90225-X].
- 14. Ribeiro da Silva, M.A.V.; Matos, M.A.R.; Meng-Yan, Y.; Pilcher, G. Enthalpy of formation of 4-hydroxypyridine. *J. Chem. Thermodyn.* **1992**, 24, 107-108 [http://dx.doi.org/ 10.1016/S0021-9614(05)80261-7].
- Freitas, V.L.S.; Gomes, J.R.B.; Gales, L.; Damas, A.M.; Ribeiro da Silva, M.D.M.C. Experimental and computational studies on the structural and thermodynamic properties of two sulfur heterocyclic keto compounds. *J. Chem. Eng. Data* 2010, 55, 5009-5017 [http://dx.doi.org/10.1021/je100603q].
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Energetic studies of two oxygen heterocyclic compounds: xanthone and tetrahydro-γ-pyrone. *J. Therm. Anal. Calorim.* 2009, *97*, 827-833. [http://dx.doi.org/10.1007/s10973-009-0233-y].
- Freitas, V.L.S.; Monte, M.J.S.; Santos, L.M.N.B.F.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Energetic studies and phase diagram of thioxanthene. *J. Phys. Chem. A* 2009, *113*, 12988-12994. [http://dx.doi.org/10.1021/jp906413y].
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Experimental and computational thermochemical studies of 9-R-xanthene derivatives (R=OH, COOH, CONH2). J. Chem. Thermodyn. 2012, 54, 108-117. [http://dx.doi.org/10.1016/j.jct.2012.03.017].