Solvent bar micro-extraction of heavy metals from natural water samples using 3-hydroxy-2-naphthoatebased ionic liquids

Philip Pirkwieser^{1,2}, José A. López-López², Wolfgang Kandioller¹, Bernhard K. Keppler¹, Carlos Moreno² and Franz Jirsa^{1,3*}

- ¹ Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- ² Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, PC 11510, Puerto Real, Spain
- ³ Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
- * Correspondence: franz.jirsa@univie.ac.at

Table of contents

Table S1: Summarized results for the optimization of extraction efficacy. Considered were all metals that showed an extraction efficacy >40% after the time dependent experiments for each setup respectively.

Table S2: Summarized results for leaching during extraction.

Figure S1: Time dependency of extraction and leaching using pure [P66614][HNA], pH = 8.0 (n=3, error bars = \pm SD).

											Extra	action ef	ficacy ±	SD	(%)								
		Cu							Ag		Cd		Pb										
		[P66614][HNA]			[P ₁₈₈₈][HNA]			[N ₁₈₈₈][HNA]		[P ₆₆₆₁₄][HNA]		[P ₆₆₆₁₄][HNA]		[P66614][HNA]		[P ₁₈₈₈][HNA]		[N ₁₈₈₈][HNA]					
Dodecan-1-ol	90	n/a			45.6	±	1.3	29.5	±	1.6	n/a		n/a			n/a		28.1	±	1.7	12.9	±	0.8
(wt%)	75	<5			70.4	±	4.7	40.0	±	7.0	35.2 ±	2.9	5.5	±	0.9	<5		40.8	±	2.8	37.7	±	8.3
	60	n/a			83.7	±	2.5	80.3	±	1.4	n/a		n/a			n/a		47.6	±	0.8	47.3	±	6.8
	50	<5			87.4	±	0.8	90.1	±	1.7	73.8 ±	2.5	4.4	±	0.4	20.9 ±	6.7	50.4	±	2.1	69.1	±	2.7
	25	30.6	±	2.8	n/a			n/a			74.8 ±	2.6	9.1	±	3.0	54.3 ±	3.0	n/a			n/a		
	0	55.5	±	3.7	n/a			n/a			80.2 ±	1.2	27.9	±	3.2	70.1 ±	3.4	n/a			n/a		
рН	2	<5			<5			<5			76.9 ±	0.9	<5			<5		<5			<5		
	4	33.8	±	2.1	<5			<5			83.2 ±	1.0	11.4	±	1.6	55.8 ±	2.8	16.8	±	1.9	<5		
	6	54.0	±	3.4	37.6	±	3.6	56.1	±	1.0	82.4 ±	1.3	18.9	±	1.2	64.7 ±	3.5	15.5	±	2.4	32.5	±	3.3
	8	55.5	±	3.7	87.4	±	0.8	90.1	±	1.7	80.2 ±	1.2	27.9	±	3.2	70.1 ±	3.4	50.4	±	2.1	69.1	±	2.7
Stirring rate	0	17.3	±	0.6	15.5	±	4.7	28.2	±	2.9	39.5 ±	0.7	15.4	±	0.3	11.6 ±	1.4	19.1	±	2.2	16.1	±	1.2
(rpm)	100	42.4	±	1.1	59.4	±	0.8	61.0	±	0.9	53.3 ±	1.8	23.2	±	0.4	48.6 ±	1.6	32.6	±	1.3	35.0	±	1.7
	300	56.8	±	1.0	75.1	±	0.1	85.6	±	1.8	73.5 ±	0.4	29.4	±	0.4	56.4 ±	2.0	44.9	±	2.0	73.3	±	3.1
	600	55.5	±	3.7	87.4	±	0.8	90.1	±	1.7	80.2 ±	1.2	27.9	±	3.2	70.1 ±	3.4	50.4	±	2.1	69.1	±	2.7
	800	63.1	±	0.0	74.1	±	4.3	87.8	±	3.5	81.4 ±	1.4	27.2	±	0.2	70.7 ±	3.6	57.5	±	3.0	68.0	±	4.4
Fiber length	10	45.7	±	0.2	72.3	±	3.8	75.7	±	0.8	70.9 ±	1.1	14.5	±	2.5	62.2 ±	1.6	29.9	±	1.7	54.7	±	2.1
(cm)	15	55.5	±	3.7	87.4	±	0.8	90.1	±	1.7	80.2 ±	1.2	27.9	±	3.2	70.1 ±	3.4	50.4	±	2.1	69.1	±	2.7
	20	57.4	±	0.9	88.7	±	1.4	82.7	±	1.5	81.8 ±	0.6	27.1	±	2.8	65.3 ±	2.0	39.5	±	3.2	61.3	±	0.9
NaCl	0	55.5	±	3.7	87.4	±	0.8	90.1	±	1.7	80.2 ±	1.2	27.9	±	3.2	70.1 ±	3.4	50.4	±	2.1	69.1	±	2.7
(g L⁻¹)	5	54.2	±	2.3	77.9	±	3.7	50.1	±	1.9	72.3 ±	0.8	41.4	±	1.2	64.5 ±	2.9	31.6	±	1.9	19.3	±	2.3
	10	59.1	±	1.1	79.7	±	3.7	53.3	±	1.5	74.2 ±	0.7	66.5	±	2.6	73.1 ±	3.2	39.7	±	2.6	18.4	±	1.4
	15	53.7	±	1.5	60.7	±	3.7	56.3	±	2.0	60.3 ±	2.6	72.3	±	0.9	38.6 ±	1.6	21.6	±	2.8	26.4	±	0.6
	30	53.8	±	2.3	77.2	±	1.5	47.2	±	1.4	63.9 ±	1.2	78.0	±	1.6	29.9 ±	4.2	<5			8.8	±	0.6
	60	46.6	±	2.2	36.4	±	2.0	40.6	±	2.0	55.2 ±	1.8	86.5	±	1.9	22.1 ±	3.1	<5			9.9	±	1.5

Table S1: Summarized results for the optimization of extraction efficacy. Considered were all metals that showed an extraction efficacy >40% after the time dependent experiments for each setup respectively.

n/a= not applicable.

		Leaching \pm SD (mg L ⁻¹ DOC)										
		[P6661	۱][4]	HNA]	[P ₁₈₈	8][⊦	INA]		[N ₁₈₈₈][H	NA]		
Dodecan-1-ol	90	n/a			14.9	±	1.4	6.2	±	0.9		
(wt%)	75	11.6	±	0.6	19.3	±	0.9	9.0	±	0.2		
	60	n/a			21.1	±	1.1	15.6	±	0.8		
	50	13.9	±	0.1	20.6	±	0.2	19.4	±	0.6		
	25	12.8	±	0.1	n/a			n/a				
	0	11.3	±	0.7	n/a			n/a				
рН	2	2.9	±	0.2	12.6	±	0.3	8.0	±	0.3		
	4	7.6	±	0.5	16.6	±	0.9	13.2	±	0.2		
	6	10.1	±	0.5	18.2	±	0.6	15.1	±	0.9		
	8	11.3	±	0.7	20.6	±	0.2	19.4	±	0.6		
Stirring rate	0	7.9	±	0.3	16.2	±	0.9	13.3	±	0.5		
(rpm)	100	10.9	±	0.6	22.8	±	1.2	18.3	±	1.0		
	300	11.4	±	0.4	21.7	±	1.8	18.7	±	0.3		
	600	11.3	±	0.7	20.6	±	0.2	19.4	±	0.6		
	800	11.7	±	0.4	24.8	±	2.2	19.9	±	0.6		
Fiber length	10	7.0	±	0.9	17.5	±	1.2	14.9	±	0.2		
(cm)	15	11.3	±	0.7	20.6	±	0.2	19.4	±	0.6		
	20	19.5	±	1.8	24.5	±	0.9	21.0	±	0.5		
NaCl	0	11.3	±	0.7	20.6	±	0.2	19.4	±	0.6		
(g L⁻¹)	5	13.9	±	0.3	19.2	±	0.9	12.3	±	0.5		
	10	16.1	±	0.5	21.6	±	0.9	14.5	±	0.1		
	15	13.9	±	0.2	16.7	±	0.7	14.7	±	0.1		
	30	10.2	±	0.1	23.4	±	1.9	11.2	±	0.2		
	60	12.6	±	0.4	24.4	±	2.1	14.7	±	0.2		
Drinking water		16	.2	± 1.	3 24	.5	± 2.0	19.4	±	0.5		
WWTP effl	3.8		± 0.	3 25	.4	± 0.4	19.3	±	0.2			
Sea wate	12.2		± 0.	3 29	.7	± 0.1	26.1	±	2.7			
Hypersaline	water	11	.3	± 0.	9 27	.0	± 0.0	24.6	±	0.5		

Table S2: Summarized results for leaching during extraction. WWTP = wastewater treatment plant, DOC = dissolved organic carbon.

n/a= not applicable.

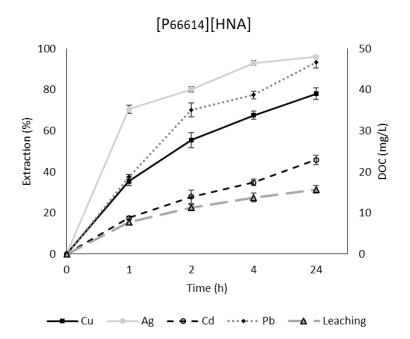


Figure S1: Time dependency of extraction and leaching using pure [P₆₆₆₁₄][HNA], pH = 8.0 (n=3, error bars = \pm SD).