Supplementary materials:

TiO₂-based hybrid nanocomposites modified by phosphonate molecules as selective PAH adsorbents

Figure S1: Powder XRD of samples (TiO₂)_x(VPA) (x=2-200) and bare TiO₂

Figure S2: FT-IR spectra of samples (TiO₂)_x(VPA) (x=25, 50, 100) and bare TiO₂

Figure S3: TGA of (TiO₂)_x(VPA) samples

Figure S4: Solid state ${}^{31}P{}^{1}H$ MAS NMR spectra of VPA and hybrid samples $(TiO_2)_X(VPA)$ with x = 50, 100 et 200

Figure S5: Powder XRD of samples (TiO₂)₁₀₀(PA) and bare TiO₂

Figure S6 : FT-IR spectra of bare TiO₂ and hybrid samples (TiO₂)₁₀₀(PPA), (TiO₂)₁₀₀(NMAPA) and (TiO₂)₁₀₀(HQPA)

Figure S7: TGA patterns of bare TiO₂ and hybrid samples $(TiO_2)_{100}(PPA)$, $(TiO_2)_{100}(NMAPA)$ and $(TiO_2)_{100}(HQPA)$

Figure S8: ³¹P {¹H} MAS NMR spectra of hybrid samples $(TiO_2)_{100}(PPA)$, $(TiO_2)_{100}(NMAPA)$ and $(TiO_2)_{100}(HQPA)$

Figure S9: ¹³C {¹H} MAS NMR spectra of hybrid samples $(TiO_2)_{100}(PPA)$, $(TiO_2)_{100}(NMAPA)$ and $(TiO_2)_{100}(HQPA)$

РАН	Abbreviation	Structure
Naphtalene	NAP	\bigcirc
Acenaphtylene	ACY	
Acenaphtene	АСР	
Fluorene	FLR	
Phenanthrene	PHE	
Anthracene	ANT	
Fluoranthene	FLT	
Pyrene	PYR	
Chrysene	CHR	
Benzo[a]Anthracene	BaA	
Benzo[b]fluoranthene	BbF	
Benzo[k]fluoranthene	BkF	
Benzo[a]pyrene	BaP	
Indeno[1.2.3-cd] pyrene	IcP	
Dibenz[a,h]anthracene	DbA	
Benzo[ghi]perylene	BgP	

lı

Table S1: Abbreviations and structures of the EPA 16 PAHs

Material	Porous volume (cm ³ / g)	BET surface area (m² / g)
TiO ₂	0.49	250
(TiO ₂) ₁₀₀ (VPA)	0.39	269
(TiO ₂) ₁₀₀ (PPA)	0.50	285
(TiO ₂) ₁₀₀ (NMAPA)	0.51	225
(TiO ₂) ₁₀₀ (HQPA)	0.50	322

Table S2: BET surface and porous volume of bare TiO₂ and hybrid (TiO₂)₁₀₀(O₃P-R) nanomaterials

Table S3: Summary of kinetic parameters adsorption of (TiO₂)₁₀₀(VPA) toward Benzo(a)pyrene

Model	Parameters
Pseudo-first-order	
$k_1 (min^{-1})$	0.00207
$q_e (mg g^{-1})$	0.00855
\mathbb{R}^2	0.1403
Pseudo-second-order	
k_2 (g mg ⁻¹ min ⁻¹)	1.383
$q_e (mg g^{-1})$	0.850
\mathbb{R}^2	1.000