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Abstract: New heterometallic aluminium-alkali metal compounds have been prepared using Schiff
bases with electron withdrawing substituents as ligands. The synthesis of these new species was
achieved via the reaction of AlMe3 with the freshly prepared alkali-metallated ligand. The derivatives
formed were characterized by NMR in solution and by single crystal X-ray diffraction in the solid
state. Aluminate derivatives with lithium and sodium were prepared and a clear influence of the
alkali metal in the final outcome is observed. The presence of a Na···F interaction in the solid state
has a stabilization effect and the species [NaAlMe3L]2 can de isolated for the first time, which was
not possible when using Schiff bases without electron withdrawing substituents as ligands.
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1. Introduction

Heterometallic compounds containing main group metals have generated great interest
particularly in recent years [1–5]. Within those, -ate species are a remarkable class of compounds formed
by two metals of very different natures, an electropositive alkali metal and a less electropositive one,
very often a p-block metal [6–11]. These species not only show unusual structures, they also display a
wide-ranging reactivity which, on many occasions, is diverse from the one shown by the homometallic
analogous [12–15]. As such, these compounds have become very popular reagents for reactions such
as the activation of unreactive C-H bonds [16–18], direct orthometalation processes [19–21] or the
formation of C-C and C-heteroatom bonds [22–25]. They are also active catalysts for the polymerization
of polar alkenes [26–29]. More recently, their activity in catalytic processes such as the hydroboration
process [30] or Meerwein-Ponndorf-Verley (MPV) reactions [31] has also been described.

The type of ligands used for these -ate derivatives is relatively small, especially considering the
significant potential that these compounds can display. In most cases, the reported species contains
N-donor connectors [32–35], being less common O-donor linkers. Ligands with O- and N- donor
groups are also scarce in these compounds. In our group, we described aluminate derivatives with
functionalized phenolates as bridging ligands bearing donor substituents in ortho positions [36–38],
and more recently, with terpene oximate ligands with O- and N- donor atoms [39].

Schiff bases or the phenoxo-imino ligands are a particularly popular type of O- and N-donor
ligand. Many compounds containing them have been described that have shown a remarkable catalytic
activity, particularly in polymerization processes [40–43]. There are quite a few examples of aluminium
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species with Schiff bases; however, no heterometallic derivatives had been reported, only recently we
have published the first examples of aluminates with phenoxo-imino ligands, expanding the library of
connecting ligands for -ate compounds [44].

The interest in phenoxo-imino ligands lies in the fact that they are very versatile and
straightforward to prepare. By modifying the substituents, the electronic and steric properties of
the compounds can be easily tuned [45–48]. In our previous study, we explored ligands bearing
donor substituents in the iminic ring. In this work, we have extended the investigations to ligands
with electron withdrawing substituents to analyse their effect on the final compounds. Interestingly,
the introduction of fluorine atoms and the study of their influence on the nature of the synthesized
compounds have not usually been reported for phenoxo-imino ligands [49]. As such, even though
titanium compounds have been described with remarkable properties as catalysts for living ethylene
polymerization [50] and Pd(II) complexes have shown to be active in hydrogenation processes [51],
only 46 compounds with fluorinated phenoxo-imino ligands have been structurally characterized,
mainly for titanium and aluminium [52].

In this paper, we report on the synthesis and characterization of the first examples of aluminates
bearing fluorinated Schiff bases as ligands, completing the family of heterometallic aluminium-alkali
metal compounds previously described by us [44]. For these species, the influence of the alkali metal
is observed as well as the effect of the fluorine atoms located in the iminic ring of the ligand.

2. Results

The selected ligand precursor was prepared following the standard procedure for this kind of
compound. In the present study, we chose the proligand HLa that incorporates fluorine atoms in
positions 2 and 3 of the iminic ring [45,53,54].

Heterometallic complexes can be obtained following different reaction pathways. In this case,
the procedure employed was the formation of the alkali metal complex in situ followed by the
addition of the aluminium precursor. The stoichiometric reaction between the alkali metal precursors,
[Li{N(SiMe3)2}] or NaH, and the proligand gave the alkali metal homometallic compounds. The
subsequent addition of a stoichiometric amount of AlMe3 at low temperature led to the formation of
the alkali metal aluminate complexes [MAlMe3(La)] (M = Li, Na) (1–2), as shown in Scheme 1. These
heterometallic complexes were characterized in the solid state by elemental analysis and by single
crystal X-ray diffraction.
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Scheme 1. Synthesis of the alkali metal aluminate complexes [MAlMe3La]n (1–2).

The single crystal X-ray diffraction studies allowed the unequivocal characterization in the solid
state of compounds 1 and 2. As shown in Figures 1 and 2, both the lithium and sodium are tetranuclear
species M2Al2 (M = Li, Na). The phenoxo-imino ligand acts as a bridge between the aluminium and
the alkali metal through the oxygen atom. The ligand also links the alkali metals through the oxygen
and a M2O2 (M = Li, Na) central core is observed. Although 1 and 2 are isostructural molecules some
differences in the orientation of the ligands are detected, as such, the rings from the phenoxo-imino
ligand show a significantly more coplanar disposition for the lithium compound 1 (angle 16.68◦) than
for 2 (angle 45.18◦). The Al-O distance is significantly shorter for the sodium derivative 2 (1.900(3)
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Å 1 vs. 1.8621(19) Å 2), which could be related to the fact that a higher ionic component in the M-O
bonding for the sodium compound can be expected, which then may provoke a stronger interaction of
the aluminium and the phenoxo oxygen. Finally, the AlMe3 moiety is connected to the ligand as if
these compounds have been generated from the breakage of the (AlMe3)2 precursor by an O-donor
species, such as the metallated ligand, to form a 1:1 Lewis adduct.
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omitted for clarity. Selected bond distances (Å) and angles (◦): C(1)-Al(1) 1.994(5), C(2)-Al(1) 1.953(6),
C(3)-Al(1) 1.954(5), O(1)-Al(1) 1.902(3), C(1)···Li(1) 2.413(4), C(10)-N(1) 1.280(6), Li(1)-O(1) 1.982(8),
Li(1)-O(1)#1 1.998(8), Li(1)-N(1) 2.007(9), Li(1)···F(1) 2.299(8), C(16)-F(1) 1.359(6), C(15)-F(2) 1.336(6),
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are omitted for clarity. Selected bond distances (Å) and angles (deg.): C(3)-Al(1) 1.981(4), C(2)-Al(1)
1.965(3), C(1)-Al(1) 1.977(4), O(1)-Al(1) 1.8621(19), C(3)···Na(1) 2.737(6), C(10)-N(1) 1.275(3), Na(1)-O(1)
2.3254(18), Na(1)-O(1)#1 2.3657(19), Na(1)-N(1) 2.389(2), Na(1)-F(1) 2.4608(18), C(16)-F(1) 1.357(3),
C(15)-F(2) 1.347(3), O(1)-Na(1)-O(1)#1 89.41(6), C(10)-N(1)-C(11) 117.3(2).

In both compounds, the alkali metal shows a pentacoordinated environment. As such, besides
the oxygen atom, the iminic nitrogen atom also establishes a donor interaction with alkali metal
and one of the methyl groups bonded to the aluminium interacts with the alkali metal through a
M···Me contact. The M···C distances (2.413(4) Å for 1 and 2.737(6) Å for 2) are within the shortest
found in the literature [44,52]. Interestingly, the longest Al-C distance belongs to the methyl group
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involved in the Me···M interaction (1.994(5) Å for 1 and 1.981(4) Å for 2). These contacts contribute to
the stabilization of the alkali metal coordination sphere. Furthermore, the ortho fluorine atom of the
iminic ring establishes a M···F interaction (2.299(8) Å for 1 and 2.4608(18) Å for 2) that completes the
unusual pentacoordinated sphere for these metallic centres. Of particular interest is the presence of
Na···F contacts since this represents a stabilizing interaction that allows the isolation of this compound.
As such, for the species previously reported by us without fluorine substituents in the iminic ring, the
analogous [NaAlMe3(L)] compound was not possible to detect or isolate. Compound 2 is then the
first example of a sodium aluminate of stoichiometry [NaAlMe3(L)]n with phenoxo-imino ligands and
one of the very few reported. The influence of Na···F interactions has been acknowledged not only
in the structure but also in the reactivity of heterometallic sodium species as it has been reported for
metallated reactions [55].

Finally, an interesting feature in the packing of 2, is the presence of π−π stacking interactions
between the fluorinated rings, which are oriented with an anti-disposition of each other (considering
the fluorine substituents), the distance between centroids is 3.62 Å, and directs the packing into chains
along the c axis.

These species were also characterized in solution by multinuclear NMR spectroscopy (Figures 3
and 4). 1H NMR spectra were recorded in C6D6 and displayed the resonances for the methyl groups
bound to the aluminium centre at negative values. For 1 appears at δ−0.24 ppm and integrate for
three methyl groups. These data suggest that the aluminate species show the expected [LiAlMe3(L)]n

formulation also in solution. In comparison to the analogous species without the fluorine substituents,
the methyl groups appear at a lower field, indicating a more acidic character, as could be expected due
to the presence of these electron withdrawing groups atoms in the iminic ring [44].
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However, for compound 2, in the NMR different behaviour was observed (Figure 4). In this
case, once the crystals of 2 were dissolved, the 1H NMR spectrum in benzene-d6 did not reveal the
expected resonances for the characterized aluminate in the solid state. The signal of the methyl groups
bound to the aluminium centre appeared at δ−0.01 ppm, a remarkable shift compared with the lithium
aluminate; moreover, this signal is consistent with three hydrogen atoms per ligand in agreement
with a [NaAlMe2(La)2] (3) formulation (Scheme 2), a disposition already described in our previous
work for the phenoxo-imino species with donor substituents [44]. In fact, for those species without the
fluorine substituents, it was not possible to isolate the analogous sodium derivate, as it evolves very
rapidly into the formation of compounds with the [NaAlMe2L2] formulation, via a rearrangement
process that also might generate [NaAlMe4], as shown in Scheme 2. In this case, the presence of the
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Na···F interactions seems to stabilize the structure and it was possible to isolate [NaAlMe3La] in the
solid state.
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Taking into account these data, different reactions were carried out to understand the nature of
this process. In the first place, the reaction with the correct stoichiometry (2:1:1 ratio of [HLa]:[Na]:[Al])
to obtain the complex 3, [NaAlMe2(La)2], was performed (Figure S1). In this case, after the addition of
the alkali metal precursor, a mixture of the proligand and the metallated ligand was formed, and the
subsequent incorporation of AlMe3 gave the aluminate complex 3, [NaAlMe2(La)2], which displayed
an identical 1H NMR spectrum as the one observed for the isolated crystals (Scheme 3).
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Besides, to support the proposal where the reaction pathway follows a ligand rearrangement
with the formation of sodium tetramethylaluminate, [NaAlMe4], the stoichiometric reaction (1:1:1 of
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[HLa]:[Na]:[Al]) was monitored in a valved NMR tube. In this reaction, a signal at δ-0.40 ppm was
detected that can be attributed to the tetramethylaluminate species [NaAlMe4] in agreement with
the mechanism proposed (Figure S2). We had already observed this behaviour in the formation of
[NaAlMe2(L)2] aluminates with phenoxo-imino ligands containing donor substituents [44].

Finally, to have clear evidence regarding the formation of [NaAlMe4], the reaction between the
alkali metal compound [NaLa] with two equivalents of trimethylaluminium (AlMe3) was performed
(Scheme 4) [56]. In this reaction, the aluminium derivative [AlMe2(La)] was clearly identified, which
proves the possibility of ligand rearrangements in these systems. Confirming this, a signal at δ-0.40 ppm
attributable to [NaAlMe4] could also be detected (Figure S3).
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3. Materials and Methods

3.1. General Procedures

All manipulations were performed under an inert atmosphere using Schlenk-line techniques
(O2 < 3 ppm) and a glove box (O2 < 0.6 ppm) MBraun MB-20G (MBraun, Garching, Germany).
Solvents were purified using an MBraun Solvent Purification System (MBraun, Garching, Germany).
Deuterated solvents were degassed and stored in the glove box in the presence of molecular sieves
(4 Å). Fluoroaniline compounds were purchased from Fluorochem (Fluorochem, Derbyshire, UK) and
used as received. 2-hydroxybenzaldehyde and metallic precursors were purchased from Sigma-Aldrich
(Merck, Darmstadt, Germany). NMR spectra were recorded with a Bruker 400 Ultrashield (Bruker,
Karlsruhe, Germany) (1H 400 MHz, 13C 101 MHz) at room temperature. All chemical shifts were
determined using the residual signal of solvents and were reported versus SiMe4. The assignment of
the signal was carried out from 1D (1H, 19F{1H}, 13C{1H}) and 2D (1H-13C HSQC) NMR experiments.
Elemental analyses were performed with a PerkinElmer 2400 CHNS/O analyzer Series II (PerkinElmer,
Ohio, OH, USA) and were the average of at least two independent measurements.

3.2. Synthesis of Complex [LiAlMe3(O-2-{2,3-C6H3F2N=CH}C6H4)], [LiAlMe3La] (1)

At room temperature, a mixture of HLa (0.700 g, 3.00 mmol) and [Li{N(SiMe3)2}] (0.518 g,
3.60 mmol) in toluene (30 mL) was stirred for one night. The resultant solution was cooled to −78 ◦C,
and AlMe3, 2 M in toluene (1.50 mL, 3.00 mmol) was added dropwise. Then, the reaction was warmed
to room temperature, and it was concentrated to 10 mL and stored at −20 ◦C. After a few days, crystals
were obtained. Yield: 0.251 g, 27%. The single crystal used for the for X-ray diffraction analysis were
obtained from a NMR tube. 1H NMR (C6D6, 400 MHz, 295 K): δ 7.78 (s, 1H, HC=N), 7.47 (d, 1H, C6H4),
7.15 (m, 1H, ArH), 6.96 (m, 1H, ArH), 6.69 (m, 1H, ArH), 6.47 (m, 1H, ArH), 6.39 (m, 1H, ArH), 6.23
(m, 1H, ArH), −0.24 [s, 9H, Al(CH3)3]. 13C NMR (C6D6, 101 MHz, 295 K): δ 164.1 (C=N), 161.9 (C-O),
multiplets from 151.9 to 144.5 (C-F, hardly assignable due to complicated 13C-19F coupling), 136.5,
136.0, 124.8, 122.3, 122.1, 118.7, 115.1, 114.9, 112.1 (Ar-C), −8.14 [Al(CH3)3]. 19F NMR (C6D6, 376 MHz,
295 K): δ-136.7 (d, 1F, o-F), −154.8 (d, 1F, m-F). Anal. Calcd for C16H17AlF2LiNO (311.24 g/mol): C
61.75, H 5.51, N 4.50. Found: C 61.62, H 5.21, N 4.96.
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3.3. Synthesis of Complex [NaAlMe3{(O-2-(2,3-C6H3F2N=CH)C6H4)}], [NaAlMe3(La)] (2)

The same method as that for 1 was used but with HLa (0.560 g, 2.40 mmol), NaH (0.057 g,
2.40 mmol) and AlMe3, 2 M in toluene (1.20 mL, 2.40 mmol). Yield: 0.221 g, 27%. Anal. Calcd for
C16H17AlF2NaNO (327.28 g/mol): C 58.72, H 5.24, N 4.28. Found: C 59.31, H 5.18, N 4.54.

3.4. Synthesis of Complex [NaAlMe2{(O-2-(2,3-C6H3F2N=CH)C6H4)}2], [NaAlMe2(La)2] (3)

At room temperature, a mixture of HLa (0.560 g, 2.40 mmol) and NaH (0.029 g, 1.20 mmol) in
toluene (20 mL) was stirred few hours. This solution was cooled to −78 ◦C, and AlMe3, 2 M in toluene
(0.60 mL, 1.20 mmol) was added dropwise. Then, the mixture was warmed to room temperature, and
reacted one night. After, the solution was dried under vacuum and the resultant solid was washed
with n-hexane twice to give a yellow powder. Yield: 0.503 g, 77%. 1H NMR (C6D6, 400 MHz, 295 K):
δ 7.86 (s, 2H, HC=N), 7.51 (d, 2H, C6H4), 7.19 (bs, 2H, ArH), 7.02 (m, 2H, C6H4), 6.72 (m, 2H, ArH),
6.42–6.21 (m, 6H, ArH), −0.01 [s, 6H, Al(CH3)]. 13C NMR (C6D6, 101 MHz, 295 K): δ 168.3 (C-O), 162.4
(C=N), multiplets from 152.0 to 143.3 (C-F, hardly assignable due to complicated 13C-19F coupling),
142.0, 137.6, 134.8, 133.3, 124.6, 123.5, 122.5, 118.3, 115.0, 114.1 (Ar-C), −8.18 [Al(CH3)]. 19F NMR (C6D6,
376 MHz, 295 K): δ-137.9 (d, 1F, o-F), −157.1 (d, 1F, m-F). Anal. Calcd for C28H22AlF4N2NaO2 (544.46
g/mol): C 61.77, H 4.07, N 5.15. Found: C 61.47, H 4.18, N 5.40.

3.5. Single-crystal X-Ray Structure Determination for (1·2C6D6) and 2 (Table 1)

Data collection was performed at 200(2) K, with the crystals covered with perfluorinated ether
oil. Single crystals of 1c were mounted on a Bruker-Nonius Kappa CCD single crystal diffractometer
equipped with a graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). Multiscan [57] absorption
correction procedures were applied to the data. The structure was solved using the WINGX
package [58], by direct methods (SHELXS-97) and refined using full-matrix least-squares against
F2 (SHELXL-97) [59,60]. All non-hydrogen atoms were anisotropically refined. Hydrogen atoms were
geometrically placed and left riding on their parent atoms except for the carbon atoms involved in
the interaction with the alkali metal in 2 (C3), and for the iminic carbon in 1 (C10), those atoms were
found in the Fourier map and refined freely. For 1 disordered solvent molecules were present in the
asymmetric unit: two molecules of benzene per molecule of 1. No chemical sense could be made of
the disorder solvent molecule, so a squeeze procedure [61,62] was applied to remove its contribution
from the structure factors. Full-matrix least-squares refinements were carried out by minimizing
∑w(Fo2 − Fc2)2 with the SHELXL-97 weighting scheme and stopped at shift/err < 0.001. The final
residual electron density maps showed no remarkable features. Crystallographic data for the structure
reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication no. CCDC-1878166(1·2C6D6) and CCDC-1878167(2).
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Table 1. Crystallographic data for 1·2C6D6, and 2.

[LiAlMe3La]·2C6D6 [NaAlMe3La]

Empirical formula C32H34Al2Li2F4N2O2·2C6D6 C32H34Al2Na2F4N2O2
Formula weight 790.59 654.55
Colour, shape Yellow/block Yellow/block

Crystal size (mm) 0.45 × 0.42 × 0.27 0.49 × 0.48 × 0.45
Crystal system Monoclinic Triclinic

Space group P21/c P-1
a (Å) 11.699(3) 8.5668(8)
b (Å) 16.669(6) 10.2749(8)
c (Å) 10.7558(17) 11.1625(8)
α (◦) 90 111.026(6)
β (◦) 90.35(2) 91.093(5)
γ (◦) 90 112.001(6)

V (Å3) 2097.5(9) 836.87(13)
Z 2 1

ρcalcd. (mg m−3) 1.233 1.299
F000 816 340

µ (mm−1) 0.125 0.166
θ Range (◦) 3.001 to 27.518 3.063 to 27.498

Reflns. Collected 16768 7166
Indep. Reflns./R(int) 4744/0.2050 3829/0.0734

Data/restraints/param 4744/147/203 3829/0/215
R1/wR2 (I > 2σ(I)) a 0.0982/0.2357 0.0498/0.1165
R1/wR2 (all data)a 0.1892/0.2927 0.1230/0.1505

GOF 0.873 0.918
Max/min ∆ρ (e.Å−3) 0.524 and −0.931 0.238 and −0.473

a R1 = Σ(||Fo| − |Fc||)/Σ|Fo|; wR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2; GOF = {Σ[w(Fo

2 − Fc
2)2]/(n − p)}1/2.

4. Conclusions

For the first time, the synthesis of alkali metal aluminates [MAlMe3(La)] (M = Li (1), Na (2)) has
been achieved with fluorinated Schiff bases as ligands. The presence of the fluorine substituents in
the ligands facilitates the isolation of the aluminate [NaAlMe3(La)] (2) in the solid state thanks to the
presence of a stabilizing Na···F interaction, in contrast with the behaviour observed in analogous
compounds without fluorine substituents in the iminic ring. Although the lithium derivative 1
maintains its structure when dissolved, the sodium compound 2 in the solution evolves rapidly into
the formation of [MAlMe3(La)]2. The mechanism for this transformation is based on interchange
reactions via a ligand rearrangement with the formation of the [MAlMe4] species, which can be
detected by NMR techniques, in a similar way as observed previously for the aluminates without
fluorine substituents. Studies of the reactivity of these species towards small molecules are ongoing.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/12/3108/s1.
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