Supplementary Information for

Synthesis and X-ray structural characterization of amidine, amide, urea and isocyanate derivatives of the closo-aminododecaborate $\operatorname{anion}\left[\mathrm{B}_{12} \mathrm{H}_{11}\left(\mathbf{N H}_{3}\right)\right]^{-}$

Yuanbin Zhang ${ }^{1,2 \ddagger}$, Yuji Sun ${ }^{1 \ddagger}$, Tao Wang ${ }^{1}$, Jiyong Liu ${ }^{1}$, Bernhard Spingler ${ }^{3}$ and Simon Duttwyler ${ }^{1, *}$
${ }^{*}$ These authors contributed equally.

${ }^{1}$ Department of Chemistry, Zhejiang University 38 Zheda Road, 310027 Hangzhou, P. R. China
${ }^{2}$ Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, P. R. China
${ }^{3}$ Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

* Correspondence: duttwyler@zju.edu.cn

Table of Contents

I	General Information	p. S2-S3
II	Experimental Section	p. S4-S14
III	X-ray Crystallography	p. S15-S35
IV	References	p. S36
V	NMR spectra	p. S37-S68

I General Information

Chemicals

If not otherwise specified, reagents and organic solvents were commercially available and used without further purification. Anhydrous solvents were prepared by passage through activated $\mathrm{Al}_{2} \mathrm{O}_{3}$ and stored over $3 \AA$ molecular sieves. $\mathrm{CD}_{3} \mathrm{CN}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were purchased from Cambridge Isotope Laboratories and filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ prior to use. $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ and $\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}_{3}\right]^{-}$salts and dodecaborate amides $\mathbf{3 a}-\mathbf{e}$ were prepared according to the literature.[1-3]

Reaction Conditions

Glassware for air-sensitive reations was dried at $150{ }^{\circ} \mathrm{C}$ and allowed to cool in a vacuum. Reactions carried out in a glovebox were run under a nitrogen atmosphere with $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}<1 \mathrm{ppm}$.

Characterization

Thin-layer chromatography (TLC) was carried out using silica gel 60, F254 with a thickness of 0.25 mm . Column chromatography was performed on silica gel 60 (200-30 mesh).

Low-resolution ESI-MS data were recorded on Advion Expression CMS instrument. High-resolution MS data were recorded using IT-TOF detection (Shimadzu, Japan) equipped with an electrospray ionization source (ESI). Accurate mass determination was corrected by calibration using sodium trifluoroacetate clusters as a reference.

Single-crystal X-ray diffraction studies were performed on an Oxford Diffraction Gemini A Ultra diffractometer equipped with an 135mm Atlas CCD detector and using Mo K- α radiation

NMR spectra were recorded on a Bruker AVANCE III 500 spectrometer (${ }^{1} \mathrm{H}$ NMR 500.13 MHz, ${ }^{13} \mathrm{C}$ NMR $125.77 \mathrm{MHz},{ }^{11}{ }^{1}$ NMR 160.46 MHz) or a Bruker AVANCE III 400 spectrometer (${ }^{1} \mathrm{H}$ NMR $400.13 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR $100.62 \mathrm{MHz},{ }^{11} \mathrm{~B}$ NMR $128.38 \mathrm{MHz})$ at the temperature indicated. Data are reported as follows: Chemical shift in ppm, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, etc.), coupling constant J in Hz , integration, and (where applicable) interpretation. Signals were referenced against solvent peaks $\left({ }^{1} \mathrm{H}\right.$: residual $\mathrm{CHD}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CD}_{3}=2.05 \mathrm{ppm}$, residual $\mathrm{CHD}_{2} \mathrm{CN}=1.94 \mathrm{ppm}$, residual CHDCl_{2} $=5.32 \mathrm{ppm},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}: C \mathrm{D}_{3} \mathrm{C}(\mathrm{O}) C \mathrm{D}_{3}=29.84 \mathrm{ppm}, C \mathrm{D}_{3} \mathrm{CN}=1.32 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}=$ $53.32 \mathrm{ppm}) .{ }^{11} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were calibrated against external $\mathrm{BF}_{3} * \mathrm{Et}_{2} \mathrm{O}$ $=0 \mathrm{ppm}\left(\mathrm{BF}_{3} * \mathrm{Et}_{2} \mathrm{O}\right.$ capillary in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

II Experimental Section

Synthesis of $\left[\mathbf{E t}_{3} \mathbf{N H}\right][\mathbf{3 e - H}]$: In a glovebox filled with N_{2}, a 20 mL vial was charged with $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}_{3}\right](212.4 \mathrm{mg}, 0.817 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(138.2 \mathrm{mg}, 5.758$ mmol, 7 equiv) and a stir bar. THF (4 mL) and DMF (4 mL) were added, and the mixture was stirred at room temperature for 10 minutes until there was no H_{2} evolution anymore. Then pyridine-2-carbonyl chloride hydrochloride $\mathrm{PyCOCl} \cdot \mathrm{HCl}$ ($220.2 \mathrm{mg}, 1.237 \mathrm{mmol}, 1.5$ equiv) was slowly added. The conversion was complete after stirring for 5 h . The flask was transferred out of the glovebox. $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added, and the pH value of the reaction mixture was adjusted to $2-3$ with 1 M aqueous $\mathrm{HCl} .\left[\mathrm{NEt}_{3} \mathrm{H}\right] \mathrm{Cl}(300 \mathrm{mg}, 2.180 \mathrm{mmol}, 2.7$ equiv) was added, and the reaction mixture was extracted with $\mathrm{MeCN} / \operatorname{EtOAc}(1: 2 v / v)$. The organic layers were concentrated on a rotary evaporator. The residue was purified by recrystallization from methanol to afford yellowish crystals of $\left[\mathrm{Et}_{3} \mathrm{NH}\right][\mathbf{3 e - H}](150 \mathrm{mg}, 50 \%)$.
${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=8.96(\mathrm{~s}, 1 \mathrm{H}$, anionic $\mathrm{N} H), 8.90-8.86(\mathrm{~m}, 1 \mathrm{H}$, Py H), 8.18-8.14 (overlapping m, 2H, Py H), 7.89-7.72 (m, 1H, Py H), 6.63 (t, $1 \mathrm{H}, J_{\mathrm{NH}}$ $=52 \mathrm{~Hz}, \mathrm{~N} H), 3.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), \quad 3.20-3.15\left(\mathrm{~m}, 6 \mathrm{H}\right.$, cationic $\left.\mathrm{N}-\mathrm{CH}_{2}\right), 1.47$ (broad signal, $5 \mathrm{H}, \mathrm{B}-\mathrm{H}$), 1.24 (t, $J=7.4 \mathrm{~Hz}, 9 \mathrm{H}$, cationic CH_{3}), 1.20 (broad signal, $5 \mathrm{H}, \mathrm{B}-\mathrm{H}$), 1.13 (broad signal, 1H, B-H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CD}_{3} \mathrm{CN}$): $\delta=166.7,149.5,143.9,141.5,129.8$, 124.5 (6 anionic signals), 48.0, 9.2 (2 cationic signals).
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=-7.6(1 \mathrm{~B}, B-\mathrm{N}),-15.3(5 \mathrm{~B}, B-\mathrm{H}),-15.7$ (overlapping signals, $6 \mathrm{~B}, B-\mathrm{H}$).

High-resolution ESI-MS (negative mode, MeOH): m / z calcd for $\left[\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~B}_{12} \mathrm{~N}_{2} \mathrm{O}\right]^{-}$ 263.2430. Found: 263.2459.

Transformation of $\left[\mathbf{E t}_{3} \mathbf{N H}\right][3 \mathrm{e}-\mathrm{H}]$ to $\left[\mathbf{E t}_{3} \mathbf{N H}\right]_{2}[\mathbf{3 e}]:$ A 20 mL vial was charged with $\left[\mathrm{Et}_{3} \mathrm{NH}\right][3 \mathrm{e}-\mathrm{H}](50 \mathrm{mg})$ and a stir bar. $\mathrm{MeCN}(3 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$ were added, and the solution was stirred at room temperature for 1 h . Then the stir bar was removed, and the solution was concentrated on a rotary evaporator and dried overnight under vacuum at $80{ }^{\circ} \mathrm{C}$ to afford compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[\mathbf{3 e}]$ in quantitative yield.

This method can also be applied for the transformation of other compounds 3-H to $\mathbf{3}$ quantitatively. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 b}, \mathbf{3 b} \mathbf{-} \mathbf{H}, \mathbf{3} \mathbf{e}$ and $\mathbf{3 e} \mathbf{- H}$ are displayed in Figure S1.
${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=8.56($ broad signal, 1 H, Py H), 8.09-8.00 (m, 1 H, Py H), 7.99-7.80 (overlapping m, 2H, Py H and amide N-H), 7.50-7.38 (m, 1 H , Py H), 4.63 (broad t, $2 \mathrm{H}, J_{\mathrm{NH}}=52 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}$ from cation), 3.25-3.01 (m, 12 H , cationic $\mathrm{N}-\mathrm{CH}_{2}$), $1.34(\mathrm{~s}, 5 \mathrm{H}, \mathrm{B}-\mathrm{H}), 1.24\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 9 \mathrm{H}\right.$, cationic CH_{3}), 1.03 (broad signal, $5 \mathrm{H}, \mathrm{B}-\mathrm{H}), 0.89$ (broad signal, 1H, B-H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=166.2,152.9,149.0,138.5,126.4$, 122.2 (6 anionic signals), 47.8, 9.1 (2 cationic signals).
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=-5.3$ (1B, B-N), -15.3 (5B, B-H), $-16.4(5 \mathrm{~B}$, B-H), -18.7 (1B, B-H).
High-resolution ESI-MS (negative mode, MeOH): m / z calcd for $\left[\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~B}_{12} \mathrm{~N}_{2} \mathrm{O}\right]^{2-}$ 131.1226. Found: 131.1254.

The ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 b}, \mathbf{3 b}-\mathbf{H}, \mathbf{3 e}$ and $\mathbf{3 e} \mathbf{- H}$ are shown in Figure S 1 as representative examples to demonstrate the effect of protonation. For both product pairs $\mathbf{3 b} / \mathbf{3 b}-\mathbf{H}$ and $\mathbf{3 e} / \mathbf{3 e}-\mathbf{H}$, similar effects are observed. Upon protonation, the $\mathrm{B}-\mathrm{N}$ signal is shifted from -5 ppm to -8 ppm . On the other hand, the $\mathrm{B}-\mathrm{H}$ vertices become more deshielded; the B12 signal appears at -19 ppm in the dianionic form and overlaps with the B2-11 resonances in the monoanionic form.

Figure S1. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 b}, \mathbf{3 b} \mathbf{- H}, \mathbf{3 e}$ and $\mathbf{3 e - H}$ (acetonitrile- $d_{3}, 128 \mathrm{MHz}$, $23^{\circ} \mathrm{C}$).

Synthesis of amidine [$\mathbf{E t}_{\mathbf{3}} \mathbf{N H}$][6a]: In a glovebox, a dry 20 mL vial, equipped with a stir bar, was charged with $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}_{3}\right](102 \mathrm{mg}, 0.40 \mathrm{mmol}$, 1 equiv). Then anhydrous DMF (1 mL) was added. The vial was transferred to a fumehood, and dry $\mathrm{Et}_{3} \mathrm{~N}\left(1.0 \mathrm{~mL}, 7.20 \mathrm{mmol}, 18\right.$ equiv) was added to the solution under N_{2} protection. Then 2,4,6-trimethylphenylcarboxylic acid chloride ($110 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.5$ equiv) was added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with an aqueous $\left[\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Cl}$ solution $\left(2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}+2\right.$ equiv $\left.\left[\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Cl}\right)$; the pH value at this point was ca. $7-8$. The mixture was extracted with $\mathrm{DCM} / \mathrm{MeCN}=4: 1(8 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, and the solution was filtered and concentrated by rotary evaporation. The cloudy residue was purified by silica gel column chromatography (eluent $\mathrm{DCM} / \mathrm{MeCN}=10: 3$, fraction size 20 mL). The combined eluates were concentrated on a rotary evaporator and dried under vacuum at $60^{\circ} \mathrm{C}$ overnight to afford compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right][6 a]$ as a colorless solid $(50.4 \mathrm{mg}, 40 \%)$. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}\right): \delta 7.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}-\mathrm{N})$, 6.41 (broad signal, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 3.13 ($\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$, cationic N-CH2), $3.08(\mathrm{~s}, 3 \mathrm{H}$, anionic $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 2.83\left(\mathrm{~s}, 3 \mathrm{H}\right.$, anionic $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 1.26($ broad signal, $5 \mathrm{H}, \mathrm{B}-\mathrm{H}), 1.24(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 9 \mathrm{H}$, cationic $\left.\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03($ broad signal, $5 \mathrm{H}, \mathrm{B}-\mathrm{H}), 0.85($ broad signal, $1 \mathrm{H}, \mathrm{B}-\mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}\right): \delta 157.3(\mathrm{~N}=\mathrm{C}-\mathrm{N}), 48.0$ (cationic CH_{2}), 43.1, 35.7 (two N-C signals), 9.2 (cationic CH_{3}).
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}\right): \delta-4.2(1 \mathrm{~B}, \mathrm{~B}-\mathrm{N}),-14.5$ to $-17.0(10 \mathrm{~B}$, B-H), -19.0 (1B, B-H).

High-resolution ESI-MS (negative mode, MeOH): m / z calcd for $\left[\mathrm{C}_{3} \mathrm{H}_{19} \mathrm{~B}_{12} \mathrm{~N}_{2}\right]^{-}$:
213.2738. Found: 213.2762 .

Synthesis of amidine $\left[\mathbf{E t}_{\mathbf{3}} \mathbf{N H}\right][\mathbf{6 b}]$: A dry 20 mL vial, equipped with a stir bar, was charged with $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{NHCOC}_{6} \mathrm{H}_{5}\right](101 \mathrm{mg}, 0.22 \mathrm{mmol}$, 1 equiv). Then anhydrous $\mathrm{MeCN}(3 \mathrm{~mL})$ was added, and dry $\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{~mL}, 2.16 \mathrm{mmol}, 9.8$ equiv $)$ was added to the solution under N_{2} protection. Pentafluorophenylcarboxylic acid chloride ($80.0 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.5$ equiv) was added at $25^{\circ} \mathrm{C}$. The temperature was raised to $50^{\circ} \mathrm{C}$. After 30 min , aniline ($61 \mathrm{mg}, 0.66 \mathrm{mmol}, 3.0$ equiv) was added. The mixture was stirred for another 4 h and concentrated by rotary evaporation. The cloudy residue was purified by silica gel column chromatography (eluent $\mathrm{DCM} / \mathrm{MeCN}=4: 1$, fraction size 20 mL). The combined eluates were concentrated on a rotary evaporator and dried under vacuum at $60^{\circ} \mathrm{C}$ overnight to afford compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right][\mathbf{6 b}]$ as a yellow solid $(87.7 \mathrm{mg}, 91 \%)$.
${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right): \delta 10.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}$, phenyl H), 7.41-7.35 (overlapping m, 4H, phenyl H), 7.24-7.09 (overlapping m, 3H, phenyl H), 7.03-6.78 (overlapping broad signal and m, 3H, phenyl H and $\mathrm{N}-\mathrm{H}$), 6.65 (broad signal, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}) 3.29-3.22\left(\mathrm{~m}, 6 \mathrm{H}\right.$, cationic $\left.\mathrm{N}-\mathrm{CH}_{2}\right), 1.62$ (broad signal, 5 H , B-H), $1.40\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H}\right.$, cationic $\left.\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.22($ broad signal, $5 \mathrm{H}, \mathrm{B}-\mathrm{H}), 1.05$ (broad signal, 1H, B-H).

This spectrum contained small signals at $7.18,6.71$ and 6.67 ppm ascribed to residual aniline
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}\right): \delta 165.6(\mathrm{~N}=\mathrm{C}-\mathrm{N}), 138.1,133.2,131.3$, $130.4,130.1,129.9,127.5,125.6$ (8 aryl signals), 48.3 (cationic $\mathrm{N}-\mathrm{CH}_{2}$), 9.4 (cationic $\mathrm{N}-\mathrm{CH}_{3}$).

This spectrum showed small signals at $149.1,130.2,118.3$ and 115.6 ppm ascribed to residual aniline.
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right): \delta-5.8(1 \mathrm{~B}, \mathrm{~B}-\mathrm{N}),-13.5$ to $-16.5(10 \mathrm{~B}$, B-H), -17.4 (1B, B-H).

High-resolution ESI-MS (negative mode, MeOH): m / z calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~B}_{12} \mathrm{~N}_{2}\right]^{-}$: 337.3056. Found: 337.2382.

Synthesis of amidine $\left[\mathbf{E t}_{\mathbf{3}} \mathbf{N H}\right][\mathbf{6 c}]$: A dry 20 mL vial, equipped with a stir bar, was charged with $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{NHCOC}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\right](177 \mathrm{mg}, 0.33 \mathrm{mmol}, 1$ equiv). Then anhydrous $\mathrm{MeCN}(3 \mathrm{~mL})$ was added, and dry $\mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{~mL}, 3.25 \mathrm{mmol}, 9.8$ equiv) was added to the solution under N_{2} protection. Pentafluorophenylcarboxylic acid chloride ($128 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.7$ equiv) was added at $25^{\circ} \mathrm{C}$. The temperature was raised to $50^{\circ} \mathrm{C}$. After $30 \mathrm{~min}, N, N$-dimethylethylamine ($88 \mathrm{mg}, 1.00 \mathrm{mmol}, 3.0$ equiv) was added. The mixture was stirred for another 4 h , and 1 M aqueous $\mathrm{HCl}(5 \mathrm{~mL})$ was added. The suspension was extracted with EtOAc/MeCN 3:1 (5 x 10 mL). The combined organic layers were dried over MgSO_{4}, and the solution was filtered and concentrated by rotary evaporation. The cloudy residue was purified by silica gel column chromatography (eluent $\mathrm{DCM} / \mathrm{MeCN}=4: 3$, fraction size 20 mL). The combined eluates were concentrated and dried under vacuum at $60{ }^{\circ} \mathrm{C}$ overnight to afford compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right][\mathbf{6 c}]$ as a yellow solid $(132 \mathrm{mg}, 100 \%)$.
${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}\right): \delta 8.54$ (broad signal, $\left.1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.59-7.55$ (overlapping m, 3 H , aryl H), 7.46 (broad signal, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 6.98 (very broad signal, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 3.43\left(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.24\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.41$ (broad signal, $\left.5 \mathrm{H}, \mathrm{B}-\mathrm{H}\right), 1.12$ (broad signal, $\left.5 \mathrm{H}, \mathrm{B}-\mathrm{H}\right), 1.06$ (broad signal, 1H, B-H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}\right): \delta 161.9(\mathrm{~N}=\mathrm{C}-\mathrm{N}), 134.6,134.2,129.8$, 129.2 (4 aryl signals), 56.9, 44.8, 40.0.
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 23{ }^{\circ} \mathrm{C}\right): \delta-6.9(1 \mathrm{~B}, \mathrm{~B}-\mathrm{N}),-13.0$ to -18.0 (overlapping signals with peaks at -15.2 and $-16-1 \mathrm{ppm}, 11 \mathrm{~B}, \mathrm{~B}-\mathrm{H}$).

High-resolution ESI-MS (negative mode, MeOH): m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~B}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{3}-\mathrm{H}\right]^{-}$: 400.2699. Found: 400.2714.

Synthesis of urea $\left[\mathrm{NBu}_{4}\right]_{2}[7 \mathrm{a}]$: In a glovebox filled with N_{2}, a 20 mL vial was charged with $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}_{3}\right](260 \mathrm{mg}, 1.00 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(53 \mathrm{mg}, 2.2$ mmol, 2.2 equiv) and a stir bar. THF (10 mL) was added, and the mixture was stirred at room temperature for 10 minutes until there was no H_{2} evolution anymore. Phenyl isocyanate ($238 \mathrm{mg}, 2.0 \mathrm{mmol}$, 2 equiv) was slowly added. The conversion was complete after stirring for 5 h . The flask was transferred out of the glovebox. The solvent was removed under vacuum, and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The aqueous solution was heated to $50^{\circ} \mathrm{C}$, and $\left[\mathrm{NBu}_{4}\right] \mathrm{Br}(677 \mathrm{mg}, 2.1 \mathrm{mmol}, 2.1$ equiv) was added. A white solid precipitated immediately and was collected by filtration. It was dried under vacuum overnight to afford $\left[\mathrm{NBu}_{4}\right]_{2}[7 \mathrm{a}]$ as a colorless microcrystalline product ($685 \mathrm{mg}, 90 \%$).
${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=8.52$ (broad $\mathrm{s}, 1 \mathrm{H}$, anionic NH), $7.41(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}, \mathrm{Ph} \mathrm{H}), 7.18(\mathrm{dd}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, \mathrm{Ph} H), 6.83(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ph}$ H), 3.96 (broad s, $1 \mathrm{H}, \mathrm{N} H$), $3.25-3.01$ (m, 16H, cationic $\mathrm{N}-\mathrm{CH}_{2}$), 1.67-1.50 (m, 16H, cationic $\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.41-1.27 (overlapping m and s, 21 H , cationic $\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and B-H), $1.04(\mathrm{~s}, 5 \mathrm{H}, \mathrm{B}-\mathrm{H}), 0.95\left(\mathrm{t}, 24 \mathrm{H}, J=7.3 \mathrm{~Hz}\right.$, cationic $\left.\mathrm{CH}_{3}\right), 0.85(\mathrm{~s}, 1 \mathrm{H}$, B-H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=158.6,142.8,129.5$ (overlapping signals), 121.2, 59.2, 24.3, 20.3, 10.8.
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=-5.0(1 \mathrm{~B}, \mathrm{~B}-\mathrm{N}),-15.4(5 \mathrm{~B}, \mathrm{~B}-\mathrm{H}),-16.2(5 \mathrm{~B}$, B-H), -19.3 (1B, B-H).

High-resolution ESI-MS (negative mode, MeOH): m / z calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~B}_{12} \mathrm{~N}_{2} \mathrm{O}\right]^{2}$ 138.1320. Found: 138.1331.

Synthesis of urea $\left[\mathbf{P P h}_{4}\right]_{2}[\mathbf{7 b}]$: This product was prepared in a similar manner to $\left[\mathrm{NBu}_{4}\right]_{2}[7 \mathrm{a}]$, using 4-chlorophenyl isocyanate ($307 \mathrm{mg}, 2.0 \mathrm{mmol}$, 2 equiv) and $\left[\mathrm{PPh}_{4}\right] \mathrm{Br}$ ($881 \mathrm{mg}, 2.1 \mathrm{mmol}, 2.1$ equiv). $\left[\mathrm{PPh}_{4}\right]_{2}[7 \mathbf{b}]$ was obtained as a colorless microcrystalline solid ($869 \mathrm{mg}, 91 \%$).
${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=8.59(\mathrm{~s}, 1 \mathrm{H}$, anionic NH$)$, 7.95-7.85 (m, 8 H , cationic H), 7.81-5.58 (overlapping m, 32 H , cationic H), 7.41-7.28 (m, 2H, Ph H), 7.13-6.96 (m, 2H, Ph H), 4.00 (s, 1H, N-H), 1.33 (broad signal, 5H, B-H), 1.07 (broad signal, $5 \mathrm{H}, \mathrm{B}-\mathrm{H}$), 0.88 (broad signal, 1H, B-H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=158.4,141.7,136.4\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.4 \mathrm{~Hz}\right.$, cation $\mathrm{CH}), 135.6\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=10 \mathrm{~Hz}\right.$, cation CH$), 131.3\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=13.0 \mathrm{~Hz}\right.$, cation CH$), 129.2$, 124.9, 119.6, $118.8\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=89 \mathrm{~Hz}\right.$, cation $\left.\mathrm{C}_{\mathrm{q}}\right)$.
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=-5.0(1 \mathrm{~B}, \mathrm{~B}-\mathrm{N}),-15.5(5 \mathrm{~B}, \mathrm{~B}-\mathrm{H}),-16.2(5 \mathrm{~B}$, B-H), -19.2 (1B, B-H).
High-resolution ESI-MS (negative mode, MeOH): m / z calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{~B}_{12} \mathrm{~N}_{2} \mathrm{OCl}\right]^{2-}$ 155.1125. Found: 155.1133.

Synthesis of isocyanate $\left[\mathrm{MePPh}_{3}\right]_{2}[8]$: In a glovebox filled with N_{2}, a 50 mL round-bottom flask was charged with $\mathrm{Cs}\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}_{3}\right](594 \mathrm{mg}, 2.0 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(144 \mathrm{mg}, 6.0 \mathrm{mmol}, 3$ equiv) and a stir bar. DMF (10 mL) was added, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 minutes until there was no H_{2} evolution anymore. Then $\mathrm{ClC}(\mathrm{O}) \mathrm{NMe}_{2}$ (6 equiv) diluted in $\mathrm{DMF}(2 \mathrm{~mL}$) was slowly added by an Eppendorf pipet. The conversion was complete after stirring for 4 h . The flask was transferred out of the glovebox, and the volatiles were removed under vacuum. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $c a .90^{\circ} \mathrm{C}$, giving a slightly yellow solution. The solution was stirred at $80-100{ }^{\circ} \mathrm{C}$ for 1 h , and $\left[\mathrm{MePPh}_{3}\right] \operatorname{Br}(1.29 \mathrm{~g}, 5 \mathrm{mmol}, 2.5$ equiv) was added. A white precipitate formed, and it was was collected by filtration. Purification by column chromatography (eluent DCM/MeCN 4:3) afforded $\left[\mathrm{MePPh}_{3}\right]_{2}[8]$ as a colorless solid ($369 \mathrm{mg}, 25 \%$). ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=7.90-7.83(\mathrm{~m}, 6 \mathrm{H}$, cationic CH), 7.76-7.62 (overlapping m, 24 H , cationic CH), $2.83\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH} H_{3}\right.$), 1.23 (broad signal, 5H, B-H), 0.97 (broad signal, 5H, B-H), 0.75 (broad signal, 1H, B-H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=136.1\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=3.0 \mathrm{~Hz}\right.$, cation CH$)$, $134.2(\mathrm{~d}$, $J_{\mathrm{P}, \mathrm{C}}=11 \mathrm{~Hz}$, cation CH), $131.1\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=13 \mathrm{~Hz}\right.$, cation CH), $120.4\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=89 \mathrm{~Hz}\right.$, cation $\left.\mathrm{C}_{\mathrm{q}}\right)$, $9.37\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=58 \mathrm{~Hz}\right.$, cation $\left.\mathrm{CH}_{3}\right)$. The $\mathrm{N}=\mathrm{C}=\mathrm{O}$ carbon atom could not be detected unambiguously.
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=-7.74(1 \mathrm{~B}, \mathrm{~B}-\mathrm{N}),-15.4(5 \mathrm{~B}, \mathrm{~B}-\mathrm{H}),-16.7(5 \mathrm{~B}$, B-H), -19.6 (1B, B-H).

Mass-spectrometric characterization of this product proved difficult; the results that were obtained by negative-mode ESI-MS are shown in Figure S2, along with the IR spectrum in Figure S3.

Figure S2. (-)-ESI Mass spectrum of $\mathbf{8}$ in MeOH .

Figure S3. IR spectrum of $\left[\mathrm{PPh}_{4}\right]_{2}[8]$.

III X-ray Crystallography

CCDC1861483-1861492 contain the supplementary crystallographic data for this publication. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystals of the products $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[\mathbf{3 b}],\left[\mathrm{Et}_{3} \mathrm{NH}\right][\mathbf{3 d} \mathbf{- H}]_{,}\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[\mathbf{3 e}]$,
$\left[\mathrm{Et}_{3} \mathrm{NH}\right][\mathbf{3 e - H}],\left[\mathrm{MePPh}_{3}\right][6 \mathbf{6}],\left[\mathrm{Et}_{3} \mathrm{NH}\right][6 \mathbf{c}]$ and $\left[\mathrm{MePPh}_{3}\right]_{2}[\mathbf{8}]$ were measured at room temperature because the X-ray facility of our department does not routinely offer measurements with nitrogen cooling.

Crystal structure of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[3 \mathrm{a}](\mathrm{CCDC1861488})$

Compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[\mathbf{3 a}](20 \mathrm{mg})$ was dissolved in acetone $/ \mathrm{MeCN}(0.25 \mathrm{~mL} / 0.25 \mathrm{~mL})$ in a 1 mL glass vial. The resulting colorless solution was filtered into an 18 cm long NMR tube and layered with hexanes (1 mL). Colorless crystals of the composition $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{4}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{NHCOPh}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ suitable for X-ray diffraction grew within 3 d at 25 ${ }^{\circ} \mathrm{C}$.

Bond precision:

Cell: $\quad a=10.3802(8) \quad b=15.9133(12) \quad c=18.0577(15)$ alpha=79.497(7) beta=87.786(7) gamma=87.828(6)
Temperature: 170 K

Calculated Reported
2929.2(4) 2929.2(4)
$\begin{array}{lll}\text { Volume } & 2929.2(4) & 2929 \\ \text { Space group } & \mathrm{P}-1 & \mathrm{P}-1\end{array}$
Hall group $-\mathrm{P} 1 \quad-\mathrm{P} 1$
Moid $2(\mathrm{C} 7 \mathrm{H} 17 \mathrm{~B} 12 \mathrm{~N} \mathrm{O}), 4(\mathrm{C} 6 \quad 2(\mathrm{C} 7 \mathrm{H} 17 \mathrm{~B} 12 \mathrm{~N}$ O), $4(\mathrm{C}$
Sum formula C38 H100 B24 N6 O3
$\mathrm{Mr} \quad 948.68$
Dx,g cm-3 1.076
Z 2
Mu (mm-1) 0.060
F000 1028.0
F000' 1028.24

Tmin' 0.972
h,k,1max $\quad 12,19,21 \quad 19,21$
Nref 1075610623
Tmin,Tmax 0.972,0.977 0.849,1.000
H16 N), H2 O
C38 H100 B24 N6 O3
948.67
1.076

2
0.060
1028.0

Correction method= \# Reported T Limits: Tmin=0.849 Tmax=1.000
AbsCorr $=$ MULTI-SCAN

Data completeness $=0.988 \quad$ Theta $(\max)=25.350$
$R($ reflections $)=0.1239(6692) \quad$ wR2 (reflections $)=0.3535(10623)$
$S=1.034 \quad$ Npar $=655$

Figure S4. ORTEP representation of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{4}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{NHCOPh}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O} ; 30 \%$ displacement ellipsoids.

Crystal structure of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[3 \mathrm{~b}](\mathrm{CCDC1861489})$

Compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[\mathbf{3 b}](20 \mathrm{mg})$ was dissolved in acetone $/ \mathrm{MeCN}(0.25 \mathrm{~mL} / 0.25 \mathrm{~mL})$ in a 1 mL glass vial. The resulting colorless solution was filtered into an 18 cm long NMR tube and layered with hexanes (1 mL). Colorless crystals of the composition $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{NHCO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$ suitable for X-ray diffraction grew within 1 d at $25^{\circ} \mathrm{C}$.

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0060 \mathrm{~A}$	Wavelength $=0.71073$
Cell:	$\mathrm{a}=17.517(2) \quad \mathrm{b}=10.7703(8)$	8) $\quad \mathrm{C}=35.537(4)$
	alpha=90 beta=106.010	10(11) gamma=90
Temperature:	293 K	
	Calculated	Reported
Volume	6444.5(12)	6444.4(12)
Space group	C 2/c	C 1 2/c 1
Hall group	-C 2yc	-C 2yc
Moiety formula	$\begin{aligned} & 2(\mathrm{C} 7 \mathrm{H} 16 \mathrm{~B} 12 \mathrm{~F} N \mathrm{~N}), 4(\mathrm{C} 6 \\ & \mathrm{H} 16 \mathrm{~N}), \mathrm{C} 3 \mathrm{H} 6 \mathrm{O} \end{aligned}$	2(C7 H16 B12 F N O), C3 H6 0, $4(\mathrm{C} 6 \mathrm{H} 16 \mathrm{~N})$
Sum formula	C41 H102 B24 F2 N6 O3	C41 H102 B24 F2 N6 O3
Mr	1024.73	1024.72
Dx,g cm-3	1.056	1.056
Z	4	4
Mu (mm-1)	0.063	0.063
F000	2208.0	2208.0
F000,	2208.65	
h, k, 1 max	21,12,42	21,12,42
Nref	5906	5882
Tmin, Tmax	0.973,0.992	0.780,1.000
Tmin'	0.970	

Correction method= \# Reported T Limits: Tmin=0.780 Tmax=1.000
AbsCorr $=$ MULTI-SCAN

Data completeness $=0.996$ Theta(max) $=25.350$
$R($ reflections $)=0.0819(3329) \quad$ wR2(reflections) $=0.2399(5882)$
$S=1.015 \quad$ Npar= 351

Figure S5. ORTEP representation of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{4}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{NHCO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}\right]_{2} \cdot \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$; 30% displacement ellipsoids.

Crystal structure of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[3 \mathrm{c}](\mathrm{CCDC1861486})$

Compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[\mathbf{3 c}](20 \mathrm{mg})$ was dissolved in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ in a 1 mL glass vial. The resulting colorless solution was filtered into an 18 cm long NMR tube and layered with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$. Colorless crystals of the composition $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}$ $\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NHCO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}\right]$ suitable for X-ray diffraction grew within 1 d at $25^{\circ} \mathrm{C}$.

Figure S6. ORTEP representation of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{NHCO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}\right] ; 30 \%$ displacement ellipsoids.

Crystal structure of [$\left.\mathrm{Et}_{3} \mathrm{NH}\right][3 \mathrm{~d}-\mathrm{H}](\mathrm{CCDC1861491})$

Compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right][\mathbf{3 d}-\mathrm{H}](10 \mathrm{mg})$ was dissolved in acetone $(0.5 \mathrm{~mL})$ in a 1 mL glass vial. The resulting colorless solution was filtered into a 18 cm long NMR tube and layered with hexanes (1 mL). Colorless crystals of the composition [$\mathrm{Et}_{3} \mathrm{NH}$] $\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NHC}(\mathrm{OH})-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}\right]$ suitable for X-ray diffraction grew within 5 d at 25 ${ }^{\circ} \mathrm{C}$.

```
Bond precision: B- B = 0.0051 A Wavelength=0.71073
Cell: a=9.0952(6) b=35.086(2) c=14.8327(9)
alpha=90 beta=90 gamma=90
Space group
Hall group
    4733.3(5)
    P C c n
    -P 2ab 2ac -P 2ab 2ac
Moiety formula C8 H20 B12 N 02, C6 H16 N C8 H2O B12 N 02, C6 H16 N
Sum formula C14 H36 B12 N2 O2 C14 H36 B12 N2 O2
Mr
Dx,g cm-3
    394.17
    1.106
394.17
8
Mu (mm-1)
F000
    0.062
    1680.0
    Reported
Volume
gamma=90
Temperature:
293 K
\begin{tabular}{|c|c|c|}
\hline & Calculated & Reported \\
\hline Volume & 4733.3(5) & 4733.4(5) \\
\hline Space group & P c c n & P c c n \\
\hline Hall group & -P 2ab 2ac & -P 2ab 2ac \\
\hline Moiety formula & C8 H20 B12 N O2, C6 H16 & C8 H20 B12 N O2, C6 H16 N \\
\hline Sum formula & C14 H36 B12 N2 O2 & C14 H36 B12 N2 O2 \\
\hline Mr & 394.17 & 394.17 \\
\hline Dx,g cm-3 & 1.106 & 1.106 \\
\hline Z & 8 & 8 \\
\hline Mu (mm-1) & 0.062 & 0.062 \\
\hline F000 & 1680.0 & 1680.0 \\
\hline F000' & 1680.43 & \\
\hline h, k, lmax & 10,42,17 & 10,42,17 \\
\hline Nref & 4329 & 4318 \\
\hline Tmin, Tmax & 0.981,0.989 & 0.935,1.000 \\
\hline Tmin' & 0.971 & \\
\hline
\end{tabular}
Correction method= # Reported T Limits: Tmin=0.935 Tmax=1.000
AbsCorr = MULTI-SCAN
Data completeness= 0.997
Theta(max)= 25.349
R(reflections)= 0.0927( 2910) wR2(reflections)= 0.3020( 4318)
S = 1.042 Npar= 366
```


Figure S7. ORTEP representation of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NHC}(\mathrm{OH})-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}\right]$; the protonated 4-methoxybenzamide moiety and the triethylammonium cation are both disordered. Only one of the two disordered parts is shown for clarity; 30% displacement ellipsoids.

Crystal structure of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[3 \mathrm{e}](\mathrm{CCDC1861492})$

Compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}[\mathbf{3 e}](20 \mathrm{mg})$ was dissolved in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ in a 1 mL glass vial. The resulting colorless solution was filtered into an 18 cm long NMR tube and layered with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$. Colorless crystals of the composition $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}$ $\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NHCO}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right]$ suitable for X-ray diffraction grew within 2 d at $25^{\circ} \mathrm{C}$.

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0035 \mathrm{~A}$	A Wavel	$\mathrm{h}=0.71073$
Cell:	$a=31.573$ (2)	$\mathrm{b}=10.9139$ (7)	$\mathrm{C}=17.2044$ (13)
	alpha=90	beta=101.056(7)	gamma $=90$
Temperature:	293 K		
	Calculated	Repo	
Volume	5818.3(7)	5818	
Space group	C 2/c	C 1	1
Hall group	-C 2yc	-C	
Moiety formula	C6 H16 B12 N2 O N)), 2(C6 H16 C6 N)	$2 \text { N2 O, } 2(\mathrm{C} 6 \mathrm{H} 16$
Sum formula	C18 H48 B12 N4	$0 \quad \mathrm{C} 18$	B12 N4 O
Mr	466.32	466	
Dx,g cm-3	1.065	1.06	
Z	8	8	
Mu (mm-1)	0.059	0.05	
F000	2016.0	2016	
F000'	2016.43		
h, k, 1 max	38,13,20	38,1	
Nref	5345	5342	
Tmin, Tmax	0.972,0.977	0.94	000
Tmin'	0.972		
```Correction method= # Reported T Limits: Tmin=0.949 Tmax=1.000 AbsCorr = MULTI-SCAN```			
Data completeness=0.999		Theta $(\max )=25.350$	
R (reflections) $=0.0605(3486$ )		wR2 (reflections) $=0.1775(5342)$	
$\mathrm{S}=1.050$	Npar $=350$		



Figure S8. ORTEP representation of $\left[\mathrm{Et} \mathrm{t}_{3} \mathrm{NH}\right]_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{NHCO}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right] ; 30 \%$ displacement ellipsoids.

## Crystal structure of 3e-H (CCDC1861490)

Compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right][3 \mathrm{e}-\mathrm{H}](25 \mathrm{mg})$ was dissolved in $\mathrm{MeOH} / \mathrm{MeCN}(1 \mathrm{~mL} / 1 \mathrm{~mL})$ at ca. $50{ }^{\circ} \mathrm{C}$ in a 4 mL glass vial and allowed to cool to room temperature. Colorless crystals of the composition $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NHCO}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{H}\right] \cdot \mathrm{CH}_{3} \mathrm{CN}$ suitable for X-ray diffraction were obtained within 1 d .



Figure S9. ORTEP representation of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NHCO}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{H}\right] \cdot \mathrm{CH}_{3} \mathrm{CN} ; 30 \%$ displacement ellipsoids.

## Crystal structure of [ $\left.\mathrm{Et}_{3} \mathrm{NH}\right][6 \mathrm{a}]$ (CCDC1861483)

Compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right][6 a](10 \mathrm{mg}, 0.031 \mathrm{mmol})$ was dissolved in acetonitrile $(0.5 \mathrm{~mL})$ in a 1 mL glass vial. The resulting colorless solution was filtered into a 18 cm long NMR tube and layered with diethylether ( 1 mL ). Colorless crystals of the composition $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}=\mathrm{CH}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ suitable for X-ray diffraction grew within 5 d at $25^{\circ} \mathrm{C}$.



Figure S10. ORTEP representation of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}=\mathrm{CH}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$;
$30 \%$ displacement ellipsoids.

## Crystal structure of [MePPh $\left.{ }_{3}\right][6 \mathrm{a}]$ (CCDC1861484)

Single crystals of $\mathbf{6 a}$ were also obtained with the $\left[\mathrm{MePPh}_{3}\right]^{+}$cation, and the structure is similar to that of $\left[\mathrm{Et}_{3} \mathrm{NH}\right][\mathbf{6 a}] .\left[\mathrm{Et}_{3} \mathrm{NH}\right][\mathbf{6 a}](30 \mathrm{mg})$ was suspended in water $(1 \mathrm{~mL})$, and NaOH (2 equiv) was added to form the $\mathrm{Na}^{+}$salt. To this solution $\left[\mathrm{MePPh}_{3}\right] \mathrm{Br}(2$ equiv) was added to give $\left[\mathrm{MePPh}_{3}\right][\mathbf{6 a}]$ as a colorless precipitate. $\left[\mathrm{MePPh}_{3}\right][\mathbf{6 a}](20$ $\mathrm{mg})$ was dissolved in acetone $(0.5 \mathrm{~mL})$. The resulting colorless solution was filtered into an 18 cm long NMR tube and layered with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$. Colorless crystals of the composition $\left[\mathrm{MePPh}_{3}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}=\mathrm{CH}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$ suitable for X-ray diffraction grew within 2 d at $25^{\circ} \mathrm{C}$.



Figure S11. ORTEP representation of $\left[\mathrm{MePPh}_{3}\right]\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}=\mathrm{CH}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right] ; 30 \%$ displacement ellipsoids.

## Crystal structure of [ $\left.\mathrm{Et}_{3} \mathrm{NH}\right][6 \mathrm{c}]$ (CCDC1861485)

Compound $\left[\mathrm{Et}_{3} \mathrm{NH}\right][6 \mathrm{c}](10 \mathrm{mg})$ was dissolved in acetonitrile $(0.5 \mathrm{~mL})$ in a 1 mL glass vial. The resulting colorless solution was filtered into a 18 cm long NMR tube and layered with diethylether $(1 \mathrm{~mL})$. Colorless crystals of the composition [ $\mathrm{Et}_{3} \mathrm{NH}$ ] $\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{5}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ suitable for X-ray diffraction grew within 5 d at $25^{\circ} \mathrm{C}$.

```
Bond precision: C-C = 0.0059 A Wavelength=0.71073
Cell: a=10.8688(7) b=12.0426(6) c=13.1037(9)
 alpha=66.402(5) beta=67.187(6) gamma=85.080(5)
Temperature: 293 K
```



```
Correction method= # Reported T Limits: Tmin=0.985 Tmax=1.000
AbsCorr = MULTI-SCAN
Data completeness=0.986 Theta(max)=25.350
R(reflections)=0.0962(3419) wR2(reflections)= 0.3064(5202)
S = 1.050 Npar= 329
```



Figure S12. ORTEP representation of $\left[\mathrm{B}_{12} \mathrm{H}_{11} \mathrm{NH}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{5}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} ; 30 \%$ displacement ellipsoids.

## Crystal structure of $\left[\mathrm{MePPh}_{3}\right]_{2}[8](\mathbf{C C D C 1 8 6 1 4 8 7})$

$\left[\mathrm{MePPh}_{3}\right]_{2}[8](10 \mathrm{mg})$ was dissolved in acetone $(0.5 \mathrm{~mL})$ in a 1 mL glass vial. The resulting colorless solution was filtered into an 18 cm long NMR tube and layered with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$. Colorless crystals of the composition $\left[\mathrm{MePPh}_{3}\right]_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{~N}=\mathrm{C}=\mathrm{O}\right]$ suitable for X-ray diffraction grew within 2 d at $25^{\circ} \mathrm{C}$. Single crystals could also be obtained by recrystallization from aceotone.

```
Bond precision: C-C = 0.0041 A Wavelength=0.71073
Cell: a=11.3939(14) b=13.1505(15) c=14.8700(15)
 alpha=89.844(9) beta=81.969(9) gamma=71.540(11)
Temperature: 293 K
\begin{tabular}{|c|c|c|}
\hline & Calculated & Reported \\
\hline Volume & 2090.6(4) & 2090.6(4) \\
\hline Space group & P -1 & P -1 \\
\hline Hall group & -P 1 & -P 1 \\
\hline Moiety formula & \[
2(\mathrm{C} 19 \mathrm{H} 18 \mathrm{P}), \mathrm{C} \text { H11 B12 N }
\] & \[
\begin{aligned}
& 2(\text { C19 H18 P), C H11 B12 N } \\
& \text { O }
\end{aligned}
\] \\
\hline Sum formula & C39 H47 B12 N O P2 & C39 H47 B12 N O P2 \\
\hline Mr & 737.44 & 737.44 \\
\hline Dx,g cm-3 & 1.171 & 1.171 \\
\hline Z & 2 & 2 \\
\hline Mu (mm-1) & 0.137 & 0.137 \\
\hline F000 & 772.0 & 772.0 \\
\hline F000' & 772.62 & \\
\hline h, k, 1max & 13,15,17 & 13,15,17 \\
\hline Nref & 7655 & 7633 \\
\hline Tmin, Tmax & 0.952,0.973 & 0.575,1.000 \\
\hline Tmin' & 0.952 & \\
\hline
\end{tabular}
Correction method= # Reported T Limits: Tmin=0.575 Tmax=1.000
AbsCorr = MULTI-SCAN
Data completeness= 0.997 Theta(max)= 25.350
R(reflections)= 0.0507(4888) wR2(reflections)= 0.1366(7633)
S = 0.961 Npar= 498
```



Figure S13. ORTEP representation of $\left[\mathrm{MePPh}_{3}\right]_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{11} \mathrm{~N}=\mathrm{C}=\mathrm{O}\right] ; 30 \%$ displacement ellipsoids.

## IV References

[1] V. Geis, K. Guttsche, C. Knapp, H. Scherer, R. Uzun, Dalton Trans. 2009, 2687-2694.
[2] O. Bondarev, A. A. Khan, X. Tu, Y. V. Sevrugina, S. S. Jalisatgi, M. F. Hawthorne, J. Am. Chem. Soc. 2013, 135, 13204-13211.
[3] Y. Sun, J. Zhang, Y. Zhang, J. Liu, S. van der Veen, S. Duttwyler, Chem. Eur. J. 2018, 24, 10364-10371.


11B NMR 126 MHz CD3CN







20180602 ［NBu4］2［B12H11NHCONHPh］40mg dissolved in CD3CN 13C\｛1H\} NMR 101MHz

（17

$\left[\mathrm{NB}_{4}^{\oplus} \mathrm{u}_{4}\right]$
$\left[\mathrm{NB}_{4}^{\oplus}\right]$



 13C\｛1H\} NMR 101MHz
$\stackrel{\text { n }}{\sim}$




140





2016062920 mg [MePPh3]2[B12H11NCO] dissolved in 0.6 mL CD3CN, 1H NMR, 400MHz signal of NCO not detected

## $6 Z^{\circ} 811$ 06.611 $6 L^{\circ} 021$ $01^{\circ} 1 \varepsilon 1$ $\varepsilon \iota^{\circ} 1 \varepsilon 1$ $\angle l^{\circ} \hbar \varepsilon$ $8 Z^{\circ} \downarrow \varepsilon$ $90^{\circ} 9 \varepsilon$ $60^{\circ} 9 \varepsilon$ 







＊



${ }^{\oplus}$
$\mathrm{Et}_{3} \mathrm{NH}^{\oplus}$
20150313－syj－0077－2，Et3NHB12H11NHCHNMe2
20150316， $160 \mathrm{MHz}, 11 \mathrm{~B}, 12.4 \mathrm{mg}$ in 0.6 ml CD3CN

Current   NAME   EXPNO   PROCNO	$\begin{gathered} \text { Data Parameters } \\ 20150313-\mathrm{syj}-0078-1 \\ 3 \\ 1 \end{gathered}$
F2－Acquisition	
Date	20150316
Time	18.38
INSTRUM	spect
PROBHD	5 mm PABBO ${ }^{\text {BB－}}$
PULPROG	zg30
TD	65536
SOLVENT	CD3CN
NS	16
DS	
SWH	32051.281 Hz
FIDRES	0.489064 Hz
AQ	1.0223616 sec
RG	203
DW	15.600 usec
DE	6.50 usec
TE	293.6
D1	2.00000000 sec
	CHANNEL f1＝＝
${ }_{\text {P1 }}{ }^{\text {N }}$	11B
${ }_{\text {P1 }}^{\text {PLW1 }}$	75.000000000 W
SFO1	160.4615792 MHz
F2－Processing parame	
SI	32768
SF $\quad 160.4615790 \mathrm{MH}$	
WDW EM	
SSB	0 －
LB $\quad 10.00 \mathrm{~Hz}$	
$\begin{aligned} & \text { GB } \\ & \text { PC } \end{aligned}$	0 1．40
PC	1.40


路



$89^{\circ} 991$

$\circ$
$\boxed{\circ}$
-8
-8

$099^{\circ} \mathrm{GZL}$
ع＇ 2 LL
$06^{\circ} 6 Z 1$
ع1．0とし
$6 \varepsilon \circ 0 \varepsilon L$
$8 て ゙ し \varepsilon L$
0でとદ
so 8 \＆1
$\qquad$

20160228-syj-0196-1, Et3NHB12NHC(C6H5)NHC6H5
20160228, $128 \mathrm{MHz}, 11 \mathrm{~B}$ NMR, 6.2 mg in 0.6 ml CD2CI2

$\angle 8^{\circ} \mathrm{G}$





$$
\begin{array}{llll}
-10 & -15 & -20
\end{array}
$$

20160228－syj－0196－1，Et3NHB12NHC（C6H5）NHC6H5
20160228， $128 \mathrm{MHz}, 11 \mathrm{~B}\{1 \mathrm{H}\}$ NMR， 6.2 mg in 0.6 ml CD2

\&がLL-
\&がLL-
ع9Gl-
$\star て ゙ G レ-$

S8＇s－

Current
Nata Parameters
NAME
EXPNO
PROCNO

$*$
20160223－syj－0193－1，B12NHC（C6H3Cl2）NH（CH2）2NH（CH3）2

$$
26.6 \varepsilon
$$

$$
G L^{\prime} \dagger t
$$

$$
\pm 6.9 \mathrm{~s}
$$

عど8レレ
916てし
08．6てし
と9・ャยレ
＊




