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Abstract: A new hybrid inorganic-organometallic salt has been obtained from the reaction of the
Keggin-type silicotungstate anion with ferrocene in a water/methanol mixture as a result of the
partial oxidation of ferrocene molecules to ferrocenium cations. Single-crystal X-ray diffraction
analysis reveals the presence of four ferrocenium (FeIII) cations and one ferrocene (FeII) molecule
per plenary Keggin anion in the crystal structure of [FeIII (Cp)2]4[SiW12O40]·[FeII(Cp)2]·2CH3OH
(1). Compound 1 thus constitutes the first example in the literature in which ferrocenium and
ferrocene species coexist in the structure of a polyoxometalate-based salt. The two crystallographically
independent ferrocenium species in the asymmetric unit of 1 exhibit different configurations: One
displays an eclipsed conformation with ideal D5h symmetry, whereas the conformation in the other
one is staggered D5d. The crystal packing of 1 can be best described as an organometallic sub-lattice of
ferrocenium and ferrocene species linked by a network of π-π interactions that generates rectangular
cavities of about 14 × 10 Å in which strings of Keggin anions and methanol molecules are hosted,
further connected to each other via weak OPOM···CMeOH-OMeOH···OPOM type hydrogen bonds.
The charge-transfer nature of the salt has been studied by solid-state diffuse reflectance UV-Vis
spectroscopy and the presence of magnetically isolated FeIII/FeII centres has been confirmed by
Mössbauer spectroscopy. A topological study carried out on all of the pristine ferrocenyl species
deposited in the Cambridge Structural Database (CSD) has allowed two main conclusions to be
drawn: (1) these species tend to adopt extreme conformations (either eclipsed or staggered) with less
than a 15% of examples showing intermediate states and (2) the oxidation state of the iron centres can
be unequivocally assigned on the basis of a close inspection of the Fe···Cp distances, which allows
ferrocene neutral molecules and ferrocenium cations to be easily distinguished.

Keywords: polyoxometalates; ferrocene; single-crystal x-ray diffraction; mössbauer spectroscopy

1. Introduction

Polyoxometalates (POM) are anionic metal-oxide clusters with rich structural and electronic
variety and applications in areas of current interest such as catalysis, nanotechnology, materials science
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and biomedicine [1]. One of the most relevant properties of POMs is represented by their electron
acceptor capability, which can be nicely exemplified by the super-reduced Keggin-type [PMo12O40]27−

cluster reported by Nishimoto et al. for the preparation of molecular cluster batteries and capacitors [2].
Due to their high negative charges and large sizes, POMs can be used as acceptors in the formation
of charge-transfer (CT) salts with organic and/or organometallic electron donors. The first example
of such compounds was reported in 1988 and included the tetrathiafulvalene (TTF) organic donor in
combination with the Keggin-type tungstophosphate anion as acceptor unit [3]. These studies were
later extended to Keggin anions with different heteroatoms [4] or transition metal substitutions [5] and
to some other POM clusters with different topologies, such as the hexametalate [M6O19]2− anions. [6]
In regard to the organic donor molecules, distinct TTF-like derivatives have also been used in the
construction of this type of CT salts, such as bis(ethylenedithio)-tetrathiofulvalene (BEDT-TTF) [7] and
tetramethyltetraselenafulvalene (TMTSF) [8]. These studies were mainly focused on the preparation of
hybrids with a mixed-valence state on both the organic and inorganic components in order to obtain
materials with interesting conducting and magnetic properties [9].

Besides TTF-like groups, organometallic cations, such as ferrocenium [FeIII (C5H5)2]+·(Fc+) and its
derivatives, have also been thoroughly combined with POM clusters to prepare donor-acceptor hybrid
materials, because the easily accessible reduction potential of these organometallic species makes them
suitable for the formation of radical cations [10]. Ferrocenyl species have attracted great interest in the
field of molecular magnetism since the first molecule-based ferromagnet was reported in 1985, namely
the [Fe{C5(CH3)5}]·[TCNE] salt based on decamethylferrocenium cations (Fc*+) and tetracyanoethylene
anions [11,12]. Throughout the last three decades, several ferroceniun-POM salts have been synthesized
targeting outer sphere CT molecule-based magnets, in which the interaction between donors and
acceptors is based on electrostatic forces and hydrogen bond formation [13]. The structural analysis
of such compounds has been revealed as a key factor for the identification of potential interesting
properties and therefore, an extensive work has been dedicated to the single-crystal structure resolution
of compounds combining Fc+ or Fc*+ units with POM clusters of very different nature. These
include fully-oxidized or partially reduced [HxXM12O40]n− Keggin-type plenary polyoxomolybdates
(X = Si, Ge, P, As; H = 0–1) [14–17] or –tungstates (X = Si, FeIII; H = 0–1) [17], first-row transition
metal mono-substituted [HPCu(H2O)W11O39]4− Keggin or [Cr(OH)6Mo6O18]3− Anderson–Evans
paramagnetic anions [18] and redox-active [HS2Mo18O62]5− Wells–Dawson-type species [19]. Some
authors have opted for the organic derivatization of ferrocene units with positively-charged functional
groups to lead to ammonium [20] or phosphonium [21] cations that can act as acceptors in the formation
of CT salts with Keggin [22] or [M6O19]2− Lindqvist–type POMs (M = Mo, W) [23]. The covalent
linkage of the ferrocene groups to the POM cluster skeleton has also been achieved through the
replacement of shell O atoms with ferrocenyl-containing N- or O-donor ligands, as exemplified
by some ferrocenylimido derivatives of Lindqvist-type molybdates [24,25] or tris(alkoxo)-capped
hexavanadates bearing ferrocene-like substituents [26].

Despite the varied examples of compounds combining ferrocenyl units and POM clusters that
can be found in the literature, to date there is no structural evidence of both ferrocenium cations and
ferrocene neutral species coexisting in the crystal packing of any POM-based salt. Herein we report
the synthesis and structural characterization of compound [Fe(Cp)2]4[SiW12O40]·[Fe(Cp)2]·2CH3OH
(1) containing ferrocenyl units with both FeIII and FeII centres as assessed by Mössbauer spectroscopy
analyses. The CT nature of the salt has been confirmed by diffuse-reflectance UV-Vis spectroscopy
and the topological study carried out using all of the entries deposited in the Cambridge Structural
Database (CSD) [27] that contain isolated, pristine ferrocenyl species has allowed to easily discriminate
between ferrocenium cations (FeIII) and ferrocene molecules (FeII) in the title compound upon close
inspection of the Fe-C bond lengths, as well as to establish that this type of organometallic species tend
to adopt extreme conformations (either eclipsed or staggered) as observed for 1.
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2. Results and Discussion

2.1. Synthesis and Infrared Spectroscopy

Compound 1 was obtained in low yields as single crystals suitable for X-ray diffraction studies
from the reaction of the [α-SiW12O40]4− precursor and ferrocene (1:2 ratio) in a water/methanol
mixture at reflux conditions. In contrast to what has been observed for the ferrocenium-POM salts
reported to date, only partial oxidation of ferrocene took place in the formation of 1, resulting in the first
example in the literature in which ferrocenium (FeIII) and ferrocene (FeII) species coexist in the same
crystal structure. The formation of a compound combining Keggin-type POM clusters and ferrocenyl
units such as 1 was firstly confirmed by FT-IR spectroscopy. Two parts can be clearly differentiated
in the FT-IR spectrum of 1 (Figure 1): the inorganic fingerprint below 1000 cm−1 (a comparative
detail with that of the K4[α-SiW12O40]·17H2O precursor is also depicted) and the organometallic
region above. The spectrum of 1 exhibits the four characteristic bands of strong intensity (A, B, C
and E) that unequivocally correspond to the plenary α-Keggin tungstosilicate anion [28] but with
small red shifts of about 10 cm−1 that affect those three to which the νas(W-Ot) (Ot: terminal O atom)
vibrational mode contributes (bands A at 1011 cm−1, B at 972 cm−1 and C at 922 cm−1). The signal of
medium-to-weak intensity that originates from the antisymmetric stretching vibration of the W-O-W
bridges involving corner-sharing appears split at 880 and 856 cm−1 (signal D), whereas negligible
modifications are noticed for those signals associated with the stretching vibrations of the W-O-W
bridges between edge-sharing W centres (signal E at 785 cm−1) and the overall bending vibrations in
both the oxometallic skeleton and the central heterogroup (signals F and G at 532 and 483 cm−1).
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Figure 1. FT-IR spectrum of 1 and comparative detail of the inorganic fingerprint below 1000 cm−1

with that of the K4[α-SiW12O40] precursor.

Focusing on the organic region, the presence of ferrocenyl species in 1 is confirmed by the signals
associated with the stretching of the C(sp2)-H and C=C bonds that can be observed as peaks of medium
intensity at ca. 3100 and 1410 cm−1, respectively. According to the literature, ferrocenyl groups in
staggered (D5d) and eclipsed (D5h) conformation can be easily differentiated by IR spectroscopy
because the fingerprint of both forms is substantially different in the 450–500 cm−1 region of the
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spectrum [29]. Unfortunately, the presence of the strong absorption bands of the [SiW12O40]4− cluster
below 1000 cm−1 and more specifically, of the broad signal F, corresponding to the (W-Oe-W) + (Si-Oc)
combination (Oe: bridging O atom between edge-sharing W centres; Oc: central O atoms), makes
impossible to perform such analysis in our case as it shadows this entire range.

2.2. Crystal Structure

Compound 1 crystallizes in the triclinic space group P-1 with the following content in the
asymmetric unit: one half of the [α-SiW12O40]4− cluster unit located on a centre of inversion;
two ferrocenyl {Fe(C5H5)2} fragments placed in general positions (Fe1 and Fe2); one half of a
centrosymmetric ferrocenyl {Fe(C5H5)2} unit, the cyclopentadienyl ligand of which is disordered
over two positions that are related by an ideal in-plane rotation of 36◦ and show nearly equivalent
population factors (Fe3); and one methanol molecule of crystallization (Figure 2). The [SiW12O40]4−

cluster shows the characteristic structure of the α-Keggin anion, which is constituted by four {W3O13}
trimers composed each by three edge-sharing WO6 octahedra. These trimers are linked to each
other and to the central {SiO4} tetrahedron through corner-sharing in ideal Td symmetry. The central
tetrahedron is disordered over two positions related by the centre of inversion on which the cluster is
located, in such a way that a distorted {SiO8} cube with half-occupancies for the O sites is observed
as a result. Table A1 (Appendix A) compiles the bond lengths (W–O and Si–O) and most relevant
distances (W···Wtrans, W···Si and O···Otrans) for the Keggin cluster in the title compound and their
comparison with the magnitudes DFT-calculated for the [SiW12O40]4− anion with idealized tetrahedral
geometry [30]. In addition, Bond Valence Sum calculations [31] confirmed the highest oxidation state
for all the tungsten atoms (WVI), indicating that no reduction took place for any of the POM metal
centres. All the Fe–C bond lengths, Fe···Cg(Cp) distances and torsion angles between cyclopentadienyl
rings for each crystallographically independent ferrocenyl unit in 1 are listed in Table 1. The presence
of five ferrocenyl groups per [SiW12O40]4− anion suggests different oxidation states for the iron
centres belonging to the three crystallographically independent species that have been tentatively
assigned as ferrocenium cations (Fe1 and Fe2) and ferrocene molecules (Fe3) in order to maintain the
electroneutrality of the system. It is also worth mentioning that the two ferrocenium species in the
organometallic sub-lattice exhibit different conformations: one of the cations (Fe1) displays an eclipsed
configuration, whereas that of the second ferrocenium (Fe2) is staggered.
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Figure 2. Combined polyhedral/ball-&-stick representation (left) and ORTEP view with 50%
probability displacement ellipsoids (right) of the formula unit of 1. Colour code: W and {WO6}
octahedra, grey; Si and {SiO4} tetrahedron, purple; Fe, blue; C, black; O, red. The two positions over
which the Cp ligands of the Fe3 unit are disordered are depicted in brown and light blue. Hydrogen
atoms are omitted for clarity. Symmetry code: (i) 1 − x, −y, 1 − z.
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Table 1. Selected geometrical parameters (Å, ◦) for the three crystallographically independent
ferrocenyl species in 1.

Fe1 Fe2 Fe3

C1 2.084 (9) C11 2.044 (9) C21A 2.077 (18)
C2 2.086 (8) C12 2.059 (12) C22A 2.048 (19)
C3 2.080 (7) C13 2.057 (11) C23A 2.02 (2)
C4 2.075 (7) C14 2.043 (10) C24A 2.037 (10)
C5 2.078 (8) C15 2.034 (10) C25A 2.019 (10)
C6 2.060 (9) C16 2.062 (9) C21B 1.98 (3)
C7 2.073 (8) C17 2.084 (8) C22B 2.03 (2)
C8 2.089 (10) C18 2.083 (8) C23B 2.09 (2)
C9 2.086 (10) C19 2.062 (8) C24B 2.095 (19)

C10 2.068 (9) C20 2.049 (9) C25B 2.03 (2)
Average 2.08 Average 2.06 Average 2.05

Fe···Cg(Cp1) 1.704 Fe···Cg(Cp3) 1.701 Fe···Cg(Cp5A) 1.648
Fe···Cg(Cp2) 1.699 Fe···Cg(Cp4) 1.708 Fe···Cg(Cp5B) 1.667
Torsion angle 0.94 34.53 -

Symmetry D5h D5d Disordered

Cg(Cpi): Centroid of the i cyclopentadienyl ring defined by the following atoms: i = 1: C1, C2, C3, C4, C5; i = 2: C6,
C7, C8, C9, C10; i = 3: C11, C12, C13, C14, C15; i = 4: C16, C17, C18, C19, C20; i = 5: C21, C22, C23, C24, C25 (A and
B represent the two equivalent positions in the disordered ferrocene unit).

In order to crystallographically discriminate between ferrocenium cations and ferrocene molecules
upon close inspection of the bond lengths and analyse the different geometrical conformations they
can adopt, a topological study was carried out using all of the entries deposited in the CSD that contain
isolated, pristine ferrocenyl species. Geometrical parameters of crystallographically independent
90 ferrocene and 49 ferrocenium fragments belonging to 119 different crystal structures have been
determined in the CSD database (last visit: June 2018; last update: February 2018), excluding powder
structures and those containing disordered fragments. All the Fe–C bond lengths, Cg(Cp)···Cg(Cp)
and Fe···Cg(Cp) distances, torsion angles between cyclopentadienyl rings and oxidation states for the
iron centres have been compiled in Table A2 (Appendix B).

The scatter plot of the average Fe···Cg(Cp) distances versus Fe–C bond lengths is depicted in
Figure 3. It is worth mentioning that Fe···Cg(Cp) distances increase linearly with the Fe–C bond
lengths, as defined by the <C–Fe···Cg(Cp)> angle of about 34–36◦ displayed by all the molecular units
included in this search. All the ferrocenyl species can be graphically classified into two main groups
depending on the oxidation state of the Fe atoms. The more stable FeII state for ferrocene moieties
(obeys the 18-electron rule) exhibits shorter Fe–C and Fe···Cg(Cp) distances in the ca. 2.00–2.06 Å and
1.60–1.66 Å range respectively, whereas longer bond lengths in the ca. 2.05–2.11 Å and 1.68–1.72 Å
range are found for ferrocenium cations. According to this distribution, the fact that the Fe···Cg(Cp)
distances lay above or below 1.67 Å can be regarded as a direct method to unequivocally distinguish
the nature of ferrocenyl units as ferrocene species or ferrocenium cations. When it comes to the
crystal structure of 1, two species belong to the latter group (Fe···Cg(Cp) = 1.70 Å) whereas the third
is included in the former classification (Fe···Cg(Cp) = 1.66 Å). Therefore, we confirmed our initial
assumption: Fe1 and Fe2 are ferrocenium cations, whereas Fe3 is a neutral ferrocene group.

It is well known that ferrocenyl species can adopt two extreme conformations depending on the
relative position of the cyclopentadienyl rings: eclipsed with ideal D5h symmetry and staggered with
ideal D5d symmetry. Both configurations are very common because the rotation barrier along the
C5 axis has been calculated to be as low as 0.9 ± 0.3 kcal mol−1 (≈4 kJ mol−1). [32] Analysis of the
torsion angles between cyclopentadienyl rings determines the conformation of a given group that goes
from 0◦ in a totally eclipsed form to 36◦ for a completely staggered configuration. Figure 4 displays
the Fe···Cg(Cp) distance versus torsion-angle scatter plot for all the ferrocenyl units from the CSD
database mentioned above. Considering an arbitrary criterion, torsion angles ranging from 0 to 6◦ have
been classified as eclipsed, whereas those from 30 to 36◦ are staggered. The plot clearly shows that
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most of the species show extreme configurations, with less than 15% of the cases in intermediate states.
In the case of ferrocenes, this effect is even more pronounced. More than 90% of the structures exhibit
extreme conformations and 2/3 of the cases are staggered. Focusing on the non-disordered moieties in
1, Fe1 is included within the group of eclipsed ferrocenium cations, whereas Fe2 is staggered.Molecules 2018, 23, x FOR PEER REVIEW  6 of 19 
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The crystal packing of 1 can be best described as an organometallic sub-lattice formed by ferrocenyl
species that generate rectangular cavities of about 14 × 10 Å along the [100] direction where the
[SiW12O40]4− anions are hosted. Polyanions located in these cavities are linked to each other via
weak OPOM···CMeOH–OMeOH···OPOM type bonds involving methanol solvent molecules and surface
O atoms from POM clusters (Figure 5). Pairs of Fe1 ferrocenium columns running along the [011]
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direction interact with each other in an anti-parallel manner through π-π stacking as can be viewed in
Figure 6. The three dimensional network of the organometallic sub-lattice is completed by the other
ferrocenyl units establishing weak T-type π-π interactions: Fe3 groups link Fe1 columns in the yz plane,
whereas Fe2 units play a similar role along the crystallographic x axis. Geometrical parameters of the
π-π interactions established between cyclopentadyenil rings are compiled in Table 2. Additionally,
inorganic and organometallic components interact through CFc–H···OPOM type contacts established
between cyclopentadienyl rings from ferrocenyl groups and O atoms from the POM surface. Bond
lengths and angles of such supramolecular interactions are summarized in Table 3.Molecules 2018, 23, x FOR PEER REVIEW  8 of 19 
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Figure 5. View of the crystal packing of 1 along the [100] direction (A). Channels formed by the
organometallic sub-lattice. (B) Hydrogen atoms and methanol molecules are omitted for clarity. Hybrid
polyhedral and ball & sticks representation of the hydrogen-bonded, methanol-bridged POM chain
running along the [100] direction (C).

Table 2. Geometrical parameters (Å, ◦) of the intermolecular π-π interactions in 1.

π-π Interactions Cg(Cp)··· Plane ANG Cg(Cp)··· Cg(Cp) Slippage

Stacking Cp1-Cp1i 3.445 0.00 3.497 0.603
Cp2-Cp2ii 3.326 0.00 3.829 1.898

T-type Cp1-Cp3iii 3.728 89.4 (5) 5.145 3.545
Cp1-Cp5A 4.264 88.7 (9) 4.537 1.550
Cp1-Cp5B 4.244 87.1 (11) 4.480 1.435
Cp2-Cp4 4.680 88.3 (5) 4.720 0.618

Cp3-Cp5Aiv 4.938 88.4 (10) 5.079 1.188
Cp3-Cp5Biv 4.873 87.4 (11) 4.989 1.061

Cpi: i cyclopentadienyl rings defined in Table 2. Cg(Cp)···plane: distance from one centroid to the plane containing
the other ring. ANG: dihedral angle between planes containing both rings. Cg(Cp)··· Cg(Cp): distance between
centroids. Slippage: distance between one centroid and its perpendicular projection to the plane containing the
second ring. Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) −x, −y, −z; (iii) −1 + x, y, z; (iv) 1 + x, y, z.
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Figure 6. View of the organometallic sub-lattice formed by π-π interactions between ferrocenyl units in
1 along the [011] direction. Colour code: Fe1 ferrocenium (green), Fe2 ferrocenium (pink), Fe3 ferrocene
(blue).

Table 3. Bond lengths (Å) and angles (◦) for C–H···O type interactions in 1.

D-A D-H H···A D···A D-H···A
O1M–H1M···O13 0.84 2.25 3.018 (12) 152
C1M–H1M1···O14 0.98 2.36 3.281 (15) 157
C1M–H1M1···O4i 0.98 2.88 3.168 (16) 98

C4-H4···O4i 0.95 2.44 3.182 (12) 135
C7-H7···O5ii 0.95 2.55 3.450 (12) 157
C8-H8···O6i 0.95 2.48 3.286 (10) 143

C11-H11···O12iii 0.95 2.56 3.389 (13) 145
C12-H12···O2iii 0.95 2.48 3.225 (14) 135
C13-H13···O3iv 0.95 2.53 3.342 (14) 144
C13-H13···O8iv 0.95 2.51 3.371 (15) 150
C14-H14···O1 0.95 2.46 3.380 (14) 164
C15-H15···O6v 0.95 2.42 3.352 (16) 167
C16-H16···O6iii 0.95 2.44 3.240 (11) 142
C18-H18···O7iv 0.95 2.59 3.414 (15) 146
C19-H19···O1iv 0.95 2.59 3.308 (11) 133
C20-H20···O15 0.95 2.56 3.272 (11) 132

C24B-H24B···O16iiii 0.95 2.59 3.427 (12) 147

D = donor; A = acceptor. Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) −1 + x, y, −1 + z; (iii) x, y, −1 + z; (iv) 1 − x, 1 −
y, 1 − z; (v) 1 − x, −y, 1 − z.

2.3. Diffuse Reflectance UV-Vis Spectroscopy

To evaluate the electronic properties of the title compound, it has been analysed by diffuse
reflectance UV-Vis spectroscopy. The spectra registered for a powdered crystalline sample of 1,
the K4[SiW12O40]·17H2O POM precursor, commercial ferrocene and the FcPF6 salt prepared for
comparative purposes following reported procedures [33] are displayed in Figure 7. The electronic
spectrum of the POM precursor shows a strong absorption band centred in the UV region (below
300 nm) that extends up to 375 nm and it is associated with the O→W ligand-to-metal charge transfer
(LMCT) transition of the plenary inorganic framework. In the case of ferrocene, the band at ca. 340
and the broad adsorption in the blue region that extends from 360 to 580 nm (centred at ca. 450 nm)
have been attributed to Fe (e2g) → Cp (e1g) charge transfer and symmetry-forbidden Fe (a1g) →
Fe (e1g) transitions, respectively [34]. For its oxidized ferrocenium form in FcPF6, the continuous
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adsorption below 650 nm is in the origin of its dark blue colour. The O→W LMCT and adsorption
bands belonging to both ferrocene and ferrocenium species can also be observed in the spectrum
of 1. However, the band at lower energy (ca. 640 nm) is exclusive for 1 and may be ascribed to an
intermolecular charge-transfer transition between ferrocenyl donors and POM acceptors [19,21] since
none of its constituents exhibit any absorption in this range.
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Figure 7. Diffuse Reflectance UV-Vis spectrum of powdered crystalline sample of 1 compared with
those of the K4[SiW12O40]·17H2O precursor, ferrocene (Fc) and the FcPF6 salt.

2.4. 57Fe Mössbauer Spectroscopy

Preliminary Electronic Spin Resonance spectroscopy studies were conducted for 1 that proved
how ferrocenium salts are silent at room temperature due to the short T1 relaxation time. The unpaired
electron is not in the FeIII centre and it seems to get delocalized all over the aromatic system. [35]
Therefore, we decided to make use of 57Fe Mössbauer spectroscopy, because it allows for determining
among others the oxidation and spin states of iron centres, as well as their symmetry, magnetic
interactions and chemical environment. The technique is based on the absorption of energetically
slightly different γ rays generated by Doppler effect in a radioactive source moving at speeds of
several mm/s, in such a way that different absorption peaks are registered and their position is
defined by the δ isomer shift. Nuclei in states with non-spherical charge distribution produce an
asymmetrical quadrupolar electric field, which splits the nuclear energy levels. These are quantified
by their quadrupolar splitting of the signals (∆). Additionally, Zeeman splitting can be generated by
magnetic coupling between centres. [36]

Figure 8 displays the experimental 57Fe Mössbauer spectrum for a powdered sample of 1, together
with the curve fits for each different iron-containing chemical species present in its crystal structure.
All the experimental results are summarized in Table 4. The spectrum has been fitted to two singlets
attributed to iron nuclei with a very similar chemical environment (δ = 0.27 and 0.44 mm/s) and
a wide doublet with a quadrupolar splitting of 1.17 mm/s and a larger isomer shift of 0.71 mm/s.
It is worth highlighting the absence of any extra peak, which indicates that paramagnetic centres
are magnetically well isolated. The presence of both singlets compares well with the signals arising
from ferrocenium units (FeIII centres with spherical charge distribution) displaying isomer shifts
that typically range from 0.30 to 0.65 mm/s. [37] Conversely, doublets with a chemical shift in the
0.50–1.0 range and quadrupolar splitting values of ca. 1–3 mm/s could be expected for ferrocene FeII

nuclei. [38] These results are in line with the two crystallographically independent ferrocenium groups
and the additional ferrocene molecule determined in the crystal structure of 1. In fact, the relative
atomic ratio for Fe1III:Fe2III:Fe3II centres was calculated to be 2:2:1 from the integration of the area
delimiting each of the sub-spectra, in good agreement with the molecular formula of 1.
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Table 4. Experimental results obtained from the 57Fe Mössbauer spectrum of 1.

Signal δ (mm/s) Multiplicity ∆ (mm/s) Oxidation State Area Atomic %

Fe1 0.27 1 - III 2 40
Fe2 0.44 1 - III 2 40
Fe3 0.71 2 1.17 II 1 20

δ isomer shifts are relative to the α-Fe.

3. Experimental Section

3.1. Materials and Methods

The K4[α-SiW12O40]·17H2O precursor was synthesized following reported procedures [39] and
identified by infrared spectroscopy (FT-IR). All other reagents were purchased from commercial
sources and used without further purification. The FT-IR spectra were recorded as KBr pellets on a
Shimadzu FTIR-8400S spectrophotometer (Shimadzu, Kyoto, Japan) in the 400−4000 cm−1 spectral
range. The carbon and hydrogen contents were determined on a Perkin Elmer 2400 CHN analyser
(PerkinElmer Inc., Waltham, MA, USA), whereas metal analyses (Fe) were performed on a Q-ICP-MS
ThermoXSeries II analyser (Fisher Scientific International, Inc, Pittsburgh, PA, USA). Diffuse Reflectance
studies were carried out on a UV-Vis-NIR Varian Cary 500 spectrophotometer (Varian, Palo Alto, CA,
USA). The Mössbauer spectra were recorded at room temperature in transmission geometry using
a conventional constant-acceleration spectrometer with a 57Co-Rh source calibrated with a Fe sheet
(δ = −0.11 mm s−1). The fitting was performed using the NORMOS program (Universität Dortmund,
Dortmund, Germany) [40].

3.2. Synthesis of [Fe(Cp)2]4[SiW12O40]·[Fe(Cp)2]·2CH3OH (1)

To a hot solution of K4[α-SiW12O40]·17H2O (990 mg, 0.30 mmol) in water (10 mL) Fe(Cp)2 (112 mg,
0.60 mmol) dissolved in methanol (5 mL) was added. The resulting yellow solution was refluxed
for 2 h, stirred while cooling down to room temperature overnight and left to slowly evaporate
in an open container. Purple prismatic crystals suitable for X-ray diffraction were obtained over a
period of approximately two weeks (yield: 80 mg, 17% based on Fe). Elemental analysis (%) calc. for
C52H58Fe5O42SiW12: C, 16.14; H, 1.51; Fe, 7.22. Found: C, 15.09; H, 1.42; Fe, 7.03. FT-IR (KBr, cm−1):
3101 (m), 1412 (m), 1011 (m), 972 (s), 922 (s), 88 0 (w), 856 (sh), 785 (s), 532 (m).



Molecules 2018, 23, 3150 11 of 19

3.3. X-ray Crystallography

Crystallographic data for compound 1 are summarized in Table 5. Intensity data were collected
at 100(2) K on an Oxford Diffraction Xcalibur (Rigaku Oxford Diffraction, Oxford, UK) single-crystal
diffractometer (Mo Kα radiation, λ = 0.71073 Å) fitted with a Sapphire charge-coupled device detector.
The data collection, unit cell determination, intensity data integration, routine corrections for Lorentz
and polarization effects and analytical absorption correction with face indexing were processed using
the CrysAlis software package (Rigaku Oxford Diffraction, Oxford, UK) [41]. The structure was
solved using direct methods as implemented in SIR-2004 (Istituto di Cristallografia, CNR, Roma,
Italy) [42] and refined by full-matrix least-squares analysis with the SHELXL-97 program (University
of Göttingen, Göttingen, Germany) [43]. Heavy atoms (W, Fe, Si) were located in the initial resolution
and the remaining light atoms (O, C) were located from successive Fourier maps. The C atoms from
the ferrocene unit (Fe3) were disordered over two positions with 50% population factors. Thermal
vibrations were treated anisotropically and those from non-disordered cyclopentadienyl C atoms were
restrained to be similar to each other using default DELU commands. Thermal ellipsoids belonging to
disordered cyclopentadienyl C atoms were restrained using more restrictive ISOR commands. For the
All H atoms in the methanol molecules and cyclopentadienyl ligands were included in calculated
positions and refined as riding atoms using default SHELXL parameters. Final geometrical calculations
were carried out with PLATON (Utrecht University, Utrecht, The Netherlands) [44] as integrated in the
WinGX (University of Glasgow, Glasgow, UK) crystallographic software package [45]. CCDC-1878742
(1) contains the supplementary crystallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 5. Crystallographic data for 1.

Parameters 1

Formula C52H58Fe5O42SiW12
FW (g mol−1) 3868.40

Crystal System Triclinic
Space Group P–1

a (Å) 12.5120 (5)
b(Å) 13.0831 (6)
c (Å) 13.3076 (6)
α (◦) 117.296 (5)
β (◦) 95.632 (3)
γ (◦) 101.909 (4)

V (Å3) 1874.03 (18)
Z 1

ρcalcd (g cm−3) 3.478
µ (mm−1) 19.651

Collected Reflections 19620
Unique Reflections (Rint) 8904 (0.036)

Observed Reflections [I > 2σ(I)] 6061
Parameters 505
Restrains 120

R(F) a [I > 2σ(I)] 0.036
wR(F2) a [all data] 0.072

GoF 0.860
a R(F) = Σ||Fo − Fc||/Σ|Fo|; wR(F2) = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.

4. Conclusions

Compound [FeIII(Cp)2]4[SiW12O40]·[FeII(Cp)2]·2CH3OH (1) constitutes the first example in the
literature in which ferrocenium (FeIII) and ferrocene (FeII) species coexist in the structure of a
polyoxometalate-based salt. The asymmetric unit of 1 displays two crystallographically independent
ferrocenium cations (one in an eclipsed D5h conformation and the other one in staggered D5d) and one

www.ccdc.cam.ac.uk/data_request/cif
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half of a neutral ferrocene molecule disordered over two positions with similar population factors.
The crystal packing of 1 can be best described as an organometallic sub-lattice of ferrocenyl-type species
linked by a network of π-π interactions that generates rectangular cavities in which strings of Keggin
anions and methanol molecules connected to each other via weak OPOM···CMeOH–OMeOH···OPOM

interactions, are hosted. The charge-transfer nature of the salt has been assessed by solid-state diffuse
reflectance UV-Vis spectroscopy and 57Fe Mössbauer spectroscopy have proved to be a very useful
tool to confirm the presence of magnetically isolated FeIII/FeII centres in a 4:1 ratio. Finally a thorough
topological study on the pristine ferrocenyl species deposited in the CSD led us to conclude that
(1) ferrocenyl groups tend to present extreme conformations; and (2) close inspection of geometrical
parameters allows ferrocene neutral molecules and ferrocenium cations to be easily distinguished,
because the later exhibit significant longer Fe···Cp distances (above or below 1.67 Å). For the near
future, we plan to react transition metal- or lanthanide-containing POMs showing accessible centres
with ferrocene derivatives with coordinating ability (e.g., ferrocene carboxylate, ferrocene-appended
2,2’-bipyrydine ligands) with the aim of studying the effect on their electronic properties (i.e., redox
properties, charge-transfer processes).

Supplementary Materials: The following are available online: CIF file for the crystal structure of 1 reported in
this paper.
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Appendix A

Table A1. W-O and Si-OC bond lengths and W···Si, W···Wtrans and O···Otrans (Å) distances for the
inorganic building block [SiW12O40]4− in 1 and their comparison with those of the optimized polyanion.

1

W1 W2 W3 W4 W5 W6
Ot O1 1.670 (5) O2 1.655 (6) O3 1.667 (6) O4 1.658 (6) O5 1.669 (7) O6 1.666 (6)
Ob O7 1.872 (8) O12 1.891 (6) O14 1.870 (6) O16 1.885 (8) O16 1.894 (6) O17 1.885 (7)

O10 1.880 (8) O7 1.904 (7) O8 1.885 (8) O11 1.892 (7) O15 1.893 (6) O13 1.891 (7)
O11 1.887 (8) O13 1.909 (6) O9 1.891 (6) O18 1.895 (8) O17 1.900 (6) O10 1.899 (7)
O9 1.888 (7) O8 1.913 (8) O15 1.900 (7) O14 1.896 (7) O12 1.905 (6) O18 1.900 (8)

Oc O22 2.372 (9) O19 2.367 (11) O19 2.344 (10) O22 2.323 (10) O20 2.348 (10) O22 2.360 (11)

[SiW12O40]4− 1
Optimized [30]

Range Average

W–Oc 2.323–2.461 2.385 2.325
W–Ob 1.870–1.913 1.893 1.916
W–Ot 1.655–1.670 1.664 1.743
Si–Oc 1.591–1.705 1.644 1.667
W···Si 3.516–3.541 3.529 3.588

W···Wtrans 7.032–7.082 7.057 7.172
O···Otrans 10.364–10.421 10.386 10.619

Oc: central oxygen atom; Ob: bridging oxygen atoms between W centres; Ot: terminal oxygen atoms.
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Appendix B

Table A2. Selected distances (Å), torsion angles (T, ◦) and oxidation states of Fe centres (OS) for all the structures containing pristine ferrocenyl units included in the
CSD database.

Refcode Fe–C Mean Cg···Cg′ Fe···Cg T OS

AFALAV 2.074 2.076 2.071 2.065 2.071 2.075 2.086 2.088 2.077 2.071 2.075 3.395 1.697 1.698 18.844 III
AFALID 2.098 2.107 2.081 2.081 2.107 2.081 2.081 2.107 2.098 2.107 2.095 3.422 1.711 1.711 35.251 III

AFALID01 2.081 2.093 2.068 2.068 2.093 2.068 2.068 2.093 2.081 2.093 2.081 3.408 1.704 1.704 35.423 III
AFALOJ 2.086 2.074 2.072 2.094 2.076 2.078 2.079 2.081 2.098 2.104 2.084 3.406 1.704 1.702 17.247 III
AGEFEX 2.06 2.027 2.039 2.056 2.046 2.066 2.051 2.03 2.077 2.047 2.050 3.407 1.702 1.706 5.975 III

BEJLOR (Fe1) 2.093 2.065 2.028 2.009 2.038 2.058 2.003 2.043 2.038 2.062 2.044 3.293 1.650 1.646 1.615 II
BEJLOR (Fe2) 2.038 2.051 2.064 2.065 2.049 1.986 2.078 2.087 2.058 2.003 2.048 3.305 1.658 1.650 0.369 II
COTPUW02 2.056 2.046 2.103 2.046 2.056 2.07 2.073 2.087 2.073 2.07 2.068 3.394 1.698 1.697 0 III
DOMZEM 2.12 2.115 2.085 2.066 2.08 2.064 2.074 2.087 2.111 2.102 2.090 3.41 1.707 1.703 3.723 III
DOQHOG 1.985 1.991 1.959 1.934 2.01 2.01 1.934 1.959 1.991 1.985 1.976 3.118 1.559 1.559 0 II
FANNUE 2.01 2.01 2.015 2.01 2.01 2.015 2.01 2.01 2.01 2.01 2.011 3.275 1.637 1.637 34.704 II

FANNUE01 2.001 2.005 2.054 2.005 2.001 2.054 2.005 2.001 2.001 2.005 2.013 3.221 1.610 1.610 34.268 II
FEHYAS02 2.029 2.044 2.049 2.037 2.033 2.025 2.042 2.024 2.019 2.024 2.033 3.283 1.644 1.639 0.241 II
FEHYAS03 2.04 2.047 2.044 2.037 2.045 2.036 2.043 2.037 2.03 2.024 2.038 3.291 1.647 1.644 0.622 II
FEHYAS04 1.995 2.025 2.047 2.024 2.01 2.02 1.999 2.017 1.99 1.965 2.007 3.263 1.643 1.625 1.051 II
FEOCAS 2.074 2.062 2.063 2.052 2.065 2.066 2.064 2.068 2.078 2.083 2.067 3.403 1.699 1.705 2.783 III

FERCBI10 2.068 2.073 2.073 2.114 2.086 2.065 2.09 2.071 2.054 2.062 2.076 3.404 1.706 1.699 0.487 III
FERCBI11 2.109 2.086 2.063 2.073 2.105 2.102 2.094 2.068 2.085 2.107 2.089 3.412 1.705 1.708 2.391 III

FEROCE16 (Fe1) 2.043 2.038 2.046 2.051 2.049 2.05 2.045 2.048 2.048 2.048 2.047 3.297 1.648 1.650 8.735 II
FEROCE16 (Fe2) 2.041 2.045 2.053 2.048 2.046 2.046 2.048 2.045 2.042 2.044 2.046 3.295 1.649 1.646 9.023 II
FEROCE17 (Fe1) 2.038 2.035 2.041 2.048 2.044 2.049 2.041 2.048 2.044 2.047 2.043 3.299 1.648 1.651 9.118 II
FEROCE17 (Fe2) 2.035 2.043 2.05 2.046 2.04 2.042 2.048 2.042 2.038 2.045 2.043 3.298 1.65 1.649 9.512 II
FEROCE18 (Fe1) 2.034 2.035 2.039 2.043 2.045 2.05 2.043 2.046 2.041 2.043 2.042 3.297 1.647 1.650 9.837 II
FEROCE18 (Fe2) 2.027 2.039 2.052 2.045 2.036 2.043 2.046 2.043 2.034 2.046 2.041 3.296 1.648 1.649 10.283 II

FEROCE24 2.055 2.051 2.063 2.063 2.051 2.054 2.052 2.052 2.054 2.062 2.056 3.316 1.655 1.661 0.069 II
FEROCE26 2.012 2.035 2.042 2.023 2.005 2.023 2.005 2.012 2.035 2.042 2.023 3.287 1.644 1.644 35.998 II
FEROCE27 2.009 2.012 2.031 2.039 2.026 2.031 2.039 2.026 2.009 2.012 2.023 3.277 1.639 1.639 35.983 II
FEROCE35 2.031 2.01 2.005 2.017 2.022 2.017 2.022 2.031 2.01 2.005 2.017 3.238 1.619 1.619 35.735 II
FEROCE36 2.038 2.011 2.007 2.016 2.024 2.016 2.024 2.038 2.011 2.007 2.019 3.239 1.620 1.620 35.44 II
FEROCE37 2.041 2.016 2.009 2.018 2.033 2.018 2.033 2.041 2.016 2.009 2.023 3.244 1.622 1.622 35.585 II
FEROCE38 2.032 2.012 2.008 2.017 2.034 2.017 2.034 2.032 2.012 2.008 2.021 3.238 1.619 1.619 35.778 II
FEROCE39 2.041 2.011 2.016 2.016 2.035 2.016 2.035 2.041 2.011 2.016 2.024 3.247 1.623 1.623 35.762 II
FEROCE40 2.036 2.015 2.016 2.021 2.033 2.021 2.033 2.036 2.015 2.016 2.024 3.249 1.625 1.625 35.833 II
FEROCE41 2.037 2.018 2.014 2.021 2.035 2.021 2.035 2.037 2.018 2.014 2.025 3.251 1.625 1.625 35.731 II
FEROCE42 2.026 2.052 2.021 2.012 2.019 2.021 2.052 2.026 2.019 2.012 2.026 3.252 1.626 1.626 34.943 II
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Table A2. Cont.

Refcode Fe–C Mean Cg···Cg′ Fe···Cg T OS

FEROCE43 2.031 2.017 2.017 2.02 2.035 2.02 2.035 2.031 2.017 2.017 2.024 3.247 1.624 1.624 35.825 II
FEROCE44 2.04 2.022 2.018 2.022 2.036 2.022 2.036 2.04 2.022 2.018 2.028 3.258 1.629 1.629 35.816 II
FEROCE45 2.044 2.021 2.018 2.028 2.041 2.028 2.041 2.044 2.021 2.018 2.030 3.26 1.630 1.630 35.881 II
FEROCE46 2.044 2.021 2.02 2.026 2.045 2.026 2.045 2.044 2.021 2.02 2.031 3.264 1.632 1.632 35.498 II
FEROCE47 2.045 2.025 2.024 2.027 2.036 2.027 2.036 2.045 2.025 2.024 2.031 3.272 1.636 1.636 35.870 II
FEROCE48 2.044 2.024 2.029 2.032 2.037 2.032 2.037 2.044 2.024 2.029 2.033 3.271 1.636 1.636 35.723 II
FEROCE49 2.040 2.033 2.027 2.02 2.034 2.020 2.034 2.04 2.033 2.027 2.031 3.270 1.635 1.635 35.471 II
FEROCE50 2.053 2.028 2.036 2.023 2.044 2.023 2.044 2.053 2.028 2.036 2.037 3.277 1.639 1.639 35.602 II
FEROCE51 2.054 2.026 2.026 2.03 2.051 2.026 2.03 2.051 2.054 2.026 2.037 3.282 1.641 1.641 35.753 II
FEROCE52 2.045 2.029 2.028 2.032 2.049 2.032 2.049 2.045 2.029 2.028 2.037 3.285 1.642 1.642 35.794 II
FEROCE53 2.052 2.024 2.027 2.031 2.046 2.027 2.031 2.046 2.052 2.024 2.036 3.282 1.641 1.641 35.743 II
FEROCE54 2.051 2.028 2.022 2.025 2.042 2.025 2.042 2.051 2.028 2.022 2.034 3.288 1.644 1.644 35.784 II
FEROCE55 2.073 2.016 2.017 2.011 2.06 2.017 2.011 2.06 2.073 2.016 2.035 3.292 1.646 1.646 34.983 II
FEROCE56 2.061 2.025 2.016 2.018 2.036 2.016 2.018 2.036 2.061 2.025 2.031 3.293 1.646 1.646 34.804 II
FEROCE57 2.062 2.018 2.019 2.015 2.028 2.019 2.015 2.028 2.062 2.018 2.028 3.292 1.646 1.646 34.976 II
FEROCE58 2.060 2.022 2.021 2.013 2.022 2.021 2.013 2.022 2.06 2.022 2.028 3.294 1.647 1.647 34.540 II
FEROCE59 2.049 2.04 2.009 2.030 2.034 2.009 2.030 2.034 2.049 2.040 2.032 3.301 1.651 1.651 35.456 II
FEROCE60 2.059 1.981 2.009 2.033 2.085 2.009 1.981 2.059 2.085 2.033 2.033 3.299 1.649 1.649 35.317 II
FEROCE61 2.011 2.072 2.072 1.970 2.036 1.970 2.036 2.011 2.072 2.072 2.032 3.297 1.649 1.649 35.955 II
FEROCE62 2.024 2.017 1.982 2.067 2.073 1.982 2.017 2.024 2.073 2.067 2.033 3.297 1.649 1.649 35.283 II
FEROCE63 2.030 2.038 1.995 2.027 2.052 1.995 2.038 2.030 2.052 2.027 2.028 3.287 1.643 1.643 35.361 II
FEROCE64 2.032 2.042 2.025 2.026 2.039 2.025 2.042 2.032 2.039 2.026 2.033 3.294 1.647 1.647 35.406 II
FEROCE65 2.031 2.052 2.044 2.046 2.024 2.046 2.024 2.031 2.052 2.044 2.039 3.292 1.646 1.646 35.621 II
FEROCE66 2.031 2.026 2.001 2.042 2.033 2.001 2.026 2.031 2.033 2.042 2.027 3.279 1.639 1.639 35.444 II
FEROCE67 2.055 2.018 2.011 2.016 2.028 2.011 2.016 2.028 2.055 2.018 2.026 3.312 1.656 1.656 34.620 II
FEROCE68 2.065 2.023 2.014 2.022 2.037 2.014 2.022 2.037 2.065 2.023 2.032 3.293 1.647 1.647 34.804 II
FEROCE69 2.045 2.030 2.011 2.028 2.029 2.011 2.028 2.029 2.045 2.03 2.029 3.300 1.650 1.650 35.185 II
FEROCE70 2.044 2.019 2.035 2.017 2.047 2.035 2.019 2.044 2.047 2.017 2.032 3.299 1.649 1.649 35.774 II
FEROCE71 2.047 2.032 2.019 2.028 2.023 2.019 2.028 2.023 2.047 2.032 2.030 3.300 1.650 1.650 35.510 II
FEROCE72 2.044 2.024 2.015 2.019 2.039 2.015 2.019 2.039 2.044 2.024 2.028 3.284 1.642 1.642 34.859 II
FEROCE73 2.036 2.026 2.019 2.029 2.028 2.019 2.029 2.028 2.036 2.026 2.028 3.291 1.646 1.646 35.373 II
FEROCE74 2.044 2.031 2.024 2.03 2.037 2.024 2.03 2.037 2.044 2.031 2.033 3.298 1.649 1.649 35.724 II
FEROCE75 2.051 2.02 2.025 2.025 2.045 2.025 2.025 2.045 2.051 2.02 2.033 3.287 1.644 1.644 34.980 II
FEROCE76 2.044 2.026 2.02 2.028 2.048 2.02 2.028 2.048 2.044 2.026 2.033 3.285 1.642 1.642 35.101 II
FEROCE77 2.053 2.03 2.026 2.028 2.052 2.026 2.028 2.052 2.053 2.030 2.038 3.289 1.645 1.645 35.651 II
FEROCE78 2.05 2.026 2.023 2.026 2.037 2.026 2.037 2.05 2.026 2.023 2.032 3.274 1.637 1.637 35.912 II
FEROCE79 2.057 2.026 2.015 2.033 2.059 2.033 2.059 2.057 2.026 2.015 2.038 3.257 1.629 1.629 34.954 II
FEROCE80 2.038 2.045 2.028 2.02 2.027 2.028 2.045 2.038 2.027 2.02 2.032 3.269 1.635 1.635 35.770 II
FEROCE81 2.043 2.045 2.029 2.021 2.021 2.029 2.045 2.043 2.021 2.021 2.032 3.268 1.634 1.634 35.826 II
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Table A2. Cont.

Refcode Fe–C Mean Cg···Cg′ Fe···Cg T OS

FEROCE82 2.043 2.014 2.009 2.027 2.027 2.027 2.027 2.043 2.014 2.009 2.024 3.249 1.625 1.625 35.719 II
FEROCE83 2.046 2.014 2.012 2.023 2.038 2.023 2.038 2.046 2.014 2.012 2.027 3.254 1.627 1.627 35.783 II
FEROCE84 2.04 2.007 2.006 2.022 2.038 2.022 2.038 2.04 2.007 2.006 2.023 3.250 1.625 1.625 35.797 II
FEROCE85 2.063 2.026 1.948 2.04 2.059 1.948 2.026 2.063 2.059 2.04 2.027 3.286 1.643 1.643 35.437 II
FERRIC01 2.06 2.06 2.063 2.06 2.063 2.064 2.07 2.064 2.081 2.081 2.067 3.395 1.701 1.695 0.507 III
FUZGOY 2.086 2.075 2.054 2.097 2.074 2.055 2.064 2.068 2.063 2.071 2.071 3.390 1.695 1.695 25.674 III
GOFLUI 2.093 1.95 1.98 1.975 1.941 1.955 2.035 2.001 2.028 1.94 1.999 3.135 1.564 1.573 4.696 II
GOKRIH 2.057 2.062 2.116 2.047 2.05 2.05 2.047 2.116 2.062 2.057 2.066 3.365 1.683 1.683 7.076 III
GUNGAX 2.068 2.064 2.075 2.094 2.08 2.08 2.072 2.033 2.023 2.074 2.066 3.403 1.708 1.696 4.352 III
GUNGEB 2.067 2.068 2.056 2.087 2.067 2.006 2.035 2.054 2.086 2.042 2.057 3.395 1.700 1.696 22.686 III
GUNGIF 2.074 2.064 2.057 2.037 2.05 2.057 2.037 2.05 2.074 2.064 2.056 3.397 1.699 1.699 32.324 III
HARGIQ 2.018 2.027 2.037 2.043 2.022 2.034 2.024 2.027 2.029 2.024 2.028 3.289 1.645 1.644 4.206 II
HIGHUA 2.082 2.092 2.079 2.08 2.069 2.08 2.079 2.092 2.082 2.069 2.080 3.404 1.702 1.702 0.333 III
HUZLAR 2.055 2.06 2.054 2.038 2.042 2.048 2.054 2.023 2.054 2.01 2.044 3.288 1.658 1.631 6.107 II
IMUBEZ 1.999 2.005 2.008 1.994 2.011 1.999 2.011 1.994 2.008 2.005 2.003 3.291 1.645 1.645 13.012 II

INIKIZ (Fe1) 2.069 2.05 2.085 2.074 2.029 2.074 2.029 2.069 2.05 2.085 2.061 3.405 1.703 1.703 35.837 III
INIKIZ (Fe2) 2.041 2.028 2.016 2.027 2.073 2.04 2.052 2.049 2.03 1.984 2.034 3.323 1.661 1.662 24.793 II
INIKIZ (Fe3) 2.085 2.066 2.078 2.077 2.083 2.078 2.077 2.083 2.085 2.066 2.078 3.387 1.693 1.693 35.733 III
INIKIZ (Fe4) 2.077 2.076 2.092 2.051 2.046 2.097 2.09 2.056 2.107 2.058 2.075 3.427 1.708 1.720 9.735 III
INIKIZ (Fe5) 2.007 2.027 2.036 2.035 1.99 2.036 2.027 2.007 1.99 2.035 2.019 3.262 1.631 1.631 35.683 II
INIKIZ(Fe6) 2.098 2.095 2.086 2.054 2.057 2.089 2.081 2.049 2.056 2.091 2.076 3.392 1.703 1.690 28.649 III

IVUHIQ (Fe1) 2.031 2.042 2.034 2.026 2.024 2.04 2.041 2.039 2.035 2.037 2.035 3.288 1.641 1.648 9.552 II
IVUHIQ (Fe2) 2.014 2.028 2.028 2.022 2.029 2.037 2.035 2.019 2.03 2.038 2.028 3.284 1.638 1.646 12.375 II

JAHQAK 2.038 2.057 2.069 2.066 2.051 2.058 2.078 2.06 2.046 2.048 2.057 3.407 1.705 1.702 16.247 III
JALWIC (Fe1) 2.051 2.042 2.065 2.077 2.042 2.113 2.072 2.018 2.078 2.07 2.063 3.400 1.707 1.694 4.775 III
JALWIC (Fe2) 2.095 2.073 2.044 2.081 2.082 2.07 2.071 2.073 2.085 2.069 2.074 3.410 1.706 1.704 2.117 III

JUXZEJ 2.074 2.065 2.011 2.024 2.076 2.026 2.043 2.05 2.056 2.07 2.049 3.39 1.693 1.698 1.978 III
KAFMAG 2.039 2.013 2.015 2.045 2.063 2.071 2.048 2.046 2.027 2.054 2.042 3.287 1.637 1.651 11.147 II
KALGEL 2.045 2.033 2.000 2.063 2.032 2.063 2.032 2.045 2.033 2.000 2.035 3.327 1.663 1.663 0.239 II

KEFXUO (Fe1) 2.06 2.079 2.045 2.038 2.032 2.038 2.032 2.06 2.079 2.045 2.051 3.319 1.660 1.660 35.92 II
KEFXUO (Fe3) 2.053 2.034 2.091 2.013 2.039 2.013 2.039 2.053 2.034 2.091 2.046 3.397 1.698 1.698 32.032 III

KEFXUO03 (Fe1) 2.086 2.101 2.095 2.074 2.068 2.074 2.068 2.086 2.101 2.095 2.085 3.399 1.699 1.699 36.000 III
KEFXUO03 (Fe2) 2.09 2.064 2.042 2.055 2.086 2.055 2.086 2.09 2.064 2.042 2.067 3.356 1.678 1.678 35.987 III

KOVMUD 2.046 2.037 2.063 2.063 2.037 2.061 2.051 2.051 2.061 2.052 2.052 3.366 1.694 1.672 0.069 III
KUVNOE 2.046 2.041 2.041 2.044 2.047 2.049 2.039 2.051 2.058 2.051 2.047 3.299 1.648 1.651 2.706 II

KUVNOE01 2.049 2.029 2.04 2.044 2.048 2.053 2.039 2.038 2.043 2.052 2.043 3.301 1.649 1.652 1.307 II
LAWTIM 2.093 2.092 2.092 2.11 2.092 2.11 2.092 2.093 2.092 2.092 2.096 3.425 1.713 1.713 33.351 III
LETSAF 2.082 2.077 2.065 2.067 2.076 2.07 2.053 2.071 2.072 2.08 2.071 3.402 1.700 1.702 4.472 III

LETSAF01 (Fe1) 2.114 2.091 2.116 2.091 2.073 2.06 2.08 2.095 2.091 2.095 2.091 3.422 1.715 1.707 3.588 III
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Table A2. Cont.

Refcode Fe–C Mean Cg···Cg′ Fe···Cg T OS

LETSAF01 (Fe2) 2.068 2.098 2.116 2.059 2.073 2.097 2.093 2.078 2.08 2.117 2.088 3.407 1.702 1.705 7.904 III
LIYNAI (Fe1) 2.076 2.062 2.067 2.072 2.022 2.062 2.072 2.081 2.056 2.055 2.062 3.397 1.699 1.701 21.828 III
LIYNAI (Fe2) 2.062 2.054 2.078 2.083 2.057 2.074 2.095 2.09 2.073 2.061 2.073 3.401 1.697 1.705 3.528 III

LONGOK 2.039 2.038 2.044 2.046 2.044 2.039 2.045 2.05 2.037 2.041 2.042 3.293 1.646 1.647 1.214 II
LUZJIB 2.024 2.03 2.015 2.024 2.024 2.017 2.027 2.032 2.053 2.022 2.027 3.288 1.646 1.643 4.092 II

MACWUJ 2.046 2.1 2.115 2.088 2.045 2.057 2.086 2.097 2.077 2.057 2.077 3.412 1.708 1.705 8.353 III
NAHMEP 2.036 2.04 2.035 2.031 2.035 2.035 2.031 2.035 2.036 2.04 2.035 3.292 1.646 1.646 35.310 II
NIRSAK 2.082 2.085 2.087 2.064 2.08 2.074 2.109 2.109 2.083 2.06 2.083 3.415 1.711 1.704 19.850 III

NOHKAX 2.054 2.032 2.037 2.034 2.047 2.034 2.047 2.054 2.032 2.037 2.041 3.309 1.655 1.655 35.656 II
NUMXAU 2.068 2.068 2.093 2.09 2.093 2.047 2.045 2.047 2.048 2.048 2.065 3.402 1.710 1.692 0.141 III

OCUJIF 2.02 2.006 1.996 1.974 1.996 1.974 1.996 2.02 2.006 1.996 1.998 3.279 1.639 1.639 33.580 II
POTTOH (Fe1) 2.079 2.093 2.087 2.08 2.073 2.083 2.091 2.091 2.085 2.074 2.084 3.41 1.705 1.705 4.606 III
POTTOH (Fe2) 2.039 2.036 2.035 2.035 2.033 2.035 2.035 2.042 2.041 2.031 2.036 3.282 1.640 1.642 0.702 II
POTTOH (Fe3) 2.079 2.076 2.082 2.08 2.087 2.08 2.071 2.07 2.081 2.083 2.079 3.401 1.702 1.699 4.256 III

PUVFIV 2.06 2.06 2.061 2.067 2.061 2.064 2.069 2.064 2.08 2.08 2.067 3.393 1.698 1.695 0.166 III
QIDREB 2.044 2.037 2.026 2.032 2.039 2.043 2.044 2.043 2.045 2.042 2.039 3.290 1.637 1.653 8.297 II

RAMTII (Fe1) 2.053 2.075 2.108 2.105 2.071 2.108 2.105 2.071 2.053 2.075 2.082 3.393 1.697 1.697 35.970 III
RAMTII (Fe2) 2.06 2.071 2.09 2.091 2.072 2.09 2.071 2.06 2.072 2.091 2.077 3.379 1.690 1.690 35.978 III
RETMOS (Fe1) 2.101 2.111 2.071 2.091 2.119 2.091 2.119 2.101 2.111 2.071 2.099 3.432 1.716 1.716 35.505 III
RETMOS (Fe2) 2.069 2.096 2.035 2.053 2.082 2.087 2.074 2.076 2.063 2.083 2.072 3.397 1.704 1.693 19.144 III

TIBCUE 1.872 2.019 2.044 2.087 2.028 2.044 2.087 2.028 1.872 2.019 2.010 3.205 1.602 1.602 32.946 II
VOVLOJ 2.04 2.042 2.045 2.035 2.03 2.034 2.041 2.045 2.049 2.032 2.039 3.294 1.647 1.647 0.174 II
XITDIP 2.109 2.089 2.081 2.088 2.08 2.079 2.088 2.091 2.102 2.069 2.088 3.417 1.711 1.707 25.129 III
YIPQIX 2.06 2.06 2.066 2.059 2.066 2.065 2.071 2.065 2.078 2.078 2.067 3.380 1.692 1.689 0.308 III

ZAGXEK 2.087 2.062 2.066 2.064 2.046 2.055 2.063 2.058 2.055 2.024 2.058 3.415 1.709 1.708 18.764 III
ZOZLEF 2.097 2.08 2.067 2.076 2.094 2.098 2.085 2.073 2.078 2.099 2.085 3.412 1.707 1.706 0.892 III

Cg = ring centroid; T = torsion angle between the two cyclopentadienyl rings.
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