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Abstract: Self-replicating single-stranded RNA viruses such as alphaviruses, flaviviruses, measles
viruses, and rhabdoviruses provide efficient delivery and high-level expression of therapeutic
genes due to their high capacity of RNA replication. This has contributed to novel approaches
for therapeutic applications including vaccine development and gene therapy-based immunotherapy.
Numerous studies in animal tumor models have demonstrated that self-replicating RNA viral
vectors can generate antibody responses against infectious agents and tumor cells. Moreover,
protection against challenges with pathogenic Ebola virus was obtained in primates immunized with
alphaviruses and flaviviruses. Similarly, vaccinated animals have been demonstrated to withstand
challenges with lethal doses of tumor cells. Furthermore, clinical trials have been conducted for
several indications with self-amplifying RNA viruses. In this context, alphaviruses have been
subjected to phase I clinical trials for a cytomegalovirus vaccine generating neutralizing antibodies
in healthy volunteers, and for antigen delivery to dendritic cells providing clinically relevant
antibody responses in cancer patients, respectively. Likewise, rhabdovirus particles have been
subjected to phase I/II clinical trials showing good safety and immunogenicity against Ebola virus.
Rhabdoviruses have generated promising results in phase III trials against Ebola virus. The purpose
of this review is to summarize the achievements of using self-replicating RNA viruses for RNA
therapy based on preclinical animal studies and clinical trials in humans.

Keywords: self-amplifying RNA virus; vaccine; cancer therapy; immunotherapy; neutralizing
antibodies; protection against viral and tumor challenges; clinical trials

1. Introduction

Although drug development has strongly contributed to finding superior therapeutic efficacy,
there is still space and need for further improvement. In addition to classic drug screening of
small molecules, innovative modern approaches in biotechnology and genomics research have
contributed to new therapeutic possibilities in the areas of vaccine development and gene and
immunotherapy. In this context, RNA-based therapeutics have become an interesting alternative [1].
RNA-based drugs have been classified by mechanisms of action including antisense approaches
of inhibition of mRNA translation, gene silencing with RNA interference, catalytically active
ribozymes, protein binding RNA molecules, and aptamers for diagnostic and therapeutic applications.
In this context, lipid-encapsulated nanoparticles containing double-stranded small interfering RNA
(siRNA) have been applied for binding to transthyretin (TTR) mRNA causing degradation of
TTR deposits present in patients with hereditary TTR-mediated amyloidosis [2]. This novel RNA
interference-based drug, Patisiran (ONPATTRO™), has recently been approved in both the US and
Europe as a single intravenous infusion. Recently, messenger RNAs (mRNAs) generated by in vitro
transcription have become attractive targets for drug and vaccine development [3]. Two approaches
for mRNA-based drugs have been taken based on ex vivo transfection of cells from patients or
direct mRNA administration. In this context, preclinical and clinical studies have been conducted
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in the areas of cancer immunotherapy [4,5], vaccine development against infectious diseases [6,7],
protein replacement [8], and gene editing [9].

Related to mRNA-based drug approaches, the employment of self-replicating RNA viruses
has provided an interesting and attractive alternative to further enhance delivery and efficacy [10].
The unique feature of high-rate cytoplasmic replication combined with extreme transgene expression
has made these RNA viruses the system of choice for RNA therapeutics. In this review, self-replicating
vectors are described and their applications for preclinical studies and clinical trials are discussed.

2. Self-Replicating RNA Viruses

The common feature of self-replicating RNA viruses relates to their single-stranded RNA (ssRNA)
genome surrounded by a capsid core structure and a protein envelope. Alphaviruses [11] and
flaviviruses [12] possess a genome of positive polarity, whereas the genome of measles viruses
(MVs) [13] and rhabdoviruses [14] as negative strand ssRNA. Expression vectors serving as templates
for RNA transcription and recombinant viral particles have been engineered. Moreover, alphavirus
vectors providing RNA replication can be utilized as plasmid DNA.

2.1. Alphaviruses

Alphaviruses belong to the family of Togaviridiae [15]. The most common alphaviruses engineered
as expression vectors are based on Semliki Forest virus (SFV) [15], Sindbis virus (SIN) [16], and
Venezuelan equine encephalitis virus (VEE) [17]. The alphavirus genome consists of four nonstructural
genes (nsP1–4), responsible for RNA self-replication and the genes for the capsid and envelope
proteins [11] (Figure 1A–C). Engineered alphavirus vectors generate replication-deficient and
-proficient recombinant particles suitable for transgene expression in cell lines and in vivo [18].
Introduction of a CMV promoter upstream of the nsP genes allows direct transfection of plasmid DNA
with self-replicating RNA capacity [19]. Due to the design of these alternative alphavirus vectors it
is possible to conduct studies with naked RNA replicons, recombinant viral particles and layered
DNA–RNA vectors.
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Figure 1. Self-replicating alphavirus and flavivirus vectors. (A) Replication-deficient alphavirus system
with expression vector (above) and helper vector (below). (B) Replication-proficient alphavirus system
including two alternative insertion sites. (C) DNA/RNA layered Semliki Forest virus (SFV) vector.
(D, E) KUN vectors with SP6 and CMV promoters, respectively. 26S, subgenomic promoter; C20,
first 20 amino acids of KUN C protein; CMV, cytomegalovirus; E22, last 22 amino acids of KUN E
protein; F, Foot-and-mouth disease virus 2A autoprotease; HDVr, Hepatitis delta virus ribozyme; pA,
polyadenylation signal; SP6, bacteriophage RNA polymerase; T7, phage T7 RNA polymerase promoter;
U, mouse ubiquitin sequence; 3′ UTR, 3′ untranslated region; 5′ UTR, 5′ untranslated region.
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2.2. Flaviviruses

In a similar way as for alphaviruses, flaviviruses also possess a ssRNA genome of positive
polarity [12]. For instance, based on Kunjin virus (KUN), vectors have been engineered for the delivery
of RNA, recombinant particles, and DNA plasmids [12] (Figure 1D–E). In contrast to alphaviruses,
the gene of interest is not inserted downstream of the nonstructural genes, but between the first
60 nucleotides of the C20 core protein and the last 22 codons of the E22 envelope protein in frame with
the viral polyprotein. Although the recombinant protein of interest is initially part of a large polyprotein
processed into individual proteins, the remaining flanking regions can be removed by an FMDV-2A
protease sequence introduced into the KUN vector [20]. In support of virus production, a packaging
cell line has been engineered for KUN [21]. Other expression vectors based on flaviviruses such as
West Nile virus [22,23], yellow fever virus [24,25], dengue virus [26,27], and tick-borne encephalitis
virus [28,29] have been generated.

2.3. Measles Viruses

The negative polarity of the MV ssRNA genome has required the engineering of packaging
systems for the rescue of replicating MV from cloned DNA expression constructs [30]. Rescue of
recombinant MV has been established in a helper cell line by reverse genetics [13]. Expression vectors
carrying the MV structural proteins downstream of a T7 RNA polymerase promoter have been
designed for the introduction of foreign genes between the phosphoprotein (P) and the matrix protein
(M) or alternatively between the hemagglutinin (HA) and the large protein (L) (Figure 2A). To generate
recombinant MV particles, a helper cell line is transfected with recombinant MV constructs and a
plasmid containing the MV polymerase L gene. Recombinant MVs are harvested three days after
transfection when reaching 80–90% of their cytopathic effect.

2.4. Rhabdoviruses

Both rabies virus (RABV) [31] (Figure 2B) and vesicular stomatitis virus (VSV) [32] have been
subjected to expression vector engineering. As for MV, the negative ssRNA genome of rhabdoviruses
has required application of reverse genetics based on a recombinant vaccinia virus vector to establish
efficient transgene expression. However, when the VSV N, P, and L genes were inserted downstream
of a T7 promoter and an internal ribosome entry site (IRES), efficient recovery of VSV particles was
obtained from transfected DNA in a vaccinia virus-free system [33]. Similarly, RABV virus vectors
have been engineered, where the gene of interest has been introduced between the RABV N and P
genes [34]. Moreover, recovery of RABV from cloned cDNA has been achieved in a vaccinia virus-free
reverse genetics system [35]. In another approach, chimeric virus-like particles (VLPs) with SFV
RNA replicons encapsulated by the VSV glycoprotein (VSV-G) have been engineered, which provide
additional biosafety [36].

3. Preclinical Studies

3.1. Viral Diseases

Self-replicating RNA virus vectors have been subjected to numerous preclinical immunization
studies targeting infectious diseases (Table 1). In this context, Dengue virus has been targeted
by immunization with MV expressing the domain III of Dengue virus envelope protein 2 (DV2),
which elicited robust neutralizing antibodies in MV-susceptible mice [37]. Moreover, immunization with
MV displaying domain III of DV1-4 not only generated neutralizing antibodies, but also provided
protection against four Dengue virus serotypes in mice [38]. Similarly, much attention has been paid
to vaccine development against Ebola virus. For instance, expression of Ebola glycoprotein (GP) from
KUN [39] and VSV [40,41] vectors, has provided protection against Ebola virus challenges in nonhuman
primates. Moreover, immunization with VEE-NP rendered mice resistant to Ebola infections in mice [42].
In another study, immunization with VEE vectors expressing Ebola GP and nucleoprotein (NP) was
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evaluated in BALB/c mice and two strains of guinea pigs [43]. Single administration of VEE-GP
VLPs or a combination of VEE-GP and -NP VLPs provided protection of both mice and guinea pigs.
In contrast, VEE-NP VLPs alone protected mice, but not guinea pigs. In a recent study, application of
DNA/RNA layered self-replicating SFV vectors coexpressing Ebola GP and VP40 elicited both binding
and neutralizing antibodies [44]. The immunogenicity was superior to a Modified vaccinia virus Ankara
(MVA) vaccine and could be further enhanced by an MVA boost.
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Figure 2. Self-replicating rhabdovirus and measles virus vectors. (A) Rabies virus vector with
alternative insertion sites for foreign genes. (B) Measles virus vector with alternative insertion sites for
foreign genes. CMV, cytomegalovirus; Fu, Measles virus fusion protein; G, Measles virus G protein;
H, Measles virus hemagglutinin; L, Rabies or measles virus L protein; M, Rabies or measles virus matrix
protein; N: Rabies or measles virus nucleocapsid protein; P, Rabies P or measles virus phosphoprotein;
T7, phage T7 RNA polymerase promoter; T7 term, phage T7 terminator sequence.

Related to hepatitis B virus (HBV), MV vectors expressing the hepatitis B surface antigen (HBsAg)
were demonstrated to elicit humoral responses in MV-susceptible genetically modified mice and rhesus
monkeys immunized with MV-HBsAg remained healthy [45]. In another study, SFV RNA replicons
expressing VSV G, which generated virus-like vesicles (VLVs), were engineered to carry the HBV
middle surface envelope glycoprotein (MHB) [46]. Immunization of mice resulted in CD8+ T cell
responses, which showed higher magnitude and broader specificity in comparison to immunizations
with recombinant protein and DNA. A single administration with MHB-VLVs protected mice from
HBV challenges. In contrast, immunization with SFV VLVs expressing the HBV core protein (HBcAg)
did not produce CD8+ T cell responses and no HBV protection.

Not surprisingly, the human immunodeficiency virus (HIV) has been subjected to vaccine
development applying self-replicating RNA vectors. In this context, SFV vectors expressing the
HIV Env gene were administered as plasmid DNA in mice and compared to a recombinant Env
glycoprotein vaccine [47]. The humoral immune responses to the HIV-1 envelope were strongest from
SFV recombinant particles compared to the other HIV Env vaccines tested. In another study, SFV
RNA expressing the HIV-1 Env protein administered intramuscularly in mice generated Env-specific
antibody responses in four out of five mice [48]. Recently, mice immunized with SFV vectors
expressing the HIV Env/Gag/polRT genes either individually or in combination elicited significant
T cell responses [49]. The immune responses were stronger for SFV VRPs than for RNA replicons.
DNA based SFV vectors expressing Env and a Gag-Pol-Nef fusion protein have also been subjected to
immunizations followed by heterologous boosts with MVA and/or HIV gp40 protein formulated in
a glycopyranosyl lipid A (GLA-AF) adjuvant [50]. Immunization with 0.2 µg of SFV DNA induced
lower HIV-specific T cell and IgG responses than immunization with 10 µg of SFV-DNA. However,
the immune responses for the two doses were similarly efficient when boosting was performed with
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MVA or HIV gp40. Furthermore, a single low dose of SFV-DNA elicited superior immune responses
compared to MVA or protein antigen alone.

Table 1. Examples of preclinical immunization with self-replicating RNA viruses targeting
viral diseases.

Indication Target/Antigen Vector Response Ref.

Dengue DV2 MV Neutralizing Abs [37]
DV1-4 MV Protection [38]

Ebola
GP KUN VLPs Protection [39]
GP VSV Protection [40,41]

GP, NP VEE VLPs Protection [42,43]

HBV
HBsAg MV Humoral Abs [45]
MHB SFV-VLVs Protection [46]

HIV

Env SFV VLPs Humoral response [47]
Env SFV RNA Antibody response [48]

Env/Gag/Pol SFVVLPs/RNA Ag-specific immune response [49]
Env/GagPolNef SFV DNA T cell and IgG responses [50]

Influenza

NP SFV VLPs Mucosal immune response [51]
HA VEE VLPs Protection [52]

HA, NP SFV VLPs Protection [53]
HA VEE RNA Protection [54]

Lassa
Glycoprotein VSV VLPs Protection [55]

GPC VEE VLPs Protection [56]
Lassa Lassa VLPs Protection [57]

MERS-CoV MERS-S MV Protection [58]

SARS-CoV SARS-CoV GP VEE VLPs Protection [59]

MPV MPV-F VEE VLPs Reduced viral load [60]

RSV
RSFV-F SFV-VLPs Protection [53]
RSV-F VEE VLPs Reduced viral load [60]
RSV-F VEE LNPs Protection [61]

SIV
Gag-pol KUN VLPs Protection [62]

SIVmacJ5 SFV VLPs Cytotoxic T cell response [63]

TBEV GP SFV VLPs Protection [53]

VEE
VEE replicon VEE miRNA VEE inhibition [64]

VEE RdRp VEE miRNA VEE inhibition [65]

Ag, antigen; DV, Dengue virus envelope protein; GCP, glycoprotein; GP, glycoprotein; HA, hemagglutinin; HBV,
hepatitis B virus; HBsAg, hepatitis B surface antigen; HIV, human immunodeficiency virus; KUN, Kunjin virus;
LNPs, lipid nanoparticles; MERS-CoV, Middle East respiratory syndrome coronavirus; MERS-S, Middle East
respiratory syndrome spike protein; MHB, HBV middle surface envelope glycoprotein; miRNA, micro RNA;
MV, measles virus; NP, nucleoprotein; RdRp, RNA-dependent RNA polymerase; RSV, respiratory syncytial virus;
SARS-CoV, severe acute respiratory syndrome corona virus; SFV, Semliki Forest virus; SIV. Simian immunodeficiency
virus; TBEV, Tick-borne encephalitis virus; VEE, Venezuelan equine encephalitis virus; VLPs, virus-like particles;
VLVs, virus-like vesicles; VSV, vesicular stomatitis virus.

Much attention has also been paid to vaccine development against influenza virus. For instance,
SFV-based expression of influenza virus nucleoprotein (NP) elicited systemic immune responses
after intravascular injections and mucosal immune responses after intranasal administration [51].
Moreover, VEE particles carrying the hemagglutinin (HA) gene from the Hong Kong influenza A
isolate (A/HK/156/97) were administered to chicken embryos and young chicks [52]. When birds
were challenged with a lethal dose of influenza virus, inoculation in ovo and at 1 day of age
provided partial protection, while a single at week 2 resulted in complete protection. Similarly,
recombinant SFV particles expressing influenza HA and NP provided protection against challenges
with influenza virus [53]. Recently, in a comparison between synthetic mRNA and self-replicating VEE
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RNA expressing influenza HA [54], equivalent protection was obtained for both strategies. However,
only 1.25 µg of self-replicating RNA was needed, whereas 80 µg of mRNA (64-fold more) material was
required. Protection was observed for influenza strains H1N1, H3N2 (X31), and B (Massachusetts).
Moreover, a trivalent formulation protected against sequential H1N1 and H3N2 challenges.

Lassa viruses have also been subjected to vaccine development. For instance, VSV vectors
expressing Lassa virus glycoproteins demonstrated protection of guinea pigs challenged with Lassa
virus originating in Liberia, Mali, and Nigeria [55]. Moreover, complete protection was also obtained
in macaques after challenge with a lethal dose of the Liberian Lassa virus isolate. Furthermore,
a bicistronic VEE vector expressing Lassa virus glycoproteins from distantly related clades I and
IV from individual 26S subgenomic promoters elicited immune responses in vaccinated mice and
provided protection against Lassa virus challenges [56]. Interestingly, a vaccine based on Lassa virus
replicon particles devoid of the essential Lassa virus glycoprotein gene has been evaluated in a guinea
pig model [57]. In this approach, nonspreading Lassa virus replicon particles produced in Vero cells
were administered to guinea pigs showing protection against fever, weight loss, and lethality.

Related to Middle East respiratory syndrome coronavirus (MERS-CoV), replication competent
MV was used for the expression of the full-length spike glycoprotein (MERS-S) and a truncated
soluble variant, MERS-solS [58]. Both vaccine candidates induced robust levels of both MV- and
MERS-CoV-neutralizing antibodies in a prime-boost regimen in mice. Furthermore, these immune
responses rendered protective capacity in vaccinated mice. Likewise, VEE replicon particles
were applied for vaccine development against severe acute respiratory syndrome coronavirus
(SARS-CoV) [59]. The study demonstrated that aged BALB/c mice vaccinated with attenuated VEE
VRPs (VRP3014) failed to protect from SARS-CoV disease, while wild-type VEE VRPs (VRP3000) gave
protection against SARS-CoV.

VEE VLPs have been applied for the expression of human metapneumovirus (hMPV) and
respiratory syncytial virus (hRSV) fusion (F) proteins [60]. Immunization of African green monkeys
generated RSV and MPV F-specific antibodies, respectively. Moreover, lower levels of viral genomes
were detected in nasopharyngeal and bronchoalveolar lavage fluids. In another study, VEE vectors
have been employed for vaccine development with a focus on replicon delivery [61]. In this context,
VEE VLPs, were compared to naked RNA and RNA encapsulated in lipid nanoparticles (LNPs).
Reporter gene expression in mice revealed 10-fold higher levels of RNA-LNP delivery compared to
naked RNA after intramuscular administration despite administration of only 0.1 µg (RNA-LNPs)
compared to 1.0 µg (RNA). Moreover, comparison of in vivo expression showed the highest levels
from plasmid DNA, followed by RNA-LNPs, and the lowest expression levels detected after RNA
delivery. In contrast, RSV-F specific antibody titers were similar for 1× 106 IU VEE particles and 0.1 µg
RNA-LNPs, whereas 1 µg naked RNA generated 10-fold lower titers. Electroporation of 20 µg DNA
provided similar antibody responses as for 0.1 µg RNA-LNPs. Delivery of 0.1 µg DNA-LNPs was
inefficient generating 1000-fold lower titers than for RNA-LNPs.

Several studies have been carried out for simian immunodeficiency virus (SIV) vaccines based on
self-replicating RNA viruses. In this context, four different KUN-based SIVmac 239 gag vaccines were
evaluated in mice [62]. In comparison, a modified gag-pol gene construct was superior to wild-type
gag, RNA-optimized gag, and codon-optimized gag in immune response induction and protection
against SIV challenges in mice. In another study, SFV and MVA expressing SIVmacJ5 env, gag-pol,
nef, rev, and tat were evaluated in macaques [63]. SFV-SIVmac or MVA-SIVmac immunizations alone
elicited low or undetectable cytotoxic T cell responses. However, two immunizations with SFV-SIVmac
followed by a boost with MVA-SIVmac increased both antibody and high T cell responses. However,
no protection against SIV challenges was achieved.

In support of vaccine development, gene silencing has been applied to some extent. In this context,
micro-RNA (miRNA) sequences targeting RNA replication were introduced in a VEE helper vector
used for replicon particle production [64]. As cellular miRNAs downregulates replicon RNA replication
in vivo, efficient VEE particle production can be restored by addition of miRNA-specific inhibitors,
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which can contribute to future therapeutic applications. Moreover, inhibition of VEE replication was
achieved in BHK cells by introduction of five artificial miRNAs targeting the RNA-dependent RNA
polymerase (RdRp) [65].

3.2. Cancer

Similar to viral diseases, there are numerous preclinical studies carried out for cancer
prevention and therapy (Table 2). In this context, retargeted MV vectors carrying both CD46 and
signaling lymphocyte activation molecule (SLAM) incorporated in the HA protein in combination
with the display of a single-chain antibody against epidermal growth factor receptor (EGFR)
at the C terminus of HA [66]. It was demonstrated that the retargeted MV presented potent
antitumor activity against EGFR or EGFRvIII primary glioblastoma cell lines. Moreover, intratumoral
administration in glioblastoma xenografts provided tumor regression and significant prolongation of
survival. Likewise, SFV vectors expressing Endostatin were compared to in vivo administration of
SFV-LacZ, and retrovirus GCsap-Endostatin in mice bearing B16 brain tumors [67]. SFV-Endostatin
provided very significant inhibition of tumor growth. Furthermore, in contrast to SFV-LacZ and
GCsap-Endostatin, treatment with SFV-Endostatin generated a marked reduction of intratumoral
vascularization. Additionally, 3-fold higher endostatin serum levels were observed for SFV-Endostatin
than GCsap-Endostatin, indicating inhibition of angiogenesis and could provide new means for brain
tumor therapy. In another approach, neuron-targeting miRT124 sequences were introduced into the
SFV4 strain, which displayed increased oncolytic potency in CT-2A murine astrocytoma cells and in
human glioblastoma cell lines [68]. A single intraperitoneal injection of SFV4-miRT124 showed virus
replication in tumors, significant tumor growth inhibition, and improved survival in C57BL/6 mice
implanted with CT-2A orthotopic gliomas.

Related to breast cancer, the Edmonston MV strain was engineered to express the
carcinoembryonic antigen (CEA) [69]. The MV-CEA vector showed significant cytopathic effect in
several breast cancer cell lines such as MDA-MB-231, MCF7, and SkBr3. Intravenous administration
in BALB/c nude mice with MDA-MB-231 xenografts resulted in statistically significant delay in
tumor growth and prolonged survival. In another approach, SIN and Adenovirus (Ad) vectors
expressing the rat HER2/neu gene were subjected to immunization studies in mice [70]. Inhibition of
A2L2 tumor cells was detected when animals were immunized with SIN or Ad prior to tumor
challenge. In contrast, vaccination two days after tumor challenge was ineffective for both SIN
and Ad. On the other hand, when SIN-neu immunization was followed by Ad-neu vaccination
in a prime-boost protocol, the survival rate was significantly improved in mice intravenously
challenged with tumor cells. The susceptibility of dendritic cells (DCs) to VEE-encouraged studies on
therapeutic efficacy in animal models [71]. Immunization of DCs transduced with VEE recombinant
particles expressing a truncated version of neu induced robust neu-specific CD8+ T cell and anti-neu
IgG responses. A single administration of VEE-DCs resulted in regression of large established
tumors in mice. Similarly, recombinant SFV particles carrying the vascular endothelial growth
factor receptor-2 (VEGFR-2) gene were subjected to immunization studies in mice implanted
with CT26 colon carcinoma and 4T1 metastasizing mammary carcinoma [72]. Both prophylactic
immunization and therapeutic treatment resulted in inhibition of tumor growth and the spread of
metastases. Furthermore, tumor angiogenesis was significantly inhibited. Co-immunization with
SFV particles expressing VEGFR-2 and interleukin-12 (IL-12) abrogated both immune responses and
tumor inhibition. In contrast, co-immunization with SFV-VEGFR-2 and SFV-IL-4 particles elicited
higher titers of anti-VEGFR-2 antibodies and generated superior survival rates. In another approach,
noncytopathic KUN VLPs expressing the granulocyte colony-stimulating factor (G-CSF) were subjected
to intratumoral administration [73]. In mice implanted with aggressive subcutaneous CT26 colon
carcinomas and B16-OVA melanomas cure was observed in more than 50% of animals. It was further
established that tumor regression was associated with the induction of anticancer CD8+ T cells.
Furthermore, treatment of subcutaneous CT26 tumors also led to regression of CT26 lung metastases.
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In another approach, SFV-LacZ RNA was evaluated in mice implanted with CT26 colon tumors [74].
A single intramuscular injection of 0.1 µg SFV-LacZ RNA elicited antigen-specific antibody and
CD8+ T cell responses. Protection against tumor challenges was achieved in pre-immunized animals
and therapeutic vaccination prolonged the survival of mice with preexisting tumors. Interestingly,
replicon RNA did not elicit significantly more model antigen than conventional DNA vaccines in vitro,
while the enhanced in vivo efficacy correlated with a caspase-dependent apoptotic cell death.

Table 2. Examples of preclinical immunization studies of self-replicating RNA viruses targeting cancers.

Cancer Target/Antigen Vector Response Ref.

Brain
SLAM, EGFR MV Tumor regression [66]

Endostatin SFV VLPs Tumor inhibition [67]
miR124 SFV VLPs Prolonged survival [68]

Breast

CEA MV Prolonged survival [69]
HER2/neu SIN DNA Prolonged survival [70]

∆neu VEE + DCs Tumor regression [71]
VEGFR-2 SFV VLPs Tumor inhibition [72]

Colon
VEGFR-2 SFV VLPs Tumor inhibition [72]

G-CSF KUN VLPs Tumor regression [73]
LacZ SFV RNA Prolonged survival [74]

Cervical

HPV16 E7 VEE VLPs Tumor prevention [75]
HPV E6,7 SFV VLPs Tumor eradication [76]

HPV E6, E7 SFV DNA Tumor eradication [77]
HPV E6,7 SFV + I >Antitumor activity [78]
HPV E6,7 SFV + I + Sun Tumor-free mice [79]

Lung

Dengue Dengue Lung susceptibility [80]
EGFP SFV VLPs Tumor regression [81]
EGFP SFV(VA7) Prolonged survival [82]
SLAM MV Tumor suppression [83]

Melanoma

G-CSF KUN VLPs Tumor regression [73]
SIINFEKL YFV Tumor regression [84]

TRP-2 VEE Prolonged survival [85]
TRP-2 VEE + mAbs Tumor regression [86]

VEGFR2, IL12 SFV DNA Tumor regression [87]
Surv, β-hCG Combination Prolonged survival

VSV VSV-GP Prolonged survival [88]

Ovarian
VSV VSV-GP + Rux Oncolytic activity [89]
IL12 SIN + CPT-11 Long-term survival [90]
OVA SFV + VV Antitumor response [91]

Pancreatic
VSV VSV PDA susceptibility [92]
VSV VSV + Rux HPAF-II susceptible [93]

SLAM MV Tumor suppression [94]

Prostate

CEA MV Prolonged survival [95]
PSMA VEE Prolonged survival [96]
STEAP VEE Prolonged survival [97]
PSCA VEE Prolonged survival [98]
VSV VSV-GP Long-term remission [99]

CEA, carcinoembryonic antigen; CPT-11, irinotecan; EGFP, enhanced green fluorescent protein; EGFR, epidermal
growth factor receptor; G-CSF, granulocyte colony-stimulating factor; HPV, human papilloma virus; I, irradiation;
KUN, Kunjin virus; miRNA, micro RNA; mAbs, monoclonal antibodies; MV, measles virus OVA, ovalbumin;
PSCA, prostate stem cell antigen; PSMA, prostate-specific membrane antigen; Rux, ruxolitinib; SFV, Semliki Forest
virus; SIN, Sindbis virus; SIINFEKL, chicken ovalbumin epitope; SLAM, signaling lymphocyte activation molecule;
STEAP, six-transmembrane epithelial antigen of the prostate; Sun, sunitinib; TRP-2, tyrosine-related protein-2; VEE,
Venezuelan equine encephalitis virus; VEGFR-2, vascular endothelial growth factor receptor-2; VLPs, virus-like
particles; VSV, vesicular stomatitis virus; VV, vaccinia virus.
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Related to cervical cancer, VEE particles were applied for the expression of human papilloma
virus-16 (HPV16) E7 protein [75]. Immunization of mice elicited class I-restricted CD8+ T cell responses
and prevented tumor development in mice. Moreover, vaccination resulted in efficient elimination of
7-day established tumors in 67% of tumor-bearing animals. In another study, a fusion protein of HPV
E6 and E7 was expressed from an SFV vector containing a translation enhancer from the SFV capsid
gene [76]. Tumor-bearing mice immunized with SFV-HPV E6/7 particles showed regression and
complete elimination of established tumors. Moreover, long-term high level cytotoxic T lymphocyte
activity was observed lasting up to 340 days. Recently, a DNA-based SFV expressing HPV E6/7 was
subjected to intradermal administration followed by electroporation in mice, which generated efficient
therapeutic antitumor immunity [77]. In comparison, a conventional DNA vaccine did not prevent
tumor growth. However, a 200-fold lower equimolar dose of 0.05 µg of SFV-HPV E6/7 rendered
85% of immunized mice tumor-free. Combination therapy has also been applied for SFV-HPV E6,7
together with local low-dose irradiation [78]. Local low-dose tumor irradiation alone generated a 2-fold
increase of intratumoral CD8+ T cells. However, combination with SFV-HPV 6,7 particle immunization
resulted in a 10-fold intratumoral CD8+ T cell increase and the number of CD8+ T cells specific for
the E7 epitope was enhanced by more than 20-fold. Irradiation also upregulated chemokines and the
combination therapy provided a strong increase in the ratio of antitumoral to immune suppressive
cells, thereby changing the intratumoral immune balance in favor of antitumor activity. Furthermore,
a triple treatment combination regimen was established with 40 mg/kg sunitinib, a single low-dose
(14 Gy) tumor irradiation, and SFV-HPV E6,7 immunization [79]. This treatment dramatically changed
the intratumoral compartment by strongly enhancing the immunotherapeutic antitumor activity,
inhibiting tumor growth, and providing 100% tumor-free survival of mice with tumor xenografts.

Related to lung cancer, it has been demonstrated that Dengue virus is able to infect and replicate
in human primary lung epithelium and several lung cancer cell lines [80]. The susceptibility of
SW1573, A549, H1435, H23, H520, and Bes2B cell lines was shown. Furthermore, Dengue infections
significantly increased expression levels of IL-6 and RANTES, consistent with findings in Dengue
hemorrhagic fever patients. Moreover, SFV-EGFP vectors have been shown to induce apoptosis in
human non-small cell lung carcinoma H358a cells and to inhibit the growth of developing H358a
spheroids [81]. Intratumoral SFV-EGFP injection of nu/nu mice with H358a tumor xenografts induced
apoptosis, antitumor activity, and provided complete tumor regression in some cases. In another study,
replication-competent SFV(VA7)-EGFP particles, based on the avirulent SFV A7(74) strain, were locally
administered in nude mice implanted with A549 adenocarcinoma lung cells [82]. In comparison
to a second generation conditionally-replicating Ad vector (Ad5-Delta24TK-GFP). SFV(VA7)-EGFP
provided superior survival rates in mice. However, systemic delivery was not able to elicit significant
immune responses. Among rhabdoviruses, VSV particles expressing interferon β (IFNβ) were subjected
to intratumoral injections in mice with H2009 and A549 xenografts, which reduced tumor growth [100].
Furthermore, intratumoral administration of VSV-IFNβ into syngeneic LM2 lung tumors grown in
flanks of A/J mice, provided prolonged survival and cure in 30% of mice. In the context of MV, vectors
expressing SLAM (rMV-SLAMblind) showed susceptibility to nine human lung cancer cell lines [83].
Tumor suppression was detected in mice with lung xenografts after injection of rMV-SLAMblind and
scattered tumor masses grown in the lungs were targeted.

In the context of melanoma, several preclinical studies have been conducted. For instance,
yellow fever virus (YFV) expressing a cytotoxic T lymphocyte epitope derived from chicken
ovalbumin (SIINFEKL) was evaluated in mice [84]. Immunization resulted in SIINFEKL-specific
CD8+ lymphocytes and induced protection against challenges with malignant melanoma cells.
Moreover, YVF vaccination induced regression of established solid tumors and pulmonary metastases.
Additionally, alphavirus vectors have been applied for melanoma treatment. VEE particles expressing
tyrosine-related protein-2 (TRP-2). Evaluation in a B16 mouse transplantable melanoma model revealed
humoral immune responses, durable antitumor effect, and prolonged survival [85]. Furthermore,
VEE-TRP-2 particles were combined with either antagonist anti-CTL antigen-4 (CTLA-4) or
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agonist anti-glucocorticoid-induced TNF family-related (GITR) gene immunomodulatory monoclonal
antibodies (mAbs) [86]. Administration of VEE-TRP-2 and anti-CTLA-4 or anti-GITR mAbs induced
complete regression in 50% and 90% of mice, respectively. In a DNA-based co-immunization of
an SFV vector expressing VEGR2 and IL12 and another SFV vector targeting survivin and β-hCG
antigens elicited efficient humoral and cellular immune responses against survivin, β-hCG, and
VEGFR2 [87]. In comparison to immunization with each SFV DNA vector alone, the combined vaccine
showed superior inhibition of tumor growth and prolonged survival in a B16 melanoma mouse model.
In another study, VSV pseudotyped (VSV-GP) with the non-neurotropic envelope glycoprotein of the
lymphocytic choriomeningitis virus (LCMV) effective for treatment of malignant glioblastoma [101],
demonstrated efficient infection and killing of human, mouse, and canine melanoma cell lines [88].
Moreover, immunization of mice with VSV-GP prolonged survival in both xenograft and syngeneic
mouse models. However, long-term tumor remission was achieved in only a few mice. The VSV-GP
oncolytic virus has also been applied for ovarian cancer cell lines and mice with xenografts [89].
Oncolytic activity was detected in ovarian cancer cell lines as well as response to and production of
type I interferon. Similarly, oncolytic activity was observed in vivo, although remission was temporary.
However, combination therapy with ruxolitinib enhanced the response in both subcutaneous and
orthotopic xenograft models. Furthermore, alphaviruses have been subjected to preclinical studies on
combination therapy in ovarian cancer. For instance, combination of SIN and topoisomerase inhibitor
irinotecan (CPT-11) provided long-term survival in 35% of severe combined immunodeficiency
(SCID) mice with aggressively growing ES2 human ovarian cancer [90]. In contrast, neither SIN-IL12
immunization nor CPT-11 treatment alone supported long-term survival. In another approach,
it was demonstrated that immunization with vaccinia virus (VV)-ovalbumin (OVA) followed by
administration of SFV-OVA or vice versa enhanced OVA-specific CD8+ T cell immune responses in
tumor bearing mice [91]. Moreover, immunization enhanced antitumor effects against murine ovarian
surface epithelial carcinoma (MOSEC) tumors.

Pancreatic cancer has also been the target of preclinical studies. In this context, 13 pancreatic
ductal adenocarcinoma (PDA) cell lines showed superior oncolytic abilities of VSV compared to
conditionally replicative adenovirus (CRAd), Sendai virus, and RSV [92]. Moreover, similar oncolytic
activity was confirmed in vivo. Moreover, as certain PDA cell lines such as HPAF-II cells have
demonstrated low susceptibility to VSV, it was revealed that the resistance could be broken by addition
of ruxolitinib and Polybrene or DEAE-dextran, which should facilitate the treatment of tumors resistant
to VSV therapy [93]. Additionally, MV-SLAMblind showed to efficiently infect and kill pancreatic
cell lines with nectin-4 expressed on the cell surface [94]. Moreover, intratumoral administration of
MV-SLAMblind generated substantial growth suppression of implanted KLM1 and Capan-2 xenografts
in SCID mice.

Related to prostate cancer, self-replicating RNA vectors have been applied for studies in
several animal models. In this context, MV was shown to efficiently infect and kill PC-3, DU-145,
and LnCaP prostate cancer cell lines, and was applied for expression of CEA [95]. Significant tumor
growth delay and prolonged survival were observed in a subcutaneous PC-3 xenograft model after
intratumoral administration of 6 × 106 TCID50 of MV-CEA. In another approach, VEE particles
expressing prostate-specific membrane antigen (PSMA) were applied for immunization of mice
and rabbits [96]. A single injection of 2 × 105 infectious units (IU) of VEE-PSMA was compared
to immunization with purified PSMA protein. The VEE-based approach provided stronger immune
responses than adjuvant PSMA protein. Furthermore, the immunogenic doses were well-tolerated.
VEE particles have also been applied for expression of six-transmembrane epithelial antigen of
the prostate (STEAP) [97]. Immunization of mice demonstrated specific CD8+ T cell responses
and prolonged survival rate. Similarly, immunization with VEE particles expressing prostate stem
cell antigen (PSCA) induced long-term protection against prostate cancer in prostate cancer-prone
transgenic adenocarcinoma mouse prostate (TRAMP) mice [98]. Vaccinated mice showed a 90%
survival rate at 12 months of age, while control mice had either succumb to prostate cancer or presented
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heavy tumor loads. Finally, the pseudotyped VSV-GP particles have been evaluated in prostate cancer
mouse models [99]. Intratumoral injection provided long-term remission and most interestingly,
also remission of subcutaneous tumors and bone metastases after intravenous administration.

4. Clinical Trials

Self-replicating RNA viruses have been subjected to a limited number of clinical trials (Table 3).
In this context, alphaviruses have been subjected to few clinical trials, so far. For instance, VEE particles
expressing CMV gB or a PP65/IE1 fusion protein were applied for a randomized, double-blind phase I
clinical trial in CMV seronegative individuals [102]. Intramuscular or subcutaneous administration
was well-tolerated with no clinically important changes and direct IFN-γ ELISPOT responses to CMV
antigens were detected in all 40 vaccinated subjects. Moreover, immunization elicited neutralizing
antibody and multifunctional T cell responses against all three CMV antigens. In another study,
healthy HIV-negative volunteers were subjected to double-blind, randomized, placebo-controlled
phase I trials in the United States and South Africa applying VEE expressing a nonmyristoylated form
of Gag [103]. Subcutaneous administration of VEE-Gag was well-tolerated, but exhibited only modest
local immune responses with low levels of binding antibodies and T cell responses. Although five
serious adverse events were reported none were considered to be related to the administered vaccine.
VEE particles capable of efficiently infecting DCs were employed for the expression of CEA in a clinical
trial in patients with advanced cancer [104]. Intramuscular doses of 4 × 107 IU to 4 × 108 IU of
VEE-CEA particles were given every three weeks for four immunizations. Repeated immunization
induced clinically relevant CEA-specific T cell and antibody responses. The antibody-dependent
cellular toxicity against tumor cells from human colorectal cancer metastases were mediated by
CEA-specific antibodies. Moreover, longer overall survival was observed in patients with CEA-specific
T cell responses. Propagation-defective VEE particles expressing the PSMA have also been subjected
to a phase I clinical trial in patients with castration resistant metastatic prostate cancer (CRPC) [105].
Five doses of either 0.9 × 107 IU or 3.6 × 107 IU of VEE-PSMA were administered to patients with
CRPC metastatic to the bone. Vaccinations were well-tolerated at both doses although only weak
PSMA-specific signals were detected. Although neither clinical benefit nor robust immune responses
were achieved, the elicited neutralizing antibodies suggest that dosing was suboptimal. In another
approach, SFV particles expressing IL-12 (LipoVIL12) were encapsulated in liposomes, which provided
passive tumor targeting and protection against host immune recognition [106]. LipoVIL12 was
intravenously administered to melanoma and kidney carcinoma patients in a phase I clinical trial.
Patients receiving LipoVIL12 showed transient (five days) up to 10-fold increased IL-12 plasma levels.
The encapsulation enhanced tumor targeting and prevented host immune recognition after repeated
injections. Furthermore, no toxicity was related to the treatment and the maximum tolerated dose
(MTD) was determined as 3 × 109 particles per m2.

Several VSV-based clinical trials have been conducted [107]. Two placebo-controlled, double-blind,
dose-escalation phase I trials have been performed with recombinant VSV particles expressing the
glycoprotein of a Zaire strain of Ebola virus [108]. A total of 78 volunteers received one of three doses
(3× 106, 2× 107 or 1× 108 pfu) of VSV-ZEBOV to assess safety and immunogenicity of the vaccination.
Some adverse event such as injection-site pain, fatigue, myalgia, and headache occurred. Lower titers
were observed at day 28 for the dose of 3 × 106 pfu in comparison to the other two doses.
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Table 3. Examples of clinical trials applying self-replicating RNA viruses.

Disease Vector/Antigen Phase Response Ref.

CMV VEE-gB/pp65 Phase I CMV-spec Abs [102]

HIV VEE-Gag Phase I Low level Ab responses [103]

Ebola

VSV-ZEBOV Phase I Safe, Ab responses [108]

VSV∆G-ZEBOV Phase I Safe, sustainable Ab titers [109]

VSV-ZEBOV Phase I Safe, cellular immune
responses [110]

VSV-ZEBOV Phase I/II Reduced dose,
better tolerability [111]

VSV∆G-ZEBOV Phase III Ab responses [112]

VSV-ZEBOV Phase III Safe, efficient
EBV prevention [113]

VSV-ZEBOV Phase III Safe, substantial EBV
protection [114]

VSV-ZEBOV Phase II/III Safe, no EBV cases,
no SAEs [115]

VSV∆G-ZEBOV Phase III No EBV related SAEs [116]

Pancreatic CA VEE-CEA Phase I CEA-spec Abs;
prolonged survival [104]

CRPC VEE-PSMA Phase I Neutralizing Abs [105]

CTCL MV-EZ Phase I Regression of
CTCL lesions [117]

Melanoma LipoVIL12 Phase I Safe tumor targeting [106]

Kidney CA LipoVIL12 Phase I Safe tumor targeting [106]

Ovarian CA MV-CEA Phase I Stable disease [118]

Glioblastoma MV-CEA Phase I No dose-limiting toxicity [119]

Myeloma MV-NIS Phase I Complete response in
one patient [120]

Abs, antibodies; CA, cancer; CEA, carcinoembryonic antigen; CMV, cytomegalovirus; CRPC, castration
resistant metastatic prostate cancer; CTCL, cutaneous T cell lymphoma; EBV, Ebola virus disease; HIV,
human immunodeficiency virus; LipoVIL12, liposome encapsulated SFV-IL21 particles; MV, measles virus; MV-EZ,
measles virus Edmonston Zagreb; NIS, sodium iodide symporter; PSMA, prostate-specific membrane antigen;
SEAs, serious adverse events; SFV, Semliki Forest virus; VEE, Venezuelan equine encephalitis virus; VSV, vesicular
stomatitis virus; ZEBOV, glycoprotein of Zaire Ebola virus.

Furthermore, a second dose at day 28 significantly increased the antibody titers at day 56,
but the effect disappeared after 6 months. In another randomized, dose-ranging, observer-blind,
placebo-controlled phase I trial, 40 participants received the attenuated VSV∆G-ZEBOV-GP
vaccine [109]. No serious adverse events were encountered. All vaccinees developed immune responses
comparable across all doses applied. Sustainable IgG titers were detectable throughout the whole
study (180 days). Furthermore, another phase I study with VSV-ZEBOV showed good tolerance,
no vaccine-related adverse events, and superior cellular immune responses and stronger interlocked
cytokine networks for immunization with the highest dose of 2 × 107 pfu [110]. In the Geneva phase
I/II, dose-finding, placebo-controlled, double-blind study the VSV-ZEBOV dose was reduced to
3 × 105 pfu compared to previous doses of 1–5 × 107 pfu [111]. The lower dose improved tolerability,
but decreased antibody responses. Moreover, it did not prevent vaccine-related arthritis, dermatitis,
or vasculitis.
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A randomized, placebo-controlled phase III trial was conducted in 1500 adults with the
chimpanzee Ad3 (ChAd3-EBO-Z) and the recombinant VSV (rVSV∆G-ZEBOV-GP) vaccines in
Liberia [112]. Adverse events including injection-site reactions, headache, fever, and fatigue occurred
significantly more frequently in individuals receiving the active vaccine compared to placebo.
Antibody responses were detected in 70.8% and 83.7% of subjects in the ChAd3-EBO-Z and the
rVSV∆G-ZEBOV-GP groups, respectively, compared to 2.8% in the placebo group one month after
vaccination. At 12 months the percentage for the ChAd3-EBO-Z and the rVSV∆G-ZEBOV-GP groups
was 63.5% and 79.5%, respectively, with 6.8% in the placebo group. Another phase III trial was
conducted in Guinea as an open-label, cluster-randomized ring vaccination study in suspected cases
of Ebola virus disease (EBV) [113]. A total number of 7651 individuals were included, of which
4123 persons were assigned for immediate vaccination with rVSV-ZEBOV and 3528 persons assigned
for delayed vaccination. No cases of EBV were detected in the immediate vaccination group after
10 days, whereas 16 cases of EBV were registered in the delayed vaccination group. No new
cases of EBV were diagnosed in either group. Overall, the rVSV-ZEBOV vaccine was confirmed
to be safe and showed promise as highly efficient in preventing EBV. Another phase III study was
conducted in Guinea and Sierra Leone applying a single intramuscular vaccination with 2 × 107 pfu of
rVSV-ZEBOV [114]. In the randomized trial, 2119 individuals were immediately vaccinated and 2041
persons were vaccinated after a delay of 21 days after randomization. Vaccinated individuals were
followed up for 84 days offering substantial protection against EBV with no cases of EBV discovered
from day 10 after vaccination. Moreover, an individually-controlled phase II/III trial was conducted on
health care and frontline workers in the five most EBV affected districts in Sierra Leone [115]. A single
intramuscular dose was administered at enrollment or 18–24 weeks after enrollment. The outcome
indicated that no EBV cases and no vaccine-related serious adverse events were reported. Finally,
a randomized, double-blind, multicenter phase III trial was conducted in the United States, Spain,
and Canada. [116]. Vaccination was taken place with doses of 2 × 107 pfu and 1 × 108 pfu of
rVSV∆G-ZEBOV-GP and placebo for the assessment of safety and immunogenicity. The vaccine
was generally well-tolerated. Although systemic adverse events occurred in comparison to placebo,
no vaccine-related severe adverse events or deaths were reported. Overall, the results confirmed the
safety of vaccination of the EBV risk population with rVSV∆G-ZEBOV-GP.

MV-Edm vaccine strains have been tested in clinical trials against breast, ovarian, head and
neck cancer, glioblastoma, and myeloma [121,122]. In this context, an open-label, nonrandomized
dose-escalation phase I trial was conducted with an unmodified vaccine strain MV-Edm Zagreb
(MV-EZ) in patients with cutaneous T cell lymphomas [117]. Intratumor injections of MV-EZ on days 4
and 17 were preceded by subcutaneous IFNα injections (72 and 24 h prior to MV-EZ). The maximum
tolerated dose was defined as 103 TCID50. Complete regression of CTCL lesions was observed in
one patient, while partial regression was observed in the other patients. Related to recombinant
MV, a phase I trial was conducted in patients with advanced ovarian cancer by intraperitoneal
injection of MV-CEA [118,123]. Administration of MV-CEA at doses of 103 to 109 TCID50 confirmed
no dose-limiting toxicity. The best objective response comprised stable disease in 14 patients with a
median duration of 88 days and a range of 55 to 277 days. All individuals vaccinated with higher dose
levels (107–109 TCID50) accomplished stable disease, whereas only five out of 12 patients vaccinated
with 103–106 TCID50) achieved it. MV-CEA has also been planned for a phase I clinical trial in patients
with recurrent glioblastoma multiforme [119]. The study aims at treatment with a starting dose of
1 × 105 TCID50 of MV-CEA escalating to the maximum dose level of 2 × 107 TCID50. One group of
patients will receive direct injections into the resection cavity and in the other group MV-CEA will be
administered into recurrent tumors. So far, three patients have received 1× 105 TCID50 and three other
patients 1× 106 TCID50 in the resection cavity showing no dose-limiting toxicity. Oncolytic MV vectors
expressing the human sodium iodide symporter (NIS) have been subjected to a phase I trial [120].
Patients with relapsed refractory myeloma received intravenous MV-NIS or cyclophosphamide two
days prior to MV-NIS treatment. The initial dose-escalation study (1 × 106–1 × 109 TCID50) revealed



Molecules 2018, 23, 3310 14 of 22

that the MTD was not reached. Therefore, doses of 1 × 1010 and 1 × 1011 TCID50 were tested and the
latter dose was planned to be used in a phase II trial. A complete response was observed in one patient
treated with 1 × 1011 TCID50. The response persisted for 9 months after which an isolated relapse
occurred in the skull without recurrent marrow involvement. Irradiation of the lesion resulted in the
patient remaining disease-free for an additional 19 months. Another patient had subjective softening
and shrinking of her extramedullary plasmacytomas of her back and thighs.

5. Conclusions and Future Aspects

In summary, numerous preclinical and clinical studies have confirmed the feasibility of the
approach of applying self-replicating RNA viruses for both preventive and therapeutic use for various
diseases (Tables 1–3). In this context, immunization with self-replicating RNA viruses has generated
strong immune responses and in many cases provided protection against challenges with lethal doses of
infectious agents. Moreover, administration of self-replicating RNA viral vectors expressing anticancer,
toxic and/or immunostimulatory genes have demonstrated tumor growth inhibition, regression
and even complete tumor eradication, which has supported significant prolongation of survival
profiles. Immunization has also provided prophylactic protection against challenges with tumor
cells in animal models. One interesting aspect of applying self-replicating RNA viruses comprises of
the possibility of using RNA replicons, replication-deficient and -competent particles, and layered
DNA/RNA vectors. It provides certain flexibility in choosing the means of delivery vehicle for specific
applications. Moreover, several attempts have been made to engineer vectors specifically targeting,
replicating and killing tumor cells. One approach has been to apply oncolytic viral vectors, which has
provided specific killing of tumor cells without affecting normal cells [124]. In another approach,
recombinant SFV particles were encapsulated in liposomes, which provided passive targeting of
tumors and protection against recognition by the host immune system [106]. Moreover, the limitation
of vector use due to host immune responses has been addressed by engineering a polymer-coated
MV-NPL vector based on the MV Edmonston strain with the N, P, and L genes of the wild-type
MV strain [125]. The polymer-coated MV-NPL showed superior oncolytic activity in vitro compared
to naked MV-NPL. Moreover, polymer-coated MV-NPL provides higher complement-dependent
cytotoxicity and antitumor activities than naked virus in mice. In the context of optimization of immune
responses, specific targeting of DCs has proven a useful approach demonstrating enhanced immune
responses from VEE vectors transducing DCs [72]. Recently, the delivery to DCs and translation of
replicon RNA from classical swine fever virus (CSFV) encoding influenza virus NP, belonging to
flaviviruses, was improved by lipid formulations, which was demonstrated both in vitro and in vivo
by induced immune responses against influenza NP [126]. Moreover, potential enhanced therapeutic
efficacy has been addressed by various applications of combination therapy. For instance, a triple
treatment combination of sunitinib, low-dose irradiation, and SFV-HPV E6,7 particles rendered mice
tumor-free [79]. Similarly, combining VSV immunization with ruxolitinib administration enhanced
responses in both subcutaneous and orthotropic xenograft models [89]. Furthermore, ruxolitinib and
Polybrene or DEAE-dextran rendered VSV-resistant cells susceptible, which should aid VSV-based
therapy [93].

Although a relatively small number of clinical trials have been conducted with self-replicating
RNA viruses, there has been some promising results. Especially, several phase III trials on MV-based
vaccines against EBV have provided good safety profiles and protection [112–116]. Alphavirus vectors
have been subjected to clinical trials on infectious diseases [102,103]. So far, elicited immune responses
have been relatively modest, which at least to some extent has been related to lack of dose optimization.
In the context of using self-replicating RNA viruses for cancer therapy, less progress has been seen
compared to infectious diseases. However, VEE-CEA particles showed prolonged survival in a phase I
trial in pancreatic cancer. Moreover, promising results were obtained for liposome encapsulated SFV
particles (LipoVIL12) in terminally ill melanoma and kidney carcinoma patients [106]. Also, MV vectors
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have shown regression of lymphoma lesions, stable disease in treatment of ovarian cancer [118], and
complete response in one myeloma patient [120].

One important issue related to the utilization of any delivery system is safety. In the first phase,
it is essential to provide high safety standards during laboratory research and large-scale production
to ensure the protection of personnel. Related to self-replicating RNA viruses, special attention has
been paid to the engineering of helper virus vectors used for virus preparation both at laboratory and
large-scale. Initially, introduction of point mutations in the p62 precursor of the SFV E2 and E3 envelope
genes rendered generated recombinant particles conditionally infectious requiring an additional
activation step with α-chymotrypsin [127]. This second generation pSFV-Helper2 vector reduced the
generation of replication-competent SFV particles to undetectable levels. Introduction of split helper
systems for both SFV [128] and SIN [129] in which the capsid and envelope proteins are placed on
separate plasmids generating high-titer particles eliminated production of recombinant-proficient
alphavirus particles. Moreover, self-replicating RNA viruses—including alphaviruses, flaviviruses,
MVs, and rhabdoviruses—have been classified at laboratory biosafety level 2 although the gene
of interest expressed from the vector might impact the level [130]. Related to toxicity and adverse
events observed in patients subjected to viral injections, VEE particles were well-tolerated, showed
only local reactogenicity, and no clinically important changes [102]. However, although five serious
adverse events were recorded in a phase I study in healthy HIV-uninfected individuals none were
considered related to the vaccine [103]. The only adverse events related to immunization of Ebola
patients with VSV vectors comprised of pain at the injection site, fatigue, myalgia, and headache [108].
Similarly, immunization of healthy volunteers with the VSV∆G-ZEBOV-GP vaccine showed only mild
to moderate self-limited adverse events and injection-site pain and headache during a 14-day follow-up
period [109]. Related to toxicity issues, a phase I study in CRPC patients demonstrated that VEE-PSMA
administration was well-tolerated and no toxicity was observed [105]. Likewise, was well-tolerated
in ovarian cancer patients showing no dose-limiting toxicity, MV-CEA [123]. Interestingly, a phase
I trial in pancreatic cancer patients showed the feasibility of repeated injections [104]. Moreover,
liposome-encapsulated SFV-IL12 particles could be repeatedly administered to kidney carcinoma
and melanoma patients without demonstrating any toxicity, or virus- or liposome-related immune
responses [106].

Looking into the future, continuous vector development aiming at delivery and safety
improvements will certainly support the progress in therapeutic applications of self-replicating RNA
viral vectors. Moreover, dose optimization studies, especially at the clinical level, needs to be conducted.
As vaccine development and gene therapy approaches have taken giants leaps recently with classical
approaches and more pioneering efforts using viral vectors and nucleic acids. The attractive features
of self-replicating RNA viruses relate to the easy of virus production, broad host range, high safety
levels due to no risk of chromosomal integration, targeting of DCs, but most importantly the extreme
RNA replication in the cytoplasm, which supports high level transgene expression as the basis for
generating strong immune responses. Today, RNA-based delivery provides an attractive approach,
especially combined with either polymer- or liposome-based encapsulation strategies.
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