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Abstract: Highly selective C(sp2)–C(sp2) cross-coupling of dihalogenated hydrocarbons comprising
C(sp2)–Br and C(sp3)–Cl bonds with arylboronic acids is reported. This highly selective coupling
reaction of the C(sp2)–Br bond is successfully achieved using Pd(OAc)2 and PCy3·HBF4 as the
palladium source and ligand, respectively. A series of chloromethyl-1,1′-biphenyl compounds are
obtained in moderate-to-excellent yields. Moreover, this protocol can be extended to the one-pot
dual arylation of 1-bromo-4-(chloromethyl)benzene with two arylboronic acids, leading to diverse
unsymmetrical 4-benzyl-1,1′-biphenyl derivatives.
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1. Introduction

Transition-metal-catalyzed cross-coupling reactions between electrophiles and arylboronic acids
are an important method in the C–C bond formation [1–3]. Over the past decades, aryl and
benzyl halides have been used as electrophiles for constructing C(sp2)–C(sp2) and C(sp3)–C(sp2)
bonds, respectively [4–10]. To the best of our knowledge, the selective reaction of dihalogenated
hydrocarbons containing the C(sp2)–X and C(sp3)–X bonds with arylboronic acids in the presence
of palladium catalyst has been rarely reported [11–16]. Duchêne and Thibonnet reported the
Pd(PPh3)4-catalyzed selective coupling reaction of C(sp3)–Br at the benzylic position of the starting
bromobenzyl bromides with arylboronic acids, affording C(sp3)–C(sp2) as the coupling products
(Scheme 1a) [11,12]. Gueiffier also developed a Pd(PPh3)4-catalyzed one-pot two-step reaction
of bromobenzyl chloride with arylboronic acids by first C(sp3)–C(sp2) coupling and subsequent
C(sp2)–C(sp2) coupling, affording numerous new unsymmetrical methylene-linked biaryl systems
(Scheme 1a)[13]. Çetinkaya et al. achieved the palladium-catalyzed C(sp2)–C(sp2) coupling reactions
with 1-bromo-4-(bromomethyl)benzene and arylboronic acids by using saturated N-heterocarbene
ligands [17]. In 2010, Maseras conducted an experimental and theoretical study on the role of phosphine
ligands in palladium-catalyzed Suzuki cross-coupling of competitive and selective C(sp3)–Br versus
C(sp2)–Br bond activation [18]. Their results indicated that as a less-hindered phosphine, PPh3 is
associated with a bisligated form of the catalyst, which favors the activation of the C(sp3)–Br bond of the
α-bromosulfoxide side. As the more hindered phosphine, P(1-napthyl)3 is related to the monoligated
form of the catalyst, which promotes the activation of the C(sp2)–Br bond of the bromoaryl moiety.
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arylboronic acids in the presence of the ligand PCy3·HBF4, which does not afford C(sp3)–C(sp2) 
coupling products; instead, the reaction provided highly selective of C(sp2)–C(sp2) coupling products 
(Scheme 1b). 

2. Results and Discussion 

Initially, 1-bromo-4-(chloromethyl)benzene and p-tolylboronic acid were selected as model 
substrates to optimize the reaction conditions. Table 1 summarizes the results obtained. The screened 
bases were examined by using PCy3·HBF4 and Pd(OAc)2 as the ligand and palladium source, 
respectively, in toluene/water (1/0.1) at 80 °C for 2 h; Cs2CO3 was the most effective base, affording 
the desired product in 99% yield (entry 5). On the other hand, other bases such as K2CO3, K3PO4·3H2O, 
NaOH, and NEt3 afforded the desired products in 16–84% yields (entries 1–4). Remarkably, the ligand 
was found to play an important role in this reaction, and PPh3 was not effective for this selective 
C(sp2)–C(sp2) coupling reaction (entry 6). Moreover, with the decrease in the reaction temperature to 
60 °C, the product was obtained in only 74% yield (entry 7). With the decrease in the catalyst amount 
from 1 mol % to 0.2 mol %, the desired product was still obtained in a gas chromatography-mass 
spectrometer (GC–MS) yield of 99% (entries 8–10). However, with the decrease in the catalyst loading 
to 0.1 mol %, the yield was significantly reduced (entry 11). Finally, the combination of Pd(OAc)2 (0.2 
mol %)/PCy3·HBF4 (0.4 mol %) and Cs2CO3 (2 equiv.) at 80 °C for 2 h in toluene/water (1 mL/0.1 mL) 
was found to constitute the optimum reaction conditions. 

Table 1. Optimized reaction conditions a. 

 

Entry Pd(OAc)2 PCy3∙HBF4 Base/Equiv. T/°C Yield/% b

1 2 mol % 4 mol % NEt3 80 (37) c 
2 2 mol % 4 mol % NaOH 80 (14) c 
3 2 mol % 4 mol % K3PO4·3H2O 80 (69) c 
4 2 mol % 4 mol % K2CO3 80 (84) c 
5 2 mol % 4 mol % Cs2CO3 80 99(97) c 
6 2 mol % PPh3/4 mol % Cs2CO3 80 0 
7 2 mol % 4 mol % Cs2CO3 60 74 
8 1 mol % 2 mol % Cs2CO3 80 99 
9 0.5 mol % 1 mol % Cs2CO3 80 99 
10 0.2 mol % 0.4 mol % Cs2CO3 80 99 
11 0.1 mol % 0.2 mol % Cs2CO3 80 23 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, p-tolylboronic acid 0.33 mmol, 
base 2 equiv., 1.0 mL toluene and 0.1 mL H2O, 2 h, Ar protection. b Gas chromatography-mass 
spectrometry (GC–MS) yield. c Isolated yield. 

Scheme 1. Selective palladium-catalyzed Suzuki-Miyaura coupling reaction. (a) C(sp3)–C(sp2)
coupling; (b) C(sp2)–C(sp2) coupling.

Inspired by this study and based on our previous studies [19–25], we reported Pd-catalyzed,
highly selective C(sp2)-Br bond coupling reactions of o-(or m-, or p-)chloromethyl bromobenzene
with arylboronic acids in the presence of the ligand PCy3·HBF4, which does not afford C(sp3)–C(sp2)
coupling products; instead, the reaction provided highly selective of C(sp2)–C(sp2) coupling products
(Scheme 1b).

2. Results and Discussion

Initially, 1-bromo-4-(chloromethyl)benzene and p-tolylboronic acid were selected as model
substrates to optimize the reaction conditions. Table 1 summarizes the results obtained. The screened
bases were examined by using PCy3·HBF4 and Pd(OAc)2 as the ligand and palladium source,
respectively, in toluene/water (1/0.1) at 80 ◦C for 2 h; Cs2CO3 was the most effective base, affording the
desired product in 99% yield (entry 5). On the other hand, other bases such as K2CO3, K3PO4·3H2O,
NaOH, and NEt3 afforded the desired products in 16–84% yields (entries 1–4). Remarkably, the ligand
was found to play an important role in this reaction, and PPh3 was not effective for this selective
C(sp2)–C(sp2) coupling reaction (entry 6). Moreover, with the decrease in the reaction temperature to
60 ◦C, the product was obtained in only 74% yield (entry 7). With the decrease in the catalyst amount
from 1 mol % to 0.2 mol %, the desired product was still obtained in a gas chromatography-mass
spectrometer (GC–MS) yield of 99% (entries 8–10). However, with the decrease in the catalyst
loading to 0.1 mol %, the yield was significantly reduced (entry 11). Finally, the combination of
Pd(OAc)2 (0.2 mol %)/PCy3·HBF4 (0.4 mol %) and Cs2CO3 (2 equiv.) at 80 ◦C for 2 h in toluene/water
(1 mL/0.1 mL) was found to constitute the optimum reaction conditions.

Table 1. Optimized reaction conditions a.
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With the optimized reaction conditions in hand, the substrate scope of this selective
Suzuki–Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2).
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-tolylboronic
acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% and 73% yields,
respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, did not impair the
coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-difluorophenyl)boronic
acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling products 3k and 3l,
respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-ylboronic acid,
and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 57–86% yields.

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a.
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mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 

Cl

C3H7

3h, 98%
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 

Cl
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 
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3j, 90%

Molecules 2018, 22, 433  3 of 12 

With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 

Cl
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 

Cl
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 
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With the optimized reaction conditions in hand, the substrate scope of this selective Suzuki–
Miyaura reaction was examined. First, the coupling reactions of 1-bromo-4-(chloromethyl)benzene 
with arylboronic acid were explored under the optimized reaction conditions. 4-Substituted 
arylboronic acids bearing electron-donating or electron-withdrawing groups selectively underwent 
the coupling reaction, affording corresponding products 3b–3g in 75–93% yields (Table 2). 
Furthermore, the selective coupling reaction of 1-bromo-4-(chloromethyl)benzene, with m-
tolylboronic acid, and (3-chlorophenyl)boronic acid afforded the desired products 3h and 3i in 98% 
and 73% yields, respectively. Sterically demanding ortho substituents, such as o-tolylboronic acid, 
did not impair the coupling reaction, affording the desired product 3j in 90% yield. However, (2,3-
difluorophenyl)boronic acid and (2,6-dimethylphenyl)boronic acid as substrates afforded coupling 
products 3k and 3l, respectively, in low yields. In addition, thiophen-3-ylboronic acid, naphthalen-2-
ylboronic acid, and 4-vinylphenylboronic acid were tolerated, affording desired products 3n–3p in 
57–86% yields. 

Table 2. Selective coupling reaction of 1-bromo-4-(chloromethyl)benzene with arylboronic acid a. 

 

 
3b, 79% 3c, 87% 

 
3d, 83% 

 
3e, 93% 

 
3f, 83% 

 
3g, 75% 

 
3h, 98% 

 
3i, 73% 

 
3j, 90% 

 
3k, 47% 

 
3l, 50%  

3m, 73% 

 
3n, 77% 

 
3o, 86% 

 
3p, 57% 

a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various 
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic 
property nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired 
products 4a–4h were obtained in 73–95% yields. 

Cl

C3H7

3p, 57%
a Reaction conditions: 1-bromo-4-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 mol %
Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 ◦C, 2 h, Ar protection.
The yields of isolated products are given.

Next, the selective coupling reactions of 1-bromo-3-(chloromethyl)benzene with various
arylboronic acids were investigated (Table 3). The results indicated that neither the electronic property
nor the steric hindrance of the substrates clearly affects the coupling reaction: The desired products
4a–4h were obtained in 73–95% yields.
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Table 3. Selective coupling reaction of arylboronic acid with 1-bromo-3-(chloromethyl)benzene a.
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Table 3. Selective coupling reaction of arylboronic acid with 1-bromo-3-(chloromethyl)benzene a. 

 

 
4a, 95% 4b, 90% 4c, 92% 

 
4d, 93% 

4e, 92% 
 

4f, 87% 
 

4g, 95% 4h, 73% 
a Reaction conditions: 1-bromo-3-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

To further ascertain the application scope of the catalytic system, the reaction of 1-bromo-2-
(chloromethyl)benzene with arylboronic acids was examined. The present catalytic method can be 
applied for the selective coupling of 1-bromo-2-(chloromethyl)benzene with arylboronic acids, 
affording the desired products 5a–5h in yields of 80–95% (Table 4). 

Table 4. Selective coupling reaction of arylboronic acid with 1-bromo-2-(chloromethyl)benzene a. 

 

 
5a, 97% 5b, 95% 5c, 89% 

 
5d, 92% 

 
5e, 88% 

 
5f, 87% 

 
5g, 95% 

 
5h, 80% 

a Reaction conditions: 1-bromo-3-(chloromethyl)benzene 0.30 mmol, arylboronic acid 0.33 mmol, 0.2 
mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, 2 equiv. Cs2CO3, 1.0 mL toluene and 0.1 mL H2O, 80 °C, 2 h, 
Ar protection. The yields of isolated products are given. 

A one-pot dual Suzuki coupling reaction for successively substituting 4-bromobenzyl chloride 
with distinct aryl groups was contemplated, which could provide a straightforward route for 
obtaining diverse 4-benzyl-1,1′-biphenyl derivatives (Table 5). First, 4-bromobenzyl chloride was 
treated with 1.1 equivalent of p-tolylboronic acid in the presence of 2 mol % of Pd(OAc)2, 0.4 mol % 
of PCy3·HBF4, and 5.0 equiv. of Cs2CO3 in a mixture of toluene and water (10:1). After heating for 2 h 
at 80 °C, 1.0 equivalent of arylboronic acid and 4.0 mol % of PPh3 were added to the reaction system. 
The reaction mixture was stirred for 5 h at 80 °C, affording the desired products 6a–6d in 57–96% 
yields. 
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To further ascertain the application scope of the catalytic system, the reaction of
1-bromo-2-(chloromethyl)benzene with arylboronic acids was examined. The present catalytic method
can be applied for the selective coupling of 1-bromo-2-(chloromethyl)benzene with arylboronic acids,
affording the desired products 5a–5h in yields of 80–95% (Table 4).
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A one-pot dual Suzuki coupling reaction for successively substituting 4-bromobenzyl chloride 
with distinct aryl groups was contemplated, which could provide a straightforward route for 
obtaining diverse 4-benzyl-1,1′-biphenyl derivatives (Table 5). First, 4-bromobenzyl chloride was 
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of PCy3·HBF4, and 5.0 equiv. of Cs2CO3 in a mixture of toluene and water (10:1). After heating for 2 h 
at 80 °C, 1.0 equivalent of arylboronic acid and 4.0 mol % of PPh3 were added to the reaction system. 
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A one-pot dual Suzuki coupling reaction for successively substituting 4-bromobenzyl chloride
with distinct aryl groups was contemplated, which could provide a straightforward route for obtaining
diverse 4-benzyl-1,1′-biphenyl derivatives (Table 5). First, 4-bromobenzyl chloride was treated with
1.1 equivalent of p-tolylboronic acid in the presence of 2 mol % of Pd(OAc)2, 0.4 mol % of PCy3·HBF4,
and 5.0 equiv. of Cs2CO3 in a mixture of toluene and water (10:1). After heating for 2 h at 80 ◦C,
1.0 equivalent of arylboronic acid and 4.0 mol % of PPh3 were added to the reaction system. The reaction
mixture was stirred for 5 h at 80 ◦C, affording the desired products 6a–6d in 57–96% yields.
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To demonstrate the importance of phosphine ligand for palladium-catalyzed selective coupling
reactions of C(sp2)–Br bond or C(sp3)–Cl bond with arylboronic acid, the external competition
experiment was performed. To this end, we designed an experiment in which mixtures of
bromobenzene and (chloromethyl)benzene were allowed to react with p-tolylboronic acid (Scheme 3).
As expected, the formation of the Csp2–Csp2 cross-coupling product (7c) was achieved in the
competitive experiment when PCy3·HBF4 was used as the phosphine ligand in the palladium catalyst.
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3. Materials and Methods

Chemicals were obtained commercially and used as received. Nuclear magnetic resonance (NMR)
spectra were recorded on a Bruker DPX–400 spectrometer (Bruker Co., Billerica, MA, USA) using
tetramethylsilane (TMS) as the internal standard. Electric impact ionization (EI)–Mass spectrum was
measured on a gas chromatography time of flight high resolution mass spectrometry (GCTOF-HRMS)
(Waters Co, Milford, MA, USA). or GC-MS (Agilent 7890A/5975C, Santa Clara, CA, USA)
instrument. Electrospray ionization (ESI)–Mass spectrum was measured on a matrix-assisted laser
desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) (Bruker Co., Bremen,
Germany). To all copies of 1H NMR, 13C NMR and HRMS spectra, please see Figures S2–S45
in Supplementary Materials. All products were isolated by short chromatography on a silica gel
(200–300 mesh) column using petroleum ether (60–90 ◦C), unless otherwise noted. Arylboronic acids
and o-(or m-, or p-)chloromethyl bromobenzene were of analytical grade quality, purchased from
Adamas-beta Pharmaceuticals, Inc. (Shanghai, China).

3.1. General Procedure for the Selective Coupling Reaction of o-(or m-, or p-)chloromethyl Bromobenzene with
Arylboronic Acid

A Schlenk tube (20 mL) was charged with o-(or m-, or p-)chloromethyl bromobenzene (0.3 mmol),
arylboronic acid (0.33 mmol), Pd(OAc)2 (0.2 mol %), PCy3·HBF4 (0.4 mol %), and Cs2CO3 (2 equiv.).
The tube was degassed for 30 s and then was filled with argon. This operation was repeated three times.
After toluene (1.0 mL) and H2O (0.1 mL) were added under argon atmosphere, the resulting reaction
mixture was stirred at 80 ◦C for 2 h under argon. After the completion of the reaction, the reaction
mixture was allowed to cool to room temperature. The solution was quenched with water (10 mL) and
extracted with EtOAc (3 × 10 mL). The combined EtOAc extracts were dried over anhydrous Na2SO4

and filtered, followed by solvent removal under reduced pressure. The residue was purified by flash
column chromatography on silica gel using petroleum ether/EtOAc as the eluent.

3.2. General Procedure for One-Pot Dual Arylations of 1-Bromo-4-(chloromethyl)benzene

A Schlenk tube (20 mL) was charged with 1-bromo-4-(chloromethyl)benzene (0.3 mmol),
arylboronic acid (0.33 mmol), 2 mol % Pd(OAc)2, 0.4 mol % PCy3·HBF4, and 5 equiv. Cs2CO3. The tube
was degassed for 30 s and then was filled with argon. This operation was repeated for three times.
After toluene (1.0 mL) and H2O (0.1 mL) were added under argon atmosphere, the resulting reaction
mixture was stirred at 80 ◦C for 2 h under argon. After the completion of the reaction, the solution was
allowed to cool to room temperature. Then, another arylboronic acid (0.33 mmol) and 4 mol % PPh3

were introduced under argon. The reaction mixture was heated at 80 ◦C for 5 h. The solution was
quenched with water (10 mL) and extracted with EtOAc (3 × 10 mL). The combined EtOAc extracts
were dried over anhydrous Na2SO4, filtrated, and then the solvent was removed under reduced
pressure. The residue was purified by flash column chromatography on silica gel with PE/EtOAc as
the eluent.

4-(chloromethyl)-4′-methyl-1,1′-biphenyl (3a) [26]: Colorless oil (64.3 mg, 99%). 1H-NMR (400 MHz,
CDCl3) δ 7.57 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H),
4.63 (s, 2H), 2.40 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 141.48, 137.75, 137.53, 136.28, 129.69, 129.18,
127.43, 127.10, 46.27, 21.27.

4-(chloromethyl)-1,1′-biphenyl (3b) [27]: Yellow oil (47.9 mg, 79%). 1H-NMR (400 MHz, CDCl3) δ 7.58
(d, J = 7.2 Hz, 4H), 7.51–7.40 (m, 4H), 7.39–7.32 (m, 1H), 4.63 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ
141.53, 140.63, 136.58, 129.19, 128.96, 127.67, 127.63, 127.26, 46.19.

4-(chloromethyl)-4′-methoxy-1,1′-biphenyl (3c) [28]: Colorless oil (60.7 mg, 87%). 1H-NMR (400 MHz,
CDCl3) δ 7.54 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H),
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4.63 (s, 2H), 3.85 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 159.50, 141.16, 135.94, 133.15, 129.19, 128.29,
127.17, 114.41, 55.51, 46.30.

4-(chloromethyl)-4′-propyl-1,1′-biphenyl (3d): Colorless oil (60.9 mg, 83%). 1H-NMR (400 MHz, CDCl3) δ
7.57 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.26 (s, 1H), 7.24 (d, J = 2.8 Hz,
1H), 4.63 (s, 2H), 2.65–2.60 (m, 2H), 1.68 (dq, J = 14.8, 7.2 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H). 13C-NMR
(100 MHz, CDCl3) δ 142.33, 141.51, 137.97, 136.24, 129.16, 129.09, 127.44, 127.07, 46.27, 37.84, 24.69,
14.03. HRMS (ESI) m/z calcd for C16H17ClNa+ (M + Na)+ 267.09110, found 267.09195.

4-(chloromethyl)-4′-pentyl-1,1′-bipheny (3e) [29]: White solid (75.8 mg, 93%). 1H-NMR (400 MHz, CDCl3)
δ 7.57 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.26 (s, 1H), 7.25 (d, J = 3.2
Hz, 1H), 4.63 (s, 2H), 2.67–2.61 (m, 2H), 1.65 (p, J = 7.4 Hz, 2H), 1.39–1.32 (m, 4H), 0.93–0.88 (m, 3H).
13C-NMR (100 MHz, CDCl3) δ 142.60, 141.51, 137.93, 136.24, 129.16, 129.03, 127.44, 127.09, 46.28, 35.73,
31.70, 31.31, 22.71, 14.19.

4-(chloromethyl)-4′-fluoro-1,1′-biphenyl (3f) [30]: Colorless oil (54.9 mg, 83%). 1H-NMR (400 MHz, CDCl3)
δ 7.55 (d, J = 3.2 Hz, 1H), 7.54–7.51 (m, 3H), 7.45 (d, J = 8.0 Hz, 2H), 7.12 (t, J = 8.8 Hz, 2H), 4.63 (s, 2H).
13C-NMR (100 MHz, CDCl3) δ 162.74, 140.53, 136.63, 129.41, 129.25, 128.82, 127.48, 115.85, 46.10.

4-(chloromethyl)-4′-(trifluoromethyl)-1,1′-biphenyl (3g) [31]: Colorless oil (60.9 mg, 75%). 1H-NMR
(400 MHz, CDCl3) δ 7.69 (d, J = 1.6 Hz, 4H), 7.59 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 4.64 (s, 2H).
13C-NMR (100 MHz, CDCl3) δ 144.14, 140.03, 137.63, 129.95–129.57 (m), 129.39, 127.79, 127.55, 125.93
(q, J = 4.0 Hz),123.78 (dd, J =420.0, 271.0 Hz) 45.94.

4′-(chloromethyl)-3-methyl-1,1′-biphenyl (3h): Colorless oil (63.7 mg, 98%). 1H-NMR (400 MHz, CDCl3)
δ 7.56 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H),
7.16 (d, J = 7.6 Hz, 1H), 4.61 (s, 2H), 2.40 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 141.61, 140.59, 138.52,
136.45, 129.11, 128.85, 128.40, 128.02, 127.59, 124.35, 46.20, 21.66. HRMS (EI): m/z calcd for C14H13Cl
[M]: 216.0723, found [M]: 216.0723.

3-chloro-4′-(chloromethyl)-1,1′-biphenyl (3i): Colorless oil (51.9 mg, 73%). 1H-NMR (400 MHz, CDCl3) δ
7.54 (d, J = 8.4 Hz, 3H), 7.47–7.42 (m, 3H), 7.38–7.30 (m, 2H), 4.62 (s, 2H). 13C-NMR (100 MHz, CDCl3)
δ 142.42, 140.02, 137.24, 134.84, 130.18, 129.28, 127.66, 127.56, 127.35, 125.37, 45.99. HRMS (EI): m/z
calcd for C13H10Cl2 [M]: 236.0169, found [M]: 236.0160.

4′-(chloromethyl)-2-methyl-1,1′-biphenyl (3j) [32]: Colorless oil (58.5 mg, 90%). 1H-NMR (400 MHz,
CDCl3) δ 7.43 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.28–7.25 (m, 2H), 7.25–7.19 (m, 2H),
4.64 (s, 2H), 2.27 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 142.29, 141.35, 136.06, 135.44, 130.52, 129.86,
129.71, 128.49, 127.60, 125.97, 46.28, 20.59.

4′-(chloromethyl)-2,3-difluoro-1,1′-biphenyl (3k): Yellow oil (33.6 mg, 47%). 1H-NMR (400 MHz, CDCl3) δ
7.54 (d, J = 6.8 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.21–7.08 (m, 3H), 4.63 (s, 2H). 13C-NMR (100 MHz,
CDCl3) δ 151.25 (dd, J = 247.0, 14.0 Hz), 148.12 (dd, J = 249.0, 14.0 Hz), 137.55, 134.96 (d, J = 4.0 Hz),
130.75 (d, J = 10.0 Hz), 129.45 (d, J = 3.0 Hz), 128.95, 125.46–125.27 (m), 124.29 (dd, J = 7.0, 5.0 Hz),
116.46 (d, J = 20.0 Hz), 45.96. HRMS (EI): m/z calcd for C13H9ClF2 [M]: 238.0369, found [M]: 238.0361.

4′-(chloromethyl)-2,6-dimethyl-1,1′-biphenyl (3l): Colorless oil (34.6 mg, 50%). 1H-NMR (400 MHz, CDCl3)
δ 7.44 (d, J = 8.0 Hz, 2H), 7.15 (t, J = 2.9 Hz, 2H), 7.13 (s, 1H), 7.10 (d, J = 7.6 Hz, 2H), 4.65 (s, 2H),
2.02 (s, 6H). 13C-NMR (100 MHz, CDCl3) δ 140.29, 139.54, 137.04, 132.09, 129.33, 128.84, 127.43, 122.00,
46.05, 29.85. HRMS (ESI) m/z calcd for C15H16Cl+ (M + H)+ 231.09350, found 231.09262.

4′-(chloromethyl)-3,4,5-trifluoro-1,1′-biphenyl (3m) [33]: Colorless oil (56.2 mg, 73%). 1H-NMR (400 MHz,
CDCl3) δ 7.48 (d, J = 1.6 Hz, 4H), 7.17 (dd, J = 6.4, 6.4 Hz, 2H), 4.62 (s, 2H). 13C-NMR (100 MHz, CDCl3)
δ 151.60 (ddd, J = 248.0, 10.0, 4.0 Hz), 141.05–138.04 (m), 138.43, 137.88, 136.74 (td, J = 7.7, 4.6 Hz),
129.46, 127.3, 111.34–111.04 (m), 45.77.
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3-(4-(chloromethyl)phenyl)thiophene (3n) [34]: Colorless oil (48.2 mg, 77%). 1H-NMR (400 MHz, CDCl3) δ
7.58 (d, J = 8.4 Hz, 2H), 7.45 (dd, J = 1.6, 1.6 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 1.2 Hz, 1H),
7.37 (s, 1H), 4.60 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 141.78, 136.3, 136.13, 129.26, 126.88, 126.52,
126.38, 120.84, 46.21.

2-(4-(chloromethyl)phenyl)naphthalene (3o) [35]: Colorless oil (65.2 mg, 86%). 1H-NMR (400 MHz, CDCl3)
δ 8.00 (s, 1H), 7.90–7.82 (m, 3H), 7.71–7.66 (m, 3H), 7.51–7.44 (m, 4H), 4.62 (s, 2H). 13C-NMR (100 MHz,
CDCl3) δ 141.43, 137.93, 136.68, 133.76, 132.86, 129.30, 128.66, 128.36, 127.89, 127.79, 126.53, 126.24,
126.02, 125.53, 46.21.

4-(chloromethyl)-4′-vinyl-1,1′-biphenyl (3p): Colorless oil (39.1 mg, 57%). 1H-NMR (400 MHz, CDCl3)
δ 7.59 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.49 (s, 1H), 7.47 (d, J = 2.8 Hz, 2H), 7.45 (s, 1H),
6.76 (dd, J = 10.8, 10.8 Hz, 1H), 5.80 (d, J = 17.6 Hz, 1H), 5.28 (d, J = 10.8 Hz, 1H), 4.64 (s, 2H). 13C-NMR
(100 MHz, CDCl3) δ 140.98, 139.91, 137.00, 136.62, 136.44, 129.21, 127.39, 127.31, 126.83, 114.24, 46.17.
HRMS (ESI) m/z calcd for C15H13ClNa+ (M + Na)+ 251.05980, found 251.06100.

3-(chloromethyl)-1,1′-biphenyl (4a) [36]: Yellow solid (57.8 mg, 95%). 1H-NMR (400 MHz, CDCl3) δ
7.62–7.59 (m, 2H), 7.58 (d, J = 0.8 Hz, 1H), 7.55 (dd, J = 7.6, 1.2 Hz, 1H), 7.47–7.41 (m, 3H), 7.38 (s, 1H),
7.36 (d, J = 1.6 Hz, 1H), 4.65 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 141.96, 140.73, 138.10, 129.32, 128.96,
127.69, 127.56, 127.54, 127.36, 127.31, 46.41.

3-(chloromethyl)-4′-methyl-1,1′-biphenyl (4b) [36]: Colorless oil (58.5 mg, 90%). 1H-NMR (400 MHz,
CDCl3) δ 7.58 (s, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.40 (t, J = 7.6 Hz, 1H),
7.33 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 2H), 4.62 (s, 2H), 2.38 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ
141.87, 138.04, 137.83, 137.50, 129.67, 129.27, 127.35, 127.26, 127.16, 127.13, 46.46, 21.25.

3-(chloromethyl)-4′-(trifluoromethyl)-1,1′-biphenyl (4c) [37]: Colorless oil (74.7 mg, 92%). 1H-NMR
(400 MHz, CDCl3) δ 7.70–7.64 (m, 4H), 7.59 (s, 1H), 7.52 (dt, J = 7.4, 1.6 Hz, 1H), 7.44 (t, J = 7.6 Hz,
1H), 7.41 (d, J = 7.6 Hz, 1H), 4.63 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 144.23, 140.49, 138.44, 129.78
(d, J = 32.0 Hz), 129.57, 128.45, 127.63, 127.60, 127.46, 125.91 (q, J = 4.0 Hz), 124.38 (q, J = 270.0 Hz), 46.15.

3-(chloromethyl)-3′-methyl-1,1′-biphenyl (4d): Colorless oil (60.4 mg, 93%). 1H-NMR (400 MHz, CDCl3)
δ 7.59 (s, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.40 (q, J = 7.6 Hz, 3H), 7.33 (dd, J = 13.6, 5.6 Hz, 2H),
7.17 (d, J = 7.2 Hz, 1H), 4.63 (s, 2H), 2.41 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 142.06, 140.70, 138.55,
138.02, 129.24, 128.85, 128.42, 128.08, 127.55, 127.44, 127.36, 124.40, 46.43, 1.66. GC-MS (m/z): 217.

3-chloro-3′-(chloromethyl)-1,1′-biphenyl (4e): Colorless oil (65.4 mg, 92%). 1H-NMR (400 MHz, CDCl3) δ
7.55 (d, J = 4.0 Hz, 2H), 7.49 (d, J = 7.2 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.39–7.34
(m, 2H), 7.33–7.31 (m, 1H), 4.62 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 142.56, 140.55, 138.32, 134.87,
130.20, 129.48, 128.14, 127.71, 127.50, 127.45, 127.31, 125.47, 46.23. HRMS (EI): m/z calcd for C13H10Cl2
[M]: 236.0172, found [M]: 236.0160.

3′-(chloromethyl)-2-methyl-1,1′-biphenyl (4f) [32]: Colorless oil (56.6 mg, 87%). 1H-NMR (400 MHz,
CDCl3) δ 7.36 (dd, J = 12.4, 7.2 Hz, 3H), 7.27 (d, J = 9.6 Hz, 3H), 7.22 (t, J = 5.4 Hz, 2H), 4.61 (s, 2H),
2.26 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 142.59, 141.37, 137.43, 135.41, 130.50, 129.84, 129.54, 129.36,
128.60, 127.61, 127.07, 125.95, 46.38, 20.56.

3-(3-(chloromethyl)phenyl)thiophene (4g) [32]: Colorless oil (59.5 mg, 95%). 1H-NMR (400 MHz, CDCl3) δ
7.61 (s, 1H), 7.55 (dt, J = 7.6, 1.6 Hz, 1H), 7.47 (dd, J = 2.4, 2.0 Hz, 2H), 7.43–7.34 (m, 4H), 7.31 (d, J = 8.0 Hz,
1H), 4.62 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 141.83, 138.13, 136.52, 129.35, 127.38, 126.79, 126.61,
126.52, 126.39, 120.86, 46.35.

2-(3-(chloromethyl)phenyl)naphthalene (4h): Yellow oil (55.3 mg, 73%). 1H-NMR (400 MHz, CDCl3) δ 8.02
(s, 1H), 7.89 (t, J = 7.2 Hz, 2H), 7.85 (d, J = 7.2 Hz, 1H), 7.71 (d, J = 6.4 Hz, 2H), 7.65 (d, J = 7.6 Hz, 1H),
7.52–7.46 (m, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 4.66 (s, 2H). 13C-NMR (100 MHz,
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CDCl3) δ 141.86, 138.22, 138.03, 133.76, 132.86, 129.43, 128.66, 128.35, 127.79, 127.64, 126.53, 126.24,
126.07, 125.58, 46.44. HRMS (EI): m/z calcd for C17H10Cl [M]: 252.0723, found [M]: 252.0706.

2-(chloromethyl)-1,1′-biphenyl (5a) [38]: Yellow oil (58.9 mg, 97%). 1H-NMR (400 MHz, CDCl3) δ 7.55–7.51
(m, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.42–7.33 (m, 6H), 7.27 (d, J = 9.2 Hz, 1H), 4.52 (s, 2H). 13C-NMR
(100 MHz, CDCl3) δ 142.21, 140.31, 135.05, 130.64, 130.46, 129.28, 128.64, 128.44, 128.07, 127.59, 44.60.

2-(chloromethyl)-4′-methyl-1,1′-biphenyl (5b) [39]: Yellow oil (61.7 mg, 95%). 1H-NMR (400 MHz, CDCl3)
δ 7.55–7.50 (m, 1H), 7.38–7.33 (m, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.28–7.22 (m, 3H), 4.53 (s, 2H), 2.41 (s, 3H).
13C-NMR (100 MHz, CDCl3) δ 142.19, 137.38, 137.29, 135.08, 130.61, 130.50, 129.15, 129.13, 128.61,
127.86, 44.68, 21.33.

2-(chloromethyl)-4′-(trifluoromethyl)-1,1′-biphenyl (5c) [39]: Colorless oil (72.3 mg, 89%). 1H-NMR
(400 MHz, CDCl3) δ 7.71 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 7.6 Hz, 3H), 7.46–7.38 (m, 2H), 7.27 (d, J = 10.0 Hz,
1H), 4.48 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 143.98, 140.80, 135.04, 130.92, 130.28, 129.89 (dt, J = 95.0,
30 Hz), 129.68, 128.91, 128.79, 125.43 (q, J = 4.0 Hz), 124.34 (q, J = 270.0 Hz), 44.25.

2-(chloromethyl)-3′-methyl-1,1′-biphenyl (5d) [39]: Yellow oil (59.8 mg, 92%). 1H-NMR (400 MHz, CDCl3)
δ 7.56–7.51 (m, 1H), 7.38–7.34 (m, 2H), 7.31 (d, J = 7.2 Hz, 1H), 7.29–7.25 (m, 1H), 7.21 (d, J = 6.8 Hz, 5H),
4.53 (s, 2H), 2.41 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 142.32, 140.25, 138.06, 135.03, 130.58, 130.40,
130.03, 128.56, 128.31, 128.29, 127.95, 126.33, 44.64, 21.62.

3′-chloro-2-(chloromethyl)-1,1′-biphenyl (5e) [39]: Yellow oil (62.3 mg, 88%). 1H-NMR (400 MHz, CDCl3)
δ 7.53 (dd, J = 7.6, 2.0 Hz, 1H), 7.40 (d, J = 1.2 Hz, 1H), 7.38 (dd, J = 4.8, 1.6 Hz, 1H), 7.37–7.32 (m, 3H),
7.32–7.29 (m, 1H), 7.25–7.22 (m, 1H), 4.49 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 142.04, 140.74, 135.02,
134.33, 130.76, 130.29, 129.67, 129.37, 128.78, 128.55, 127.79, 127.49, 44.31.

2-(chloromethyl)-2′-methyl-1,1′-biphenyl (5f) [40]: Colorless oil (56.5 mg, 87%). 1H-NMR (400 MHz,
CDCl3) δ 7.55 (d, J = 6.8 Hz, 1H), 7.42–7.30 (m, 3H), 7.30–7.20 (m, 3H), 7.20–7.11 (m, 2H), 4.43–4.26
(m, 2H), 2.07 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 141.57, 139.60, 136.16, 135.41, 130.17, 130.09, 129.69,
128.41, 128.01, 127.92, 125.64, 44.26, 20.30.

3-(2-(chloromethyl)phenyl)thiophene (5g) [41]: Colorless oil (59.4 mg, 95%). 1H-NMR (400 MHz, CDCl3) δ
7.51 (dd, J = 7.2 3.6 Hz, 1H), 7.42 (dd, J = 2.8, 1.2 Hz, 1H), 7.39 (dd, J = 5.2, 3.2 Hz, 1H), 7.35 (d, J = 3.2 Hz,
3H), 7.26–7.22 (m, 1H), 4.58 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 140.44, 136.90, 135.18, 130.92, 130.41,
128.98, 128.80, 128.08, 125.76, 123.44, 44.95.

2-(2-(chloromethyl)phenyl)naphthalene (5h) [42]: Yellow oil (60.6 mg, 80%). 1H-NMR (400 MHz, CDCl3) δ
7.90–7.83 (m, 4H), 7.57–7.51 (m, 2H), 7.51–7.46 (m, 2H), 7.38 (dd, J = 2.8, 2.0 Hz, 1H), 7.37–7.33 (m, 2H),
4.54 (s, 2H). 13C-NMR (100 MHz, CDCl3) δ 142.13, 137.76, 135.26, 133.28, 130.72, 130.66, 128.68, 128.29,
128.16, 128.04, 127.84, 127.49, 126.54

4-benzyl-4′-methyl-1,1′-biphenyl (6a) [43]: Yellow oil (60.4 mg, 78%). 1H-NMR (400 MHz, CDCl3) δ
7.51 (d, J = 2.0 Hz, 1H), 7.48 (dd, J = 3.6, 2.0 Hz, 2H), 7.45 (d, J = 2.0 Hz, 1H), 7.30 (t, J = 6.4 Hz, 2H),
7.26–7.20 (m, 7H), 4.01 (s, 2H), 2.38 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 141.20, 140.07, 139.11, 138.26,
136.96, 129.59, 129.42, 129.11, 128.65, 127.16, 126.98, 126.26, 41.73, 21.24.

4-(4-methoxybenzyl)-4′-methyl-1,1′-biphenyl (6b) [44]: Yellow oil (83.1 mg, 96%). 1H-NMR (400 MHz,
CDCl3) δ 7.49 (s, 1H), 7.47 (d, J = 2.0 Hz, 2H), 7.45 (s, 1H), 7.23 (s, 2H), 7.21 (s, 2H), 7.14 (s, 1H),
7.12 (s, 1H), 6.85 (s, 1H), 6.83 (s, 1H), 3.95 (s, 2H), 3.77 (s, 3H), 2.37 (s, 3H). 13C-NMR (100 MHz, CDCl3)
δ 158.14, 140.54, 139.02, 138.29, 136.93, 133.32, 130.03, 129.57, 129.28, 127.13, 126.97, 114.06, 55.41,
40.82, 21.23.

4-(4-fluorobenzyl)-4′-methyl-1,1′-biphenyl (6c): Yellow oil (73.7 mg, 89%).1H-NMR (400 MHz, CDCl3)
δ 7.50 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.24–7.20 (m, 4H), 7.17 (dd, J = 8.8, 5.6 Hz, 2H),
6.98 (t, J = 8.8 Hz, 2H), 3.97 (s, 2H), 2.38 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 161.59 (d, J = 243.9 Hz),
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139.86 (d, J = 1.4 Hz), 139.26, 138.16, 137.04, 136.85 (d, J = 3.3 Hz), 130.45 (d, J = 7.8 Hz), 129.60, 129.31,
127.22, 126.98, 115.40 (d, J = 21.2 Hz), 40.86, 21.24. HRMS (ESI) m/z calcd for C20H19FK+ (M + K)+

315.09459, found 315.09357.

3-((4′-methyl-[1,1′-biphenyl]-4-yl)methyl)thiophene (6d): Colorless oil (45.2 mg, 57%). 1H-NMR (400 MHz,
CDCl3) δ 7.50 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.26 (t, J = 2.4 Hz, 2H), 7.23 (d, J = 8.0 Hz, 3H),
6.95 (dd, J = 4.8, 2.8 Hz, 2H), 4.01 (s, 2H), 2.38 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 139.53, 139.20,
136.99, 129.59, 129.24, 128.61, 127.17, 126.98, 125.81, 121.44, 36.30, 21.24. HRMS (ESI) m/z calcd for
C18H17S+ (M + H)+ 265.10455, found 265.10495.

4-(bromomethyl)-4′-methyl-1,1′-biphenyl (7a) [45]: White solid (32.6 mg, 42%). 1H-NMR (400 MHz,
CDCl3) δ 7.55 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 6.4Hz, 2H),
4.55 (s, 2H), 2.40 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 141.48, 137.69,137.56, 137.58, 129.70, 129.61,
127.48, 127.08, 33.63, 21.27.

4-methyl-4′-(4-methylbenzyl)-1,1′-biphenyl (7b) [46]: White solid, MP: 77–78 ◦C (20.4 mg, 25%). 1H-NMR
(400 MHz, CDCl3) δ 7.51–7.44 (m, 4H), 7.23 (dd, J = 8.0 3.6 Hz, 4H), 7.11 (s, 4H), 3.97 (s, 2H), 2.38 (s, 3H),
2.32 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 140.38, 139.02, 138.31, 138.16, 136.92, 135.74, 129.57, 129.34,
128.97, 127.13, 126.98, 41.30, 21.23, 21.17.

4-methyl-1,1′-biphenyl (7c) [25]: White solid (46.8 mg, 92%). 1H-NMR (400 MHz, CDCl3) δ 7.57 (dd, J = 8.4,
1.6 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 8.0 Hz,
3H), 2.38 (s, 3H).

4. Conclusions

In conclusion, an efficient method for the selective Suzuki–Miyaura coupling of o-(or m-,
or p-)chloromethyl bromobenzene with arylboronic acids was described. This Pd-catalyzed highly
selective coupling reaction of the C(sp2)–Br bond was achieved by using PCy3·HBF4 as the ligand
and Cs2CO3 as the base in a mixture of toluene/water (10:1). A series of chloromethyl-1,1′-biphenyl
compounds were obtained in moderate-to-excellent yields. Importantly, the catalytic system exhibited
a wide substrate scope and good functional group tolerance. Moreover, this protocol was extended to
the one-pot dual arylation of 1-bromo-4-(chloromethyl)benzene, affording numerous unsymmetrical
methylene-linked biaryl derivatives.

Supplementary Materials: Supplementary materials are available online. Figures S2–S46: 1H-, 13C-NMR,
and HRMS of products.
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