Supporting Information for:

Electronic structure of C_{60} /zinc phthalocyanine/ V_2O_5 interfaces studied using photoemission spectroscopy for organic photovoltaic applications

Chang Jin Lim^a, Min Gyu Park^a, Min Su Kim^b, Jeong Hwa Han^b, Soohaeng Cho^a, Mann-Ho
Cho^b, Yeonjin Yi^b, Hyunbok Lee^c, and Sang Wan Cho^{a,*}

^a Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493 Korea

^b Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea

^c Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gaongwon-do 24341, Republic of Korea.

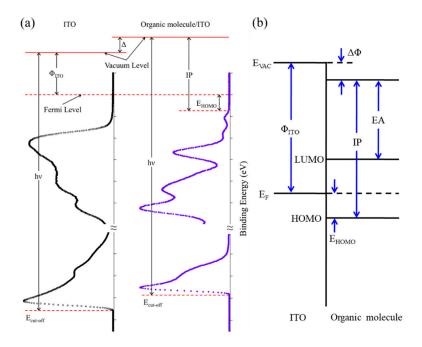


Figure S1. (a) Schematic illustration of some of the important parameters derived from PES characterization of surfaces and interfaces. (b) An energy-level diagram for a generic junction formed between an organic film and an ITO substrate.

Figure S1 illustrates the procedure used for the determination of energy-level alignment at the interface. The basic equation used in interpreting photoelectron spectra is:

$$E_{R} = h \nu - E_{k} - \Phi \tag{1}$$

The photon energy (hv) is known and the photoelectron kinetic energy (E_k) is measured in order to deduce the binding energy (E_B) referenced to E_F . When hv is known, the work function (Φ) can be obtained from the measured energy of the secondary-electron cut-off $(E_{\text{cut-off}})$, i.e.:

$$\Phi = h \, v - E_{cut-off} \tag{2}$$

The change in the work function, $\Delta\Phi$, can then be tracked by measuring $E_{\text{cut-off}}$ after a deposition step. Therefore, the shift of this $E_{\text{cut-off}}$ indicates the magnitude of the interfacial dipole, which is equal to increasing or decreasing the work function. Similarly, the ionization potential (IP) can be obtained from $E_{\text{cut-off}}$ and the HOMO onset (E_{HOMO}):

$$IP = h v - (E_{cut-off} - E_{HOMO}) \tag{3}$$