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Abstract: A method for daily monitoring of yttrium and rare earth elements (YREEs) in seawater
using a cheap flow injection system online coupled to inductively coupled plasma-mass spectrometry
is reported. Toyopearl AF Chelate 650M® resin permits separation and concentration of YREEs using
a simple external calibration. A running cycle consumed 6 mL sample and took 5.3 min, providing a
throughput of 11 samples per hour. Linear ranges were up to 200 ng kg−1 except Tm (100 ng kg−1).
The precision of the method was <6% (RSDs, n = 5), and recoveries ranged from 93% to 106%. Limits
of detection (LODs) were in the range 0.002 ng kg−1 (Tm) to 0.078 ng kg−1 (Ce). Good agreement
between YREEs concentrations in CASS-4 and SLEW-3 obtained in this work and results from other
studies was observed. The proposed method was applied to the determination of YREEs in seawater
from the Jiulong River Estuary and the Taiwan Strait.
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1. Introduction

Due to their similar chemical properties, yttrium and fourteen rare earth elements (La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), collectively named YREEs, have always been studied
together. Rare earth elements have a narrow range of relative atomic weights, ranging from 138.91 (La)
to 173.04 (Lu), which results in extremely coherent chemical properties [1,2]. YREEs in seawater are
drawing increasing attention due to the following aspects: (1) YREEs can be used as powerful tracers
in marine biogeochemistry (ocean circulation, scavenging processes, trace metal cycles, etc.) and
the redox-sensitive nature of Ce and Eu make them valuable for oxidation-reduction reactions [1–6];
(2) as YREEs are analogues of the radioactive actinides, understanding the geochemical cycling of
YREEs can provide clues on the behavior of actinides (Am and Cm), which is important for monitoring
the migration of actinides in radioactive waste repositories [7,8]; and (3) YREEs are widely used in
industry (superconductor, functional materials, etc.), medical diagnostics (MRI, magnetic resonance
imaging) and agriculture (as fertilizer) [9–14]. Anomalous concentrations of Gd, La and Sm discovered
in estuarine and coastal seawaters reveals that the risks of YREEs’ release into the ocean through runoff
and sewage are increasing, threatening marine ecosystems and altering the distribution patterns of
YREEs in estuaries and oceans [2,9–14]. Therefore, it is of great interest to monitor YREEs in seawater.

However, quickly and accurately determining the concentration of YREEs in seawater is a
challenge because of their low concentrations and high salt matrix. The emergence of inductively
coupled plasma-mass spectrometry (ICP-MS) has made trace and multi-element analysis more readily
available and has been commonly used for the determination of YREEs. Nevertheless, little tolerance
to total dissolved solids (<0.1%) makes direct (or after dilution) determinations of YREEs in seawater
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by ICP-MS inadvisable, since large amounts of salts will not only cause clogging of nebulizer, torch
and cones, leading to signal drift, but also introduce severe polyatomic interferences. Thus YREEs
must be separated and concentrated before detection. As pretreatment procedures, liquid-liquid
extraction [5,15–17], co-precipitation [18–21], and solid-phase extraction [22–27] techniques have
been utilized. Among these procedures, solid-phase extraction using chelating absorbents is
becoming popular due to its wide selectivity of YREEs, low risk of contamination, freedom from
toxic reagents and its simplicity for interfacing with ICP-MS to permit online determination when
using flow injection (FI) as sample preconcentration systems. Compared to offline determination
(batch method), online approaches using FI-ICP-MS has the advantages of sensitive response, high
sample throughput, small volumes consumption of sample and reagents, little risk of contamination
and labor savings [9,12,28–36]. The commercially available FIAS-400 (Perkin-Elmer, Waltham, MA,
USA) [29,31–33] and SeaFAST (Elemental Scientific, Omaha, NE, USA) [36] FI system has been used in
many studies devoted to the development of online determination of YREEs in seawater when coupled
with ICP-MS. However, the relative high expense for a typical ICP-MS lab has restricted their wide
application. Amongst the various absorbents used for FI-ICP-MS, Toyopearl AF Chelate 650M® resin,
featuring iminodiacetate functional groups, can sequester all YREEs and offers stability (no shrinkage
of the resin under both strong acid and high salt environments), while remaining inexpensive and
commercially available [31,37–39]. Although Willie and Sturgeon [31] applied this resin for the online
determination of YREEs in seawater using FI-ICP-TOF-MS, the relatively high LODs and the poor
sample throughput (5 h−1) were not attractive for routine measurements.

In this study, based on previous work [40,41], Toyopearl AF Chelate 650M® resin was used to
separate YREEs from seawater and a fast FI-ICP-MS method for the online determination of YREEs in
seawater was established. The FI system was readily set-up and automated to ensure ease of operation,
as well as much cheaper than the FIAS-400 and SeaFAST. Experimental parameters were investigated
and optimized to minimize sample consumption and improve the LODs. Finally, the developed
method was used for the determination of YREEs in estuarine and coastal seawaters.

2. Results and Discussion

2.1. Effects of Sample Loading Rate and Time

The sample loading rate and time determine the volume of sample analyzed. To optimize the
sample loading rate, 7.5 mL seawater (salinity = 33) was processed through the minicolumn using
flow rates ranging from 1.5 to 4.0 mL min−1. For all YREEs, it was found that peak areas decreased
with increasing loading rate. When the loading rate was 2.0 mL min−1, response from Ce dropped the
most, to about 89% (Supplementary Information Table S1) of the peak area achieved at 1.5 mL min−1

(generally the rate of sample passing a column packed with Toyopearl AF Chelate 650M® resin by
gravity is 1.5 mL min−1, under which the YREEs can be 100% retained). Taking the analysis time and
retention efficiency into consideration, 2.0 mL min−1 was subsequently used as the loading rate.

Theoretically, the peak area response should increase linearly with loading time. In this study,
loading times from 120 s to 540 s were examined, with results showing that the relative coefficient
(R2) between the peak areas and loading times were all >0.9934 for all YREEs over the entire time
range (Supplementary Information Table S2), indicating that the capacity of the minicolumn would
not be overloaded even by processing 18 mL of high salinity seawater. In order to shorten the running
time and improve throughput, 180 s was selected as the sample loading time, i.e., 6 mL sample was
consumed. Loading time can be extended if the YREEs concentrations are significantly lower.

2.2. Influence of Interferences and Effect of Rinsing Conditions

Although ICP-MS detect YREEs may suffer from polyatomic interference, proper selection of
target isotopes may help minimize such effects. However, interferences from lower REE oxides such
as 143Nd16O+ on 159Tb, 147Sm16O+ on 163Dy, 149Sm16O+ on 165Ho, 150Nd16O+ and 150Sm16O+ on 166Er,
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153Eu16O+ on 169Tm, 159Tb16O+ on 175Lu are inevitable. Nevertheless, the oxide level was minimized
during the tuning step by optimizing the ICP-MS parameters to ensure 140Ce16O/140Ce <2%, plus the
concentration variances of YREEs are generally within one order of magnitude, thus corrections for
interference caused by light YREEs oxides were not considered, and polyatomic interferences such as
131Ru16O+ on 147Sm, 140Ce35Cl+ on 175Lu, and 135Ba16O+ on 151Eu can be overcome using collision gas
(He) mode [26,31,33].

However, physical interference induced by the salt matrix on instrument should also be resolved,
since large amounts of salts (e.g., Na+, K+, Ca2+, Cl−) may deposit on the torch and the cones of the
ICP-MS to cause considerable signal depression and drift in YREEs response. After sample loading,
a mixture of buffer solution and ultrapure water was passed through the minicolumn to remove the
residual salts. The flow rate was the same as the loading rate (2.0 mL min−1) to reduce flow pulses
in the minicolumn and the rinse time ranged from 30 to 70 s was studied. To minimize the rinse
time, a test sample of salinity 33 was processed and response of Na, Mg, Cl, Ba and the YREEs were
monitored. The relative peak areas (%) of each elements using rinsing time 40–70 s to 30 s are shown
in Figure 1. With a rinsing time of 60 s, peak areas of Na, Mg and Cl decreased to 39%, 36% and
35%, respectively. While no significant decrease in peak area was observed with a further 10 s rinsing.
The peak areas of Ba were nearly the same as the procedural blank, demonstrating that Ba in the
seawater was not retained by the minicolumn, such that its interferences were negligible. All YREEs
were approximately 100% recovered irrespective of the rinse time range. Consequently, 60 s was
determined to be the optimal rinse time.
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2.3. Effects of Eluting Condition

To ensure the retained YREEs were totally eluted, the concentration of eluent (HNO3) and elution
rate and time were optimized. Results for La, Gd and Yb are shown in Figures 2 and 3 as examples.
The concentrations of HNO3 used ranged from 0.5 to 2.0 mol L−1. The results showed that there were
no significant differences between the peak shapes for the various HNO3 concentrations (Figure 2)
with the result that 0.8 mol L−1 HNO3 was selected as the eluent since 0.5 mol L−1 HNO3 is not strong
enough to elute all sequestered trace metals which will stay on the column and compete with YREEs
from the next sample to chelate with the resin. While more concentrated HNO3 than 0.8 mol L−1

was not considered to protect ICP-MS, and our study showed that when used 0.8 mol L−1 HNO3

as the eluting acid, the retention efficiency of the column would not decrease after 400 runs. As for
elution rate, 1.0 mL min−1 was selected to obtain the fastest elution (Figure 3), since a higher flow
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rate may lead to instability of the plasma. With eluting use 0.8 mol L−1 HNO3 under a flow rate of
1.0 mL min−1, 50 s was required to elute all YREEs.
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2.4. Calibration and Effect of Salinity

When analyzing high matrix samples, the method of standard addition is often used for
quantification to compensate for matrix effects. However, this methodology is tedious and labor
intensive. Research by Willie and Sturgeon [31] concluded that the recoveries of YREEs from seawater
using Toyopearl AF Chelate 650M® resin were independent of the salinity, and many studies have
utilized a simple external calibration based on dilute HNO3 for quantification. To confirm this
conclusion and expand the simple calibration to seawater samples having a wide range of salinities (i.e.,
estuarine waters), four calibration curves (0–10 ng kg−1) based on four different matrices (0.02 mol L−1

HNO3, estuarine water sample with salinities of 2, 15 and 33) were prepared and analyzed using
FI-ICP-MS. All four samples were using standard additions methodology (briefly, YREEs working
standards were added to separate aliquots of a sample, and then the standard-containing samples plus
the original sample were analyzed using FI-ICP-MS). The four calibration curves for Y are displayed
in Figure 4 as an example.

The slopes of the four curves for each YREEs were tested for significant difference by SPSS
(IBM SPSS Statistics 19.0, New York, NY, USA) using covariance analysis and all achieved a σ score
(probability value) >0.05 (confidence level), indicating that the four slopes were not statistically
different, demonstrating that the retention and elution properties of Toyopearl AF Chelate 650M®

were not influenced by salinity. YREEs concentrations were thus calculated using external calibration
curves comprising a 0.02 mol L−1 HNO3 as the matrix.
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2.5. Analytical Figures of Merit

Using the optimized conditions, about 5.3 min was required for processing a 6 mL sample,
resulting in a sample throughput of 11 h−1. The linear range of the method was examined using a
ten-point external calibration curve with concentrations from 0 to 200 ng kg−1. The R2 of the 7 ranges
(0–5, 0–7, 0–15, 0–25, 0–50, 0–100 and 0–200 ng kg−1) were all larger than 0.9917 (except for Tm, the R2

of which was 0.9479 for the 0–200 ng kg−1 range). Covariance analysis was used to investigate the
significant difference between the slopes of the 7 curves. Results showed the σ scores for all YREEs
>0.05 (excepted Tm in 0–200 ng kg−1 range), indicating no significant differences between the 7 slopes
for each YREEs. Therefore, the developed FI-ICP-MS procedure was capable of accurate measurements
of YREEs concentration up to 200 ng kg−1 (100 ng kg−1 for Tm), suitable for the determination of
YREEs in almost all seawater samples.

The precision and accuracy of the method were also examined using samples having differing
salinities (salinity = 2, 15 and 33). The repeatability and reproducibility of the method was evaluated
via repetitive inter-day (n = 5) and separate-day (n = 4) measurements of three samples, with inter-day
RSDs of 0.3–6% and separate-day RSDs of 2–8%. Spike recovery testing was conducted and recoveries
of 93–106% were obtained, confirming the accuracy of the method. Also we tested the performance of
the method by analysis some high salinity aged seawater sample (salinity = 35–40, to simulate open
ocean water with low level dissolved organic matter), and better RSDs of 0.47–4.81% and recovery
of 94.5–104% were obtained, likely due to the aged seawater contained much less dissolved organic
matter, which may compete with YREEs to absorb on the resin or compete with the resin to absorb the
YREEs, than the estuarine and coastal seawater. These results suggested that the developed method
provides satisfactory analytical results for seawater with wide range salinity.

Although Certified Reference Materials for YREEs in seawater (like newly released NASS-7 and
some GEOTRACES intercalibration reference materials) were not commercially available at the time of
this study, compiled results of multiple reports on YREE concentrations in CASS-4 and SLEW-3 can
provide valuable reference data for the validation of the methodology developed in this study [35].
Such reference data, plus that obtained in this study are summarized in Table 1.

The data show good agreement with other studies (except the Y, Sm, Gd, Ho and Tm in CASS-4,
whose RSD of this study value and the reference compiled were >5%), indicating the proposed method
can provide reliable YREEs concentrations in estuarine and coastal seawater. As to the durability of
the minicolumn, no decrease of YREEs retention efficiency was detected after 400 runs.

The procedural blank was obtained by processing 0.02 mol L−1 HNO3 (pH ~1.6). The LODs of this
FI-ICP-MS system were calculated based on 3 s (standard deviation) of 11 procedure blanks. The results
are shown in Table 2. The blank and LODs are sufficiently low to permit determination of YREEs in
estuarine and coastal seawaters. However if the open ocean seawater was subject to analysis, the HNO3

and the buffer should be further purified to reduce the procedure blank. For the HNO3, a second or
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even more times of distillation can be adopted, while for the buffer an additional minicolumn packed
with Toyopearl AF Chelate 650M® resin placed on the buffer line can be implemented.

Table 1. YREEs concentrations in CASS-4 (Salinity = 30.7) and SLEW-3 (Salinity = 15) from references
and this study.

Elements
CASS-4 (ng kg−1) SLEW-3 (ng kg−1)

Reference
Compiled a This Study b RSD c (%) Reference

Compiled d This Study b RSD c (%)

Y 20.93 ± 0.40 18.89 ± 0.12 7.25 40.55 ± 2.05 38.10 ± 2.39 4.41
La 9.37 ± 0.38 9.96 ± 0.15 4.33 7.80 ± 0.13 8.22 ± 0.25 3.71
Ce 4.69 ± 0.92 4.90 ± 0.07 3.13 7.08 ± 0.68 7.19 ± 0.45 1.06
Pr 1.33 ± 0.06 1.37 ± 0.01 2.10 1.68 ± 0.05 1.64 ± 0.03 1.78
Nd 5.39 ± 0.47 5.49 ± 0.04 1.30 8.18 ± 0.35 7.97 ± 0.19 1.82
Sm 5.55 ± 0.17 6.00 ± 0.21 5.45 7.10 ± 0.15 7.38 ± 0.21 2.69
Eu 0.23 ± 0.03 0.23 ± 0.02 0.00 0.54 ± 0.08 0.55 ± 0.02 1.72
Gd 1.29 ± 0.1 1.46 ± 0.04 8.74 3.09 ± 0.01 3.20 ± 0.06 2.36
Tb 0.20 ± 0.03 0.20 ± 0.01 0.00 0.45 ± 0 0.43 ± 0.02 2.94
Dy 1.41 ± 0.08 1.42 ± 0.05 0.38 3.37 ± 0.02 3.33 ± 0.08 0.95
Ho 0.38 ± 0.05 0.35 ± 0.02 6.32 0.91 ± 0 0.91 ± 0.07 0.13
Er 1.20 ± 0.1 1.27 ± 0.08 4.15 2.71 ± 0.01 2.78 ± 0.05 1.72
Tm 0.23 ± 0.07 0.20 ± 0.02 10.75 0.37 ± 0 0.35 ± 0.01 3.93
Yb 1.21 ± 0.14 1.16 ± 0.01 3.29 1.95 ± 0.14 1.85 ± 0.06 3.85
Lu 0.20 ± 0.03 0.19 ± 0.01 4.56 0.31 ± 0.03 0.30 ± 0.01 3.51

a Mean ± 1 standard deviation, n = 6, based on results in references [16,19–21,25,27]; b Mean ± 1 standard deviation,
n = 5; c Relative standard deviation of this study from the data of reference compiled; d Mean± 1 standard deviation,
n = 3, based on results in references [16,19].

Table 2. Procedural blanks and LODs.

Elements Blank a (ng kg−1) LODs (ng kg−1)

Y 0.126 ± 0.023 0.034
La 0.172 ± 0.05 0.045
Ce 0.61 ± 0.112 0.078
Pr 0.038 ± 0.023 0.019
Nd 0.124 ± 0.038 0.048
Sm 0.046 ± 0.021 0.027
Eu 0.007 ± 0.004 0.009
Gd 0.05 ± 0.01 0.022
Tb 0.007 ± 0.003 0.003
Dy 0.03 ± 0.007 0.021
Ho 0.006 ± 0.003 0.003
Er 0.02 ± 0.007 0.012
Tm 0.003 ± 0.003 0.002
Yb 0.009 ± 0.007 0.005
Lu 0.002 ± 0.002 0.002

a Mean ± 1 standard deviation, n = 5.

2.6. Comparison with Other FI-ICP-MS Systems

Figures of merit of the developed FI-ICP-MS procedures are summarized in Table 3. Compared
with other FI systems, this arrangement is easy to construct and short sample duration to ensure high
sample throughput (11 h−1), and provided excellent LODs based on only 6 mL sample consumption,
moreover the total cost of this FI system is only about 20% of the cost of FIAS-400 (let alone the
much more expensive seaFAST), making the daily and large scale determination of YREEs in seawater
samples relatively inexpensive in a regular ICM-MS lab. Though report of Benkhedda et al. [30]
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indicated shorter duration (4 min) and less sample consumption than this study, but an ICP-TOF-MS
was required and the separation unit based on a knotted reactor was not as easily prepared as a
minicolumn used here; results of Wang et al. [34] had the shortest duration (2.8 min) amongst all
arrangements, while much more sample was needed and the fast loading rate may risk decreased
retention efficiency and pump tubing aging. Advantages of this work were especially obviously when
compared with thetudy of Willie and Sturgeon [31], in which the same Toyopearl AF Chelate 650M®

absorbent was used, while the sensitivity provided by the ICP-TOF-MS was much lower than the
quadrupole ICP-MS used in our work.

2.7. Applications

The established method was used for the determination of YREEs in seawater collected from the
Jiulong River Estuary and the Taiwan Strait. Results are presented in Supplementary Information
Tables S3 and S4. Post-Archean Australian Shales (PAAS) [42] normalized YREEs distributions patterns
of the Jiulong River Estuary and the Taiwan Strait are plotted in Figure 5.
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Figure 5. PAAS normalized YREEs patterns in surface water of Jiulong River Estuary and in station C9
(22◦07′13′′ N, 118◦24′41′′ E) of Taiwan Strait.

Relatively flat YREEs patterns were observed in samples having salinities of 4.4 and 11.9 from the
Jiulong River Estuary, while all YREEs patterns show obviously negative Ce anomaly and positive
Gd anomaly (except salinity 11.9). The latter could be attributed to anthropogenic Gd discharge (e.g.,
MRI contrast reagent). In the seawater of Taiwan Strait, slightly negative Ce anomalies were obtained
from the YREEs patterns (except the surface and bottom water), which are commonly observed in the
world oceans [6]. The geochemistry of YREEs in the Jiulong River Estuary and the Taiwan Strait will
be further studied in future work.
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Table 3. Comparison with other FI-ICP-MS methodologies for the determination of YREEs in seawater.

Loading Eluting
Duration (min) Absorbent Sample (mL) LODs (ng kg−1) Reference

Rate (mL min−1) Rate (mL min−1) Time (s) HNO3 (mol L−1)

5 1.2 80 1.0 ~5.5 - a 10 0.06–0.27 [8]

12 1.5 300 2.0 ~12 Amberlite
XAD-7 + 8HQ 100 0.002–0.016 b [9]

2.0 1.0 30 0.1 >30 APAR c 60 0.001–0.013 [12]
2 1.0 100 0.8 d ~9.5 I-8-HQ e 3 0.06–0.6 [29]

4.4 0.8 90 0.4 ~4 PMBP f 2.2 0.003–0.04 [30]

5 1.5 30 1.5 12 Toyopearl AF
Chelate 650M® 50 0.02–0.29 [31]

3.2 1.7 61 1.0 7 Muromac A-1 6.4 0.04–0.251 [32]
3.2 2.0 60 1.4 7 MAF-8HQ g 6.4 0.11–0.30 [33]
7.4 0.5 35 0.9 2.8 M-PTFE h 14.8 0.001–0.02 [34]

5 0.5 120 2 6 Nobias chelate
PB1M 10 0.005–0.09 [35]

1.0 0.3 5 1.5 i 15 - 7 0.001–0.036 [36]

2.0 1.0 60 0.8 ~5.3 Toyopearl AF
Chelate 650M® 6 0.002–0.078 This study

a precipitation reagent; b only Eu, Tb, Ho, Tm, Lu detected; c alkyl phosphinic acid resin; d 2 mol L−1 HCl + 0.8 mol L−1 HNO3; e 8-hydroxyquinoline; f 1-phenyl-3-methyl-4-
benzoylpyrazol-5-one; g 8-quinoline-immoblized fluorinated metal alkoxide glass; h polytetrafluoroethylene; i 1.5 mol L−1 HNO3 + 0.4% HAc.
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3. Materials and Methods

3.1. Reagents and Samples

All solutions were prepared with ultrapure water (18.20 MΩ cm, Millipore, Darmstadt, Germany).
Trace metal free nitric acid was obtained by purifying nitric acid (Merck, Darmstadt, Germany)
using a sub-boiling distillation system. Standard stock solutions of YREEs (1000 ppm) were obtained
from the National Institute of Metrology (Beijing, China). Working standards were prepared via
serial dilutions of the stock solution with 0.02 mol L−1 purified HNO3 (equal to acidified sample
pH ~1.6). Ammonium acetate (NH4Ac) buffer solution was prepared by mixing 30 mL aqueous
ammonia (Sinopharm Chemical Reagent Co., Nanjing, China) and 20 mL glacial acetate acid (HAc,
Sinopharm Chemical Reagent Co., Nanjing, China) and diluting to 1 L using ultrapure water; the pH
was subsequently adjusted to 5.5 ± 0.2 with HAc or NH4OH [31]. The buffer solution was further
purified to remove potential YREEs by passing it through a column packed with Toyopearl AF Chelate
650M® resin. Two Certified Reference Materials (SLEW-3 and CASS-4) were purchased from the
National Research Council Canada (Ottawa, Canada). Estuarine samples (salinity of 2 and 15) collected
from the Jiulong River Estuary and coastal seawater (salinity = 33) collected from the South China
Sea were used to optimize the method, All samples were acidified to pH ~1.6 using purified HNO3

after filtered using 0.45 µm polycarbonate membranes. Trace metal clean procedures were used for the
water sample collection.

All reagents and samples were stored in fluorinated ethylene propylene, low-density polyethylene
or polypropylene acid washed bottles (Nalgene, Rochester, NY, USA). The cleaning procedure for all
labware is detailed in Wen et al. [43].

3.2. Instrumentation

An Agilent 7700× ICP-MS (Agilent, Tokyo, Japan) operating in time-resolved-analysis mode was
used for the measurement of YREEs. The ICP-MS was equipped with an octopole reaction/collision
system which was employed to help overcome oxide and polyatomic interferences. The operating
conditions were daily optimized with a 1 µg L−1 tuning solution (Co, Y, In, Tl, Ce) in the eluting acid
at a flow rate equal to the elution rate. The typical operating parameters are summarized in Table 4.

Table 4. Typical ICP-MS operating conditions.

Rf Power 1500 W

Plasma gas 15.0 L min−1

Auxiliary gas 1.0 L min−1

Carrier gas 0.85 L min−1

Collision gas (He) 4.1 mL min−1

Integration time 0.1 s per isotope
Sampling depth 8 mm

Target isotopes
89Y 139La 140Ce 141Pr 143Nd 147Sm 151Eu 157Gd

159Tb 163Dy 165Ho 166Er 169Tm 174Yb 175Lu

3.3. FI System and FI-ICP-MS Analysis Procedure

The construction of the FI system used in this study is shown in Figure 6. Apart from the metal
free minicolumn assembly (MC-2CNME, Global FIA, Fox Island, WA, USA) with a tapered inner
chamber (2 cm long with 27 µL internal volume) packed with Toyopearl AF Chelate 650M® (particle
size: 40–90 µm; Tosoh Bioscience GmbH, Griesheim, Germany) resin and the T joint (i.d. 0.75 mm,
VICI, Houston, TX, USA), all other parts of the FI system were the same as those used in our previous
study [40,41]. The FI system was controlled using a computer running LabVIEW program (National
Instruments, Austin, TX, USA). The schematic of FI-ICP-MS procedure is given in Figure 6 and the
optimized FI program is summarized in Table 5.
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Table 5. Typical flow injection program and valve position description.

Step Duration/s Pump 1/mL min−1 Pump 2/mL min−1 8-Position Valve 6-Way Valve

Conditioning 20 0.5 1.5 1 A
Loading 180 0.5 2.0 1 A
Rinsing 60 0.5 2.0 1 A
Eluting 50 1.0 0 2 B

Return to conditioning
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A run cycle comprises four steps: step 1, conditioning, buffer solution and ultrapure water
are mixed at the T joint and then passed through the minicolumn; step 2, loading, sample tube is
placed into the sample bottle, sample (pH ~1.6) is online buffered to pH 5.5 ± 0.2 before entering the
minicolumn and YREEs are retained on the column while the matrix salts pass to waste; step 3, rinsing,
sample tube is transferred to the ultrapure water bottle and the mixture of buffer solution and ultrapure
water is passed through the minicolumn to remove residual salts; step 4, 8-position valve is switched
from position 1 to position 2 and 6-way valve is switched from position A to position B, 0.8 mol L−1

HNO3 is pumped through the minicolumn in the reverse direction to elute the sequestered YREEs to
the ICP-MS, and the data acquisition by the ICP-MS is manually activated at the same time. The elution
profiles are recorded and the peak areas are integrated using the Agilent MassHunter workstation
(Agilent, Santa Clara, CA, USA). The integration range was determined based on the comparison of
YREEs signal intensity between the sample and the baseline (0–5 cps). The concentrations of the YREEs
are determined using both standard addition as well as external standard calibration (see details in
Section 2.4. Calibration and effect of salinity).

4. Conclusions

An automated FI system coupled online with ICP-MS to determine YREEs in seawater was
developed. The components of the FI system in this work are all commercially available and the FI
system is easy and cheap to assemble. With low LODs (0.002–0.078 ng kg−1), the method only needs 6
mL of sample and achieves accurate and fast sample analysis (11 h−1), making the regular monitoring
of YREEs in seawater affordable. The analytical results of YREEs in CASS-4 and SLEW-3 confirmed
that the proposed method can provide reliable results. The proposed method has been successfully
applied to the determination of YREEs in seawater from the Jiulong River Estuary and Taiwan Strait,
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and the procedure blank can be further reduced to meet the requirement of measurement of open
ocean seawater by the further purification of HNO3 and the buffer. The developed FI system can also
be used as a preconcentration manifold for the offline detection (batch method) of not only YREEs but
also other transition metals (Fe, Mn, Cu, Zn, etc.), and both the online and offline methods will be used
in future work for trace metal detection in seawater.

Supplementary Materials: The following are available online, Table S1: Percentage of REEs peak area (%) of
different loading rates to peak area of 1.5 mL min-1. Table S2: Relative coefficients (R2) between REEs peak areas
and loading times. Table S3: REEs concentrations measured by the presented method from samples collected in
the Jiulong River Estuary (water samples were collected in April 2015). Table S4: REEs concentrations measured
by the presented method from samples collected in Taiwan Strait (seawaters were collected at the station C9,
22◦07′13′′ N, 118◦24′41′′ E, in April 2014).
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