Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 23, Issue 3 (March 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The Cu2+ complex of dipicolylamine (DPA)-modified β-cyclodextrin (CyD) selectively recognized [...] Read more.
View options order results:
result details:
Displaying articles 1-199
Export citation of selected articles as:
Open AccessFeature PaperArticle Potent GH20 N-Acetyl-β-d-hexosaminidase Inhibitors: N-Substituted 3-acetamido-4-amino-5-hydroxymethyl-cyclopentanediols
Molecules 2018, 23(3), 708; https://doi.org/10.3390/molecules23030708
Received: 28 February 2018 / Revised: 15 March 2018 / Accepted: 16 March 2018 / Published: 20 March 2018
PDF Full-text (2403 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
From 1,2;3,4-di-O-isopropylidene-d-galactopyranose, a preliminary series of highly functionalized amino(hydroxymethyl)cyclopentanes was easily available. These amine-containing basic carbasugars featuring the d-galacto configuration are potent inhibitors of the GH20 β-d-hexosaminidases probed and may bear potential as regulators of
[...] Read more.
From 1,2;3,4-di-O-isopropylidene-d-galactopyranose, a preliminary series of highly functionalized amino(hydroxymethyl)cyclopentanes was easily available. These amine-containing basic carbasugars featuring the d-galacto configuration are potent inhibitors of the GH20 β-d-hexosaminidases probed and may bear potential as regulators of N-acetyl-d-hexosaminidase activities in vivo. Full article
(This article belongs to the Special Issue Glycomimetics: Design, Synthesis and Therapeutic Applications)
Figures

Graphical abstract

Open AccessArticle Antioxidant Activity of Coconut (Cocos nucifera L.) Protein Fractions
Molecules 2018, 23(3), 707; https://doi.org/10.3390/molecules23030707
Received: 21 February 2018 / Revised: 11 March 2018 / Accepted: 18 March 2018 / Published: 20 March 2018
PDF Full-text (3018 KB) | HTML Full-text | XML Full-text
Abstract
Coconut cake is an abundant and good potential edible protein source. However, until now it has not been extensively used in the food industry. To promote its usage, the characterization, nutrition value and antioxidant activity of coconut cake protein fractions (albumin, globulin, prolamine,
[...] Read more.
Coconut cake is an abundant and good potential edible protein source. However, until now it has not been extensively used in the food industry. To promote its usage, the characterization, nutrition value and antioxidant activity of coconut cake protein fractions (albumin, globulin, prolamine, glutelin-1 and glutelin-2) were studied. Results revealed that all the albumin, globulin, glutelin-1 and glutelin-2 fractions showed a high nutrition value. The prolamine, glutelin-1 and glutelin-2 all exhibited good radical scavenging activity and reducing power, and the globulin and prolamine showed high ion chelating ability (89.14–80.38%). Moreover, all the fractions except glutelin-2 could effectively protect DNA against oxidative damage. Several peptides containing five to eight amino acids with antioxidant activity were also identified by LC-MS/MS from the globulin and glutelin-2 fractions. The results demonstrated that the coconut cake protein fractions have potential usages in functional foods. Full article
(This article belongs to the Special Issue Plant Derived Natural Products and Age Related Diseases)
Figures

Graphical abstract

Open AccessArticle Transcript Profiling and Gene Identification Involved in the Ethylene Signal Transduction Pathways of Creeping Bentgrass (Agrostis stolonifera) during ISR Response Induced by Butanediol
Molecules 2018, 23(3), 706; https://doi.org/10.3390/molecules23030706
Received: 11 February 2018 / Revised: 16 March 2018 / Accepted: 19 March 2018 / Published: 20 March 2018
PDF Full-text (6571 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Creeping bentgrass (Agrostis stolonifera) is the preferred green lawn grass, with excellent turf characteristics but poor disease resistance. At present, the mechanisms of disease resistance in creeping bentgrass are poorly understood, especially the ethylene signal transduction pathway under the induced systemic
[...] Read more.
Creeping bentgrass (Agrostis stolonifera) is the preferred green lawn grass, with excellent turf characteristics but poor disease resistance. At present, the mechanisms of disease resistance in creeping bentgrass are poorly understood, especially the ethylene signal transduction pathway under the induced systemic resistance (ISR) response. In this study, butanediol (BDO), as a new type of disease-resistance compound, was applied to creeping bentgrass seedlings to induce the ISR response. Then, we measured ethylene production and related enzyme activities. Additionally, transcript profiling and gene identification were performed in association to ethylene signal transduction pathways. The changes of ethylene production and related enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and 1-aminocyclopropane-1-carboxylic acid synthases (ACS) activities showed significant difference at 24 h after Rhizoctonia solani inoculation among five treatments of various BDO concentrations. After 100 µmol L−1 BDO treatment, ethylene production and related enzyme activities reached their peak levels. Additionally, 208,672 unigenes of creeping bentgrass were obtained by de novo assembly. In total, 15,903 annotated unigenes were grouped into 33 canonical pathways in the KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. Among those, 1803 unigenes were classified as ‘signal transduction’. There were 6766 differentially expressed genes (DEGs) among B24 (inoculated-rhizobacteria in MS medium with 100 µmol L−1 BDO for 24 h), NB24, B72 and NB24 (no rhizobacteria in MS medium with 100 µmol L−1 BDO for 24 h) libraries, and 4,639 DEGs between B24 and B72 (inoculated-rhizobacteria in MS medium with 100 µmol L−1 BDO for 72 h) libraries, with 4489 DEGs in all three libraries. As suggested by the RT-PCR assay, the expression levels of ethylene-responsive and defense-related genes were variable among treated samples during the BDO-induced ISR responses. The expression levels of EIN, ERF, NPR1, PR3 and PR4 genes increased and reached their peaks in the first 24 h after R. solani infection in the BDO-induced ISR reaction compared with NB24 treatments. This results is consistent with the changes of important ethylene biosynthetic enzymes and ethylene concentrations during the BDO-induced ISR responses. We further found the intermediate substances for the signaling pathway, and the relationships between the expression levels of BDO-induced ISR disease-resistance genes and those of the response genes for ethylene signal pathway. Our findings present a genetic basis for systemic resistance of creeping bentgrass through transcriptomic analysis and our study provides a theoretical and practical basis for the improvement of turfgrass disease resistance and quality. Full article
Figures

Figure 1

Open AccessArticle Xylobiose Prevents High-Fat Diet Induced Mice Obesity by Suppressing Mesenteric Fat Deposition and Metabolic Dysregulation
Molecules 2018, 23(3), 705; https://doi.org/10.3390/molecules23030705
Received: 29 December 2017 / Revised: 9 March 2018 / Accepted: 16 March 2018 / Published: 20 March 2018
Cited by 1 | PDF Full-text (3564 KB) | HTML Full-text | XML Full-text
Abstract
Obesity is a public concern and is responsible for various metabolic diseases. Xylobiose (XB), an alternative sweetener, is a major component of xylo-oligosaccharide. The purpose of this study was to investigate the effects of XB on obesity and its associated metabolic changes in
[...] Read more.
Obesity is a public concern and is responsible for various metabolic diseases. Xylobiose (XB), an alternative sweetener, is a major component of xylo-oligosaccharide. The purpose of this study was to investigate the effects of XB on obesity and its associated metabolic changes in related organs. For these studies, mice received a 60% high-fat diet supplemented with 15% d-xylose, 10% XB, or 15% XB as part of the total sucrose content of the diet for ten weeks. Body weight, fat and liver weights, fasting blood glucose, and blood lipids levels were significantly reduced with XB supplementation. Levels of leptin and adipokine were also improved and lipogenic and adipogenic genes in mesenteric fat and liver were down-regulated with XB supplementation. Furthermore, pro-inflammatory cytokines, fatty acid uptake, lipolysis, and β-oxidation-related gene expression levels in mesenteric fat were down-regulated with XB supplementation. Thus, XB exhibited therapeutic potential for treating obesity which involved suppression of fat deposition and obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Sugar Substitutes and Obesity, Diabetes and Metabolic Syndrome)
Figures

Graphical abstract

Open AccessErratum Erratum: Antonsen, S.; et al. Synthesis of Racemic β-Chamigrene, a Spiro[5.5]undecane Sequiterpene. Molecules 2014, 19, 20664–20670
Molecules 2018, 23(3), 704; https://doi.org/10.3390/molecules23030704
Received: 7 March 2018 / Revised: 18 March 2018 / Accepted: 20 March 2018 / Published: 20 March 2018
PDF Full-text (135 KB) | HTML Full-text | XML Full-text
Abstract
The Molecules Editorial Office wishes to make the following erratum to this paper [1].[...] Full article
Open AccessArticle Association of Melatonin Production with Seasonal Changes, Low Temperature, and Immuno-Responses in Hamsters
Molecules 2018, 23(3), 703; https://doi.org/10.3390/molecules23030703
Received: 14 February 2018 / Revised: 14 March 2018 / Accepted: 15 March 2018 / Published: 20 March 2018
Cited by 1 | PDF Full-text (1244 KB) | HTML Full-text | XML Full-text
Abstract
Seasonal changes impact the melatonin production and immuno-activities in vertebrates. This is believed due to the photoperiodic alterations of the different seasons which impact the functions of pineal gland. The short photoperiod promotes pineal melatonin production. As a result, during the winter, animals
[...] Read more.
Seasonal changes impact the melatonin production and immuno-activities in vertebrates. This is believed due to the photoperiodic alterations of the different seasons which impact the functions of pineal gland. The short photoperiod promotes pineal melatonin production. As a result, during the winter, animals have significantly higher levels of melatonin than in summer. However, the seasonal changes also include temperature changes. This factor has never been systemically investigated in animals. In the current study, we observed that increased temperature had limited influence on melatonin production. In contrast, cold temperature is the major factor to induce melatonin production in hamsters. Cold temperature per se can upregulate the expressions of melatonin synthetic gene AANAT and ASMT, which are the important enzymes for melatonin biosynthesis. The elevated melatonin levels induced by the cold exposure in hamster in turn, improve the immuno-responses of the animals with increased levels of IL1, 6, and 10 as well CD3. In addition, melatonin as a potent antioxidant and thermogenic agent would improve the survival chance of animals during cold weather. Full article
Figures

Figure 1

Open AccessArticle Bridging from Brain to Tumor Imaging: (S)-(−)- and (R)-(+)-[18F]Fluspidine for Investigation of Sigma-1 Receptors in Tumor-Bearing Mice
Molecules 2018, 23(3), 702; https://doi.org/10.3390/molecules23030702
Received: 27 January 2018 / Revised: 12 March 2018 / Accepted: 18 March 2018 / Published: 20 March 2018
PDF Full-text (3722 KB) | HTML Full-text | XML Full-text
Abstract
Sigma-1 receptors (Sig1R) are highly expressed in various human cancer cells and hence imaging of this target with positron emission tomography (PET) can contribute to a better understanding of tumor pathophysiology and support the development of antineoplastic drugs. Two Sig1R-specific radiolabeled enantiomers (
[...] Read more.
Sigma-1 receptors (Sig1R) are highly expressed in various human cancer cells and hence imaging of this target with positron emission tomography (PET) can contribute to a better understanding of tumor pathophysiology and support the development of antineoplastic drugs. Two Sig1R-specific radiolabeled enantiomers (S)-(−)- and (R)-(+)-[18F]fluspidine were investigated in several tumor cell lines including melanoma, squamous cell/epidermoid carcinoma, prostate carcinoma, and glioblastoma. Dynamic PET scans were performed in mice to investigate the suitability of both radiotracers for tumor imaging. The Sig1R expression in the respective tumors was confirmed by Western blot. Rather low radiotracer uptake was found in heterotopically (subcutaneously) implanted tumors. Therefore, a brain tumor model (U87-MG) with orthotopic implantation was chosen to investigate the suitability of the two Sig1R radiotracers for brain tumor imaging. High tumor uptake as well as a favorable tumor-to-background ratio was found. These results suggest that Sig1R PET imaging of brain tumors with [18F]fluspidine could be possible. Further studies with this tumor model will be performed to confirm specific binding and the integrity of the blood-brain barrier (BBB). Full article
(This article belongs to the Special Issue Current Aspects of Radiopharmaceutical Chemistry)
Figures

Figure 1

Open AccessArticle Synthesis, Characterization, Crystal Structure, and DFT Study of a New Square Planar Cu(II) Complex Containing Bulky Adamantane Ligand
Molecules 2018, 23(3), 701; https://doi.org/10.3390/molecules23030701
Received: 26 February 2018 / Revised: 9 March 2018 / Accepted: 13 March 2018 / Published: 20 March 2018
PDF Full-text (2485 KB) | HTML Full-text | XML Full-text
Abstract
A copper complex with square planar geometry, [(L)CuBr2] (1), (L = N′-(furan-2-ylmethylene)adamantne-1-carbohydrazide) has been synthesized and characterized by Fourier transfer infrared (FTIR) spectroscopy, elemental analysis, mass spectrometry, and single crystal X-ray diffraction. The crystal of 1 is solved
[...] Read more.
A copper complex with square planar geometry, [(L)CuBr2] (1), (L = N′-(furan-2-ylmethylene)adamantne-1-carbohydrazide) has been synthesized and characterized by Fourier transfer infrared (FTIR) spectroscopy, elemental analysis, mass spectrometry, and single crystal X-ray diffraction. The crystal of 1 is solved as monoclinic, space group P21/m with unit cell parameters: a = 10.8030(8), b = 6.6115(8), c = 12.1264(12) Å, β = 101.124(8)°, V = 849.84(15) Å3, Z = 2, and R1 = 0.0751 with wR2 = 0.1581 (I > 2 σ). The structure of 1 shows intramolecular hydrogen bonding between the N–H and the furan oxygen which stabilizes the configuration of the complex. Furthermore, inside the lattice there are other weak interactions between bromo ligands and the ligand L. DFT calculations where performed to study the stability of this geometry. Full article
(This article belongs to the Special Issue Metal Complexes of Biological Ligands)
Figures

Graphical abstract

Open AccessArticle Friedelin in Maytenus ilicifolia Is Produced by Friedelin Synthase Isoforms
Molecules 2018, 23(3), 700; https://doi.org/10.3390/molecules23030700
Received: 15 December 2017 / Revised: 5 February 2018 / Accepted: 7 February 2018 / Published: 20 March 2018
PDF Full-text (3784 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Triterpenes are interesting compounds because they play an important role in cell homeostasis and a wide variety exhibiting defense functions is produced by plant secondary metabolism. Those same plant secondary metabolites also exhibit biological properties with promising therapeutic potential as anti-inflammatory and antitumor
[...] Read more.
Triterpenes are interesting compounds because they play an important role in cell homeostasis and a wide variety exhibiting defense functions is produced by plant secondary metabolism. Those same plant secondary metabolites also exhibit biological properties with promising therapeutic potential as anti-inflammatory and antitumor agents. Friedelin is a triterpene ketone with anti-inflammatory and gastroprotective activities and it is a precursor of relevant antitumor quinonemethides. Although many triterpene synthases have been described, only two friedelin synthases were characterized and there is no information about their genomic features and alleles. In the present work, we aimed to identify the gene and new isoforms of friedelin synthase in Maytenus ilicifolia leaves to be functionally characterized in Saccharomyces cerevisiae. The gene sequence analysis elucidated the exon/intron structure and confirmed the presence of single nucleotide polymorphisms with four non-synonymous mutations outside the active site of the enzyme. Therefore, two new isoforms were observed and the heterologous production of the enzymes in yeast showed similar production of friedelin. This first description of different alleles of the gene of friedelin synthase in M. ilicifolia can guide their validation as markers for friedelin-producer specimens. Full article
(This article belongs to the Special Issue Diversity of Terpenoids)
Figures

Graphical abstract

Open AccessArticle Chalcogen ‘like-like’ Interactions Involving Trisulphide and Triselenide Compounds: A Combined CSD and Ab Initio Study
Molecules 2018, 23(3), 699; https://doi.org/10.3390/molecules23030699
Received: 5 March 2018 / Revised: 15 March 2018 / Accepted: 15 March 2018 / Published: 19 March 2018
PDF Full-text (2705 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this manuscript, we combined a search in the Cambridge Structural Database (CSD) and ab initio calculations (RI-MP2/def2-TZVPD level of theory) to analyze the ability of trisulphide and triselenide moieties to establish chalcogen ‘like-like’ interactions. A preliminary CSD inspection revealed two predominant structural
[...] Read more.
In this manuscript, we combined a search in the Cambridge Structural Database (CSD) and ab initio calculations (RI-MP2/def2-TZVPD level of theory) to analyze the ability of trisulphide and triselenide moieties to establish chalcogen ‘like-like’ interactions. A preliminary CSD inspection revealed two predominant structural patterns, depending on the anti or syn conformation adopted by the substituents of the S3/Se3 bridge, leading to bifurcated or double chalcogen bonding interactions, respectively. In order to analyze these two relevant structural motifs we have used a series of S and Se derivatives Ch3X2 (Ch = S and Se and X = H, F, CN, and CF3) which act as both electron donor (using the lone pairs) and acceptor (using the σ-holes) entities. Besides, we have carried out “atoms in molecules” (AIM) and natural bonding orbital (NBO) analyses to further describe and characterize the chalcogen bonding interactions described herein. As far as we know, chalcogen···chalcogen interactions involving trichalconides (S3/Se3) have not been previously described in literature a may be of great importance in the preparation and characterization of new solids based on this subclass of σ-hole bonding. Full article
(This article belongs to the Special Issue Noncovalent Interactions: A Useful Tool for Crystal Design)
Figures

Graphical abstract

Open AccessArticle Structure-Based Discovery of a Series of 5H-Pyrrolo[2,3-b]pyrazine FGFR Kinase Inhibitors
Molecules 2018, 23(3), 698; https://doi.org/10.3390/molecules23030698
Received: 2 March 2018 / Revised: 16 March 2018 / Accepted: 17 March 2018 / Published: 19 March 2018
PDF Full-text (7554 KB) | HTML Full-text | XML Full-text
Abstract
Fibroblast growth factor receptors (FGFRs), a subfamily of receptor tyrosine kinases, are aberrant in various cancer types, and considered to be promising targets for cancer therapy. We started with a weak-active compound that was identified from our internal hepatocyte growth factor receptor (also
[...] Read more.
Fibroblast growth factor receptors (FGFRs), a subfamily of receptor tyrosine kinases, are aberrant in various cancer types, and considered to be promising targets for cancer therapy. We started with a weak-active compound that was identified from our internal hepatocyte growth factor receptor (also called c-Met) inhibitor project, and optimized it with the guidance of a co-crystal structure of compound 8 with FGFR1. Through rational design, synthesis, and the biological evaluation of a series of 5H-pyrrolo[2,3-b]pyrazine derivatives, we discovered several potent FGFR kinase inhibitors. Among them, compound 13 displayed high selectivity and favorable metabolic properties, demonstrating a promising lead for further development. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Feature-Based and String-Based Models for Predicting RNA-Protein Interaction
Molecules 2018, 23(3), 697; https://doi.org/10.3390/molecules23030697
Received: 21 December 2017 / Revised: 17 February 2018 / Accepted: 21 February 2018 / Published: 19 March 2018
PDF Full-text (2590 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this work, we study two approaches for the problem of RNA-Protein Interaction (RPI). In the first approach, we use a feature-based technique by combining extracted features from both sequences and secondary structures. The feature-based approach enhanced the prediction accuracy as it included
[...] Read more.
In this work, we study two approaches for the problem of RNA-Protein Interaction (RPI). In the first approach, we use a feature-based technique by combining extracted features from both sequences and secondary structures. The feature-based approach enhanced the prediction accuracy as it included much more available information about the RNA-protein pairs. In the second approach, we apply search algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences), and structure information (protein and RNA secondary structures). This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed approaches, including comparative results against leading state-of-the-art methods. Full article
Figures

Figure 1

Open AccessArticle Molecular Modeling and Structural Stability of Wild-Type and Mutant CYP51 from Leishmania major: In Vitro and In Silico Analysis of a Laboratory Strain
Molecules 2018, 23(3), 696; https://doi.org/10.3390/molecules23030696
Received: 16 December 2017 / Revised: 22 February 2018 / Accepted: 14 March 2018 / Published: 19 March 2018
PDF Full-text (4037 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cutaneous leishmaniasis is a neglected tropical disease and a major public health in the most countries. Leishmania major is the most common cause of cutaneous leishmaniasis. In the Leishmania parasites, sterol 14α-demethylase (CYP51), which is involved in the biosynthesis of sterols, has been
[...] Read more.
Cutaneous leishmaniasis is a neglected tropical disease and a major public health in the most countries. Leishmania major is the most common cause of cutaneous leishmaniasis. In the Leishmania parasites, sterol 14α-demethylase (CYP51), which is involved in the biosynthesis of sterols, has been identified as an attractive target for development of new therapeutic agents. In this study, the sequence and structure of CYP51 in a laboratory strain (MRHO/IR/75/ER) of L. major were determined and compared to the wild-type strain. The results showed 19 mutations including seven non-synonymous and 12 synonymous ones in the CYP51 sequence of strain MRHO/IR/75/ER. Importantly, an arginine to lysine substitution at position of 474 resulted in destabilization of CYP51 (ΔΔG = 1.17 kcal/mol) in the laboratory strain; however, when the overall effects of all substitutions were evaluated by 100 ns molecular dynamics simulation, the final structure did not show any significant changes (p-value < 0.05) in stability parameter of the strain MRHO/IR/75/ER compared to the wild-type protein. The energy level for the CYP51 of wild-type and MRHO/IR/75/ER strain were −40,027.1 and −39,706.48 Kcal/mol respectively. The overall Root-mean-square deviation (RMSD) deviation between two proteins was less than 1 Å throughout the simulation and Root-mean-square fluctuation (RMSF) plot also showed no substantial differences between amino acids fluctuation of the both protein. The results also showed that, these mutations were located on the protein periphery that neither interferes with protein folding nor with substrate/inhibitor binding. Therefore, L. major strain MRHO/IR/75/ER is suggested as a suitable laboratory model for studying biological role of CYP51 and inhibitory effects of sterol 14α-demethylase inhibitors. Full article
Figures

Graphical abstract

Open AccessArticle Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells
Molecules 2018, 23(3), 695; https://doi.org/10.3390/molecules23030695
Received: 9 February 2018 / Revised: 2 March 2018 / Accepted: 4 March 2018 / Published: 19 March 2018
PDF Full-text (1971 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mango “Ataulfo” peel is a rich source of polyphenols (PP), with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP’s antioxidant activity. The content (HPLC-DAD), antioxidant (DPPH, FRAP, ORAC), and antiproliferative activities (MTT) of free (FP)
[...] Read more.
Mango “Ataulfo” peel is a rich source of polyphenols (PP), with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP’s antioxidant activity. The content (HPLC-DAD), antioxidant (DPPH, FRAP, ORAC), and antiproliferative activities (MTT) of free (FP) and chemically-released PP from mango ‘Ataulfo’ peel after alkaline (AKP) and acid (AP) hydrolysis, were evaluated. AKP fraction was higher (µg/g DW) in gallic acid (GA; 23,816 ± 284) than AP (5610 ± 8) of FR (not detected) fractions. AKP fraction and GA showed the highest antioxidant activity (DPPH/FRAP/ORAC) and GA’s antioxidant activity follows a single electron transfer (SET) mechanism. AKP and GA also showed the best antiproliferative activity against human colon adenocarcinoma cells (LS180; IC50 (µg/mL) 138.2 ± 2.5 and 45.7 ± 5.2) and mouse connective cells (L929; 93.5 ± 7.7 and 65.3 ± 1.2); Cheminformatics confirmed the hydrophilic nature (LogP, 0.6) and a good absorption capacity (75%) for GA. Data suggests that GA’s antiproliferative activity appears to be related to its antioxidant mechanism, although other mechanisms after its absorption could also be involved. Full article
Figures

Graphical abstract

Open AccessCommunication π-π Conjugation Enhances Oligostilbene’s Antioxidant Capacity: Evidence from α-Viniferin and Caraphenol A
Molecules 2018, 23(3), 694; https://doi.org/10.3390/molecules23030694
Received: 9 February 2018 / Revised: 15 March 2018 / Accepted: 18 March 2018 / Published: 19 March 2018
Cited by 1 | PDF Full-text (2898 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
α-Viniferin and caraphenol A, the two oligostilbenes, have the sole difference of the presence or absence of an exocyclic double bond at the π-π conjugative site. In this study, the antioxidant capacity and relevant mechanisms for α-viniferin and caraphenol A were comparatively explored
[...] Read more.
α-Viniferin and caraphenol A, the two oligostilbenes, have the sole difference of the presence or absence of an exocyclic double bond at the π-π conjugative site. In this study, the antioxidant capacity and relevant mechanisms for α-viniferin and caraphenol A were comparatively explored using spectrophotometry, UV-visible spectral analysis, and electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC–ESI–Q–TOF–MS/MS) analysis. The spectrophotometric results suggested that caraphenol A always gave lower IC50 values than α-viniferin in cupric ion-reducing antioxidant capacity assay, ferric-reducing antioxidant power assay, 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical-scavenging assays. In UV-visible spectra analysis, caraphenol A was observed to show enhanced peaks at 250–350 nm when mixed with Fe2+, but α-viniferin exhibited no similar effects. UPLC–ESI–Q–TOF–MS/MS analysis revealed that α-viniferin mixed with DPPH• produced radical adduct formation (RAF) peak (m/z = 1070–1072). We conclude that the antioxidant action of α-viniferin and caraphenol A may involve both redox-mediated mechanisms (especially electron transfer and H+-transfer) and non-redox-mediated mechanisms (including Fe2+-chelating or RAF). The π-π conjugation of the exocyclic double bond in caraphenol A can greatly enhance the redox-mediated antioxidant mechanisms and partially promote the Fe2+-chelating mechanism. This makes caraphenol A far superior to α-viniferin in total antioxidant levels. Full article
(This article belongs to the Special Issue The Antioxidant Capacities of Natural Products)
Figures

Figure 1

Back to Top