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Abstract: There is a sustained interest in developing solvents for physically dissolving cellulose,
i.e., without covalent bond formation. The use of ionic liquids, ILs, has generated much interest
because of their structural versatility that results in efficiency as cellulose solvents. Despite some
limitations, imidazole-based ILs have received most of the scientific community’s attention.
The objective of the present review is to show the advantages of using quaternary ammonium
electrolytes, QAEs, including salts of super bases, as solvents for cellulose dissolution, shaping,
and derivatization, and as a result, increase the interest in further investigation of these important
solvents. QAEs share with ILs structural versatility; many are liquids at room temperature or are
soluble in water and molecular solvents (MSs), in particular dimethyl sulfoxide. In this review we
first give a historical background on the use of QAEs in cellulose chemistry, and then discuss the
common, relatively simple strategies for their synthesis. We discuss the mechanism of cellulose
dissolution by QAEs, neat or as solutions in MSs and water, with emphasis on the relevance to
cellulose dissolution efficiency of the charge and structure of the cation and. We then discuss the use
of cellulose solutions in these solvents for its derivatization under homogeneous and heterogeneous
conditions. The products of interest are cellulose esters and ethers; our emphasis is on the role of
solvent and possible side reactions. The final part is concerned with the use of cellulose dopes in
these solvents for its shaping as fibers, a field with potential commercial application.

Keywords: quaternary ammonium electrolytes; molecular solvents; super bases; cellulose dissolution
mechanism; cellulose derivatization; cellulose shaping; biomass conversion

1. Introduction

The demand for cellulosic fibers—natural and man-made—is increasing continually because
of world population growth. Cotton production, however will not meet this increased demand.
Consequently, a rational strategy to close this “cellulosic fiber gap” is to increase the production of
man-made cellulosic fibers, following the principles of green chemistry [1–3]. Industrially, fibers,
e.g., from wood cellulose, are obtained from Viscose (cellulose xanthate in alkali solution) by
extrusion in acid bath to produce the fiber Rayon [4–6], or by regeneration of cellulose solutions in
N-methylmorpholine N-oxide (NMMO) hydrate in an aqueous bath to produce the fiber Lyocell [7–11].
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The limitations of both solvents and processes, coupled with the increased emphasis on sustainability
have prompted the search for alternative greener substitutes. This necessity is the impetus for
the continued interest in developing new cellulose solvents, despite the existence of several ones
in commercial use [12–16]. Imidazole-based ILs have gained importance in the areas of cellulose
dissolution, processing and derivatization, resulting in a large number of publications, including
review articles [17–46]. Some quaternary ammonium electrolytes (QAEs) have melting points below
100 ◦C and can, therefore, be classified as a subclass of ionic liquids (ILs). In the present review,
we cover QAEs that do not bear heterocyclic rings, e.g., tetraalkylammonium halides. We also discuss
deep eutectic solvents (DES), and a special class of heterocyclic derivatives, namely, the salts obtained
by neutralization of heterocyclic superbases. After giving a short account on their history, we dwell on
recent advances in their use as solvents for cellulose dissolution, derivatization, and shaping.

The use of aqueous solutions of cellulose in urea, urethane, guanidine and their derivatives was
already reported in 1924 [47]. Alkali-containing [48,49] and alkali-free aqueous quaternary ammonium
hydroxides were reported as cellulose solvents as well (Figure 1, top) [50]. Benzyl-substituted
quaternary ammonium hydroxides were found to be more efficient cellulose solvents [51,52], leading to
the discovery of the well-known electrolytes Triton B and Triton F (Figure 1, bottom) [53,54].
Nevertheless, these cellulose solvents did not have technical importance, mainly due to their high water
content, and use of expensive silver oxide in their synthesis (for halide/hydroxide anion exchange).
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The inorganic compound ammonium thiocyanate in combination with ammonia was also 
reported as a cellulose solvent quite early [55]. It was shown that several freeze-thawing cycles 
enhanced cellulose dissolution [56,57]. Because water and ammonia are not suitable for obtaining 
some cellulose derivatives, and inorganic electrolytes have limited solubility in organic solvents, 
organic ammonium salts became the logical candidates to focus on. Hence, in 1986 the binary 
mixture of tetraethylammonium chloride (N2222Cl) in DMSO was reported to dissolve up to 12 wt% 
cellulose at 100 °C [58]. Pyridine and DMF were suitable MSs as well. This solvent system (QAE/MS) 
is the organic counterpart of the solvent LiCl/DMAc that was introduced a few years earlier [59]. 

Introduction of imidazole-based ILs as cellulose solvents [17], increased noticeably the effort to 
develop new solvents for cellulose. The structural versatility of ILs is shared by simple QAEs that are 
used alone, or as solutions in water and MSs. In the present review, we focus on QAE-based 
cellulose solvents; these have received less attention than ILs. The QAE systems that we address 
include quaternary ammonium carboxylates, halides, hydroxides, and phosphates. We also include 
salts of superbases, e.g., tetramethylguanidine (TMG) and 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) 
although for these salts the distinction between being ILs or QAEs is rather operational (Figure 2). 
Where required, we show results of ILs because both classes of compounds share common ground, 
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The inorganic compound ammonium thiocyanate in combination with ammonia was also
reported as a cellulose solvent quite early [55]. It was shown that several freeze-thawing cycles
enhanced cellulose dissolution [56,57]. Because water and ammonia are not suitable for obtaining
some cellulose derivatives, and inorganic electrolytes have limited solubility in organic solvents,
organic ammonium salts became the logical candidates to focus on. Hence, in 1986 the binary mixture
of tetraethylammonium chloride (N2222Cl) in DMSO was reported to dissolve up to 12 wt % cellulose
at 100 ◦C [58]. Pyridine and DMF were suitable MSs as well. This solvent system (QAE/MS) is the
organic counterpart of the solvent LiCl/DMAc that was introduced a few years earlier [59].

Introduction of imidazole-based ILs as cellulose solvents [17], increased noticeably the effort to
develop new solvents for cellulose. The structural versatility of ILs is shared by simple QAEs that
are used alone, or as solutions in water and MSs. In the present review, we focus on QAE-based
cellulose solvents; these have received less attention than ILs. The QAE systems that we address
include quaternary ammonium carboxylates, halides, hydroxides, and phosphates. We also include
salts of superbases, e.g., tetramethylguanidine (TMG) and 1,5-diazabicyclo[[4.3.0]non-5-ene (DBN)
although for these salts the distinction between being ILs or QAEs is rather operational (Figure 2).
Where required, we show results of ILs because both classes of compounds share common ground,
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e.g., anion-basicity dependent cellulose dissolution. We hope that this account will increase the interest
in the use of these versatile and efficient cellulose solvent systems.
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2. General Synthesis Strategies for Quaternary Ammonium Electrolytes (QAEs)

QAEs are easily available via quaternization of amines; many of them are available commercially,
or can be obtained by Hofmann degradation of amides [60]. The simplest derivatives are the
ammonium salts obtained by neutralizing the amine, usually with a mineral acid. However, attempts
to dissolve cellulose in these molten electrolytes (e.g., trimethyl and triethylammonium chloride) were
unsuccessful, and led to fast darkening of the cellulose solutions [61]. The association between
the ammonium cation and the chloride anion is probably more efficient than the interaction of
cellulose hydroxyl groups with the chloride. The presence of solvated protons in the medium leads to
acid-catalyzed cellulose degradation, hence solution darkening.

The deleterious effect on cellulose integrity of the solvated protons is eliminated by
quaternization of amines. Many N,N,N-dimethylalkylamines are commercially available or can
be easily prepared, e.g., via exhaustive alkylation at the nitrogen and reduction of the intermediate
imine (Eschweiler-Clarke reaction) [62–64]. The subsequent quaternization can be carried out by the
Menshutkin reaction (Scheme 1, path I, if R2 = alkyl, but in principle R1 and R2 can be any alkyl,
alkenyl or benzyl group) [65,66]. In this reaction, the molecular structures of the alkyl halides and
amines influence the reaction yield as well as its mechanism. For example, for SN2 reactions in aprotic
solvents the order of reactivity of the amines is: primary > secondary > tertiary; whereas that of the
halides is RI > RBr > RCl. Energetic conditions (high temperature and/or pressure) are required for the
reaction of sterically hindered amines (e.g., tribenzylamine) with alkyl halides; tertiary halides react
with amines essentially by the SN1 mechanism [67]. The Menshutkin reaction produces the so-called
first generation QAEs. Second generation QAEs are very important because of the relevance of basicity
of the anion to cellulose dissolution [68,69]. Exchange of the halide anions with, e.g., carboxylates
is carried out with anion exchange resins (usually macroporous), via the sequence shown in path II
of Scheme 1 (halide→ hydroxide→ carboxylate). We found that direct anion exchange (halide→
carboxylate) is complete, e.g., for chloride→ acetate [70]. For efficient methylation or ethylation of
amines the use of alkyl carbonates is possible (Scheme 1, path III) [71]; the resulting carbonate is
converted into other anions by reaction with the appropriate acid. Alkyl phosphates, and alkyl sulfates
are also used for amine alkylation at the nitrogen [72].
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Scheme 1. Synthesis of quaternary ammonium electrolytes by quaternization of tertiary amines with
organic halides (I, II) or dialkyl carbonates (III).

Because neat (molten) QAEs are also used to dissolve cellulose [61,73] a comment on the effect
of the anion and cation on their melting points is in order. As shown for ILs, quaternary ammonium
halides are liquids at room temperature if the Gibbs free energy of fusion is negative, resulting in the
liquid state being thermodynamically favored [74]. As a rule of thumb, the melting points decrease
with increasing cation size. In addition, asymmetric substitution or branched alkyl chains lead to lower
melting points. It is suggested that one or two longer chains, e.g. n-octyl, with two or three shorter
chains, e.g. n-butyl should be beneficial for lowering the melting point of the QAE [75]. Considering
the same cation with halide anions, the melting points decrease in the order Cl > Br > I [76]; the melting
points of the carboxylates are usually lower than the corresponding halides. Apparently, systematic
variation of melting points along a homologous series of electrolytes does not always work. They can
show scatter depending on the combination of cations and anions [77].

3. Mechanism of Cellulose Dissolution by Neat QAEs, Their Solutions in Water and
Molecular Solvents

3.1. Solvents for Dissolution, Regeneration and Derivatization of Cellulose

It is known that the (physical) dissolution of cellulose in any solvent relies on the disruption of
the inter- and intramolecular hydrogen bonding between the hydroxyl groups of the anhydroglucose
unit (AGU), as well as the solvophobic interactions present [78–80]. This is essentially achieved by
a combination of cooperative action of the electrolyte solvated ion pair on bonding in cellulose,
sufficient basicity of the anion and adequate volume of the electrolyte/solvent complex [81].
Spectroscopic techniques, in particular NMR [82–85] and IR spectroscopy [85,86], rheology [87,88]
and theoretical calculations [83,89,90] shed light on the mechanism of cellulose dissolution and the
relationship between the solvent efficiency, the nature of the MS and ions of the QAE. We address
these aspects below by examining separately the effects of anion and cation.

3.1.1. Basicity and volume of the anion

Regarding anions, disruption of hydrogen bonds in cellulose increases as a function of increasing the
charge density (or hardness), and decreasing the volume of anion. As a result, the biopolymer dissolution
capacity of QAE solutions is expected to be related to the Hofmeister series [91]. The interactions of
2,2-bis(hydroxymethyl)-1,3-propanediol (a model for cellulose) with a series of tetra-(n-butyl)ammonium
salts (TBAX)/DMSO (X = anion) was studied using IR spectroscopy [85]. Note that hydrogen bonding
between TBAX and the hydroxyl group of the polyol (TBAX···HO-polyol) results in a red shift of the
frequency of the O-H stretching vibration (
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red shift is that in presence of tetra-(n-butyl)ammonium fluoride (TBAF). For the TBAX series the values
of
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ῦ (νO-H) in QAE/DMSO)
obeyed the Hofmeister series, as shown by the following order: F− > CH3CO2

− > (C2H5)2PO4
− >

Cl− > SCN− > Br− > I− > C2H5SO4
−. These results bear on cellulose dissolution in QAEs/DMSO;

the biopolymer is easily soluble in TBAF·3H2O/DMSO but not in other TBAX/DMSO with less basic
anions (X = Cl−, Br−, I−) [86].

The extensive use of TBAF·3H2O/DMSO as solvent for cellulose dissolution and derivatization
merits additional comments. At room temperature, anhydrous TBAF is the only R4NX that is liquid;
it shares with ILs the property of negative energy of fusion [74]. However, obtaining anhydrous
TBAF by dehydration of TBAF·3H2O without extensive Hofmann degradation is laborious [86];
its preparation in situ from the reaction between tetra-(n-butyl)ammonium cyanide (TBACN) and
C6F6 is expensive, [92] and the resulting TBAF/DMSO is relatively unstable [93]. Consequently, the
use of commercially available, solid (m.p. 58–60 ◦C) TBAF·3H2O/DMSO is convenient. At first
glance, the efficiency of TBAF·3H2O/DMSO as solvent for cellulose may seem surprising because
the free energies of transfer of the (F−) from water to virtually all dipolar aprotic solvents are
positive, i.e., unfavorable due to the strong solvation of this anion by hydrogen bonding to water [94].
However TBAF·3H2O is still a reasonably powerful nucleophile and base, although both properties are
dramatically attenuated as a function of increasing the water content of this QAE [95,96]. The potential
problem with the use of this electrolyte, however, is the effect of its (uncontrolled) water content on the
results, e.g., the reproducibility of the degree of substitution (DS) when different electrolyte batches are
employed, or when the same electrolyte sample is employed over a relatively long period. In contact
with air, solution of TBAF·3H2O/DMSO absorbs water continuously for hours [97]. Additionally,
the water of hydration present in this QAE leads to hydrolysis of the acylating agent. This undesirable
side reaction is general-base catalyzed by (F−). The deleterious effect of this water absorption was
neatly shown by measuring the dependence of the chemical shifts and bandwidths of the water
protons and (F−) as a function of the water content in cellulose TBAF/DMSO solutions. The results
suggest the formation of strong Cel-OH···F− bonds, leading to the breakdown of the cellulose-cellulose
hydrogen bonds, hence biopolymer dissolution. The latter is favored by electrostatic repulsion between
the negatively charged Cel-OH···F− chains [82]. Each negative chain is most certainly surrounded
by a sheath of the TBA+ cation. The synergism between electrostatic repulsion of Cel-OH···anion,
and steric repulsion of Cel-OH···anion/cation complexes appear to prevent association between
cellulose chains and favor a molecularly dissolved state as shown for QAEs [83], and, e.g., for the ILs
BuMeIm [26,84,98–103] or EtMeIm cation [104–108].

Small concentrations of water strongly solvate the fluoride ions, inhibiting them from association
with the cellulose chains. This allows the reformation of the cellulose-cellulose hydrogen bonds,
which leads to highly viscous solutions or gel formation. These changes in the physical state of
the solution are schematically depicted in Figure 3. Part (a) of Figure 3 shows the cellulose in dry
TBAF/DMSO solution; part (b) shows preferential solvation of (F−) by the added water and its removal
from cellulose. This lead, finally, to solution gelation due to reestablishing strong hydrogen bonding
and hydrophobic interactions between the cellulose chains (c) [82]. Quaternary ammonium fluorides of
much less water content were prepared by a simple protocol, e.g., NAl4F·H2O/DMSO and N11Bz2F·0.1
H2O/DMSO (Al and Bz refer to allyl and benzyl group, respectively). Both QAE·xH2O/ DMSO
dissolve cellulose and the biopolymer was efficiently acylated in these solvents (see Section 4.3
Ammonium fluorides) [109,110]. Interestingly, tolerance for water as a non-solvent for cellulose
dissolution in tetra-(n-butyl)ammonium acetate (TBAAcO)/DMSO is twice as high as tolerance for
ethanol (calculated on a molar basis). Based on theoretical calculations, it was suggested that the
higher tolerance to water is due to its more efficient hydrogen bond interactions that improve solvation
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of cellulose and, thereby, marginally favor dissolution [111]. The higher tolerance toward water may
be traced to the fact that water-DMSO interactions are stronger than water-water interactions [112,113].
The influence of water and other non-solvents in imidazole-based IL solutions on the cellulose solubility
is reported as well, e.g. in [102,114] but is outside the scope of the present review.
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Figure 3. NMR-based illustration of the mechanism of water-induced gelation of cellulose dissolved
in TBAF/DMSO. The symbols are: red dots = water molecules, green squares = F− (associated with
cellulose in (a), solvated by water in (b), partially exposed cellulose chains, which leads to reaggregation
(c), black lines = cellulose chains; yellow circles = hydrogen bond regions between cellulose chains;
reprinted with permission from [82], Copyright (2009) American Chemical Society.

In summary, the hygroscopic nature of solutions of these QAEs/MS should never be
underestimated because uncontrolled water contents have deleterious effects on their efficiency
as cellulose solvents, and the economy of the process due to hydrolysis of the acylating agent.
Additionally, effort should be made to control the purity, including water contents of these solutions
as stressed repeatedly for ILs and QAEs [17,115–118]. In case of QAEs, the presence of small
concentrations of KBr in the commercial aqueous tetra-(n-butyl)ammonium hydroxide (TBAOH)
and TBAAcO/LiCl/DMSO decreased the solubility of cellulose, presumably due to the formation
of (K+)-mediated complexes between cellulose chains. Addition of (K+)-complexing crown ether
18-crown-6 resulted in clear biopolymer solutions in both cases and increased the concentration of
dissolved cellulose, although this represents an expensive solution to the QAE purity problem (see also
Section 4.2 Ammonium carboxylates) [119,120].

The carboxylate group is also a hard base. Therefore, QAEs bearing the carboxylate moiety were
successfully tested as solvents for cellulose, with emphasis on TBAAcO/DMSO. Indeed, cellulose
fibers from this solvent were obtained without noticeable degradation or (slow) formation of cellulose
acetate during dissolution (see Section 4.2 Ammonium carboxylates) [121]. The latter (acetylation) side
reaction occurs during acylation of cellulose in pure EtMeImAcO [122].

Different types of cellulose (MCC, cotton, regenerated cellulose) dissolve in TBAAcO/DMSO
at 25 ◦C [85]. The dependence of wt % dissolved cellulose and dissolution time on the electrolyte
mass ratio WTBAAcO [mass of TBAAcO/(mass of TBAAcO + mass of DMSO)] was studied. All results
showed increases in cellulose dissolution until WTBAAcO = 0.15, then a decrease at higher WTBAAcO.
The dependence of solvent efficiency on QAE is schematically represented in Figure 4, where the degree
of dissociation of the QAE is larger at WTBAAcO < 0.15 than at WTBAAcO > 0.15 because of the association
of QAE ions with cellulose. The authors corroborated this conclusion by the following pieces of
evidence: (i) Dependence of solution conductivity (cellulose/TBAAcO/DMSO) on WTBAAcO that
showed a rapid increase until WTBAAcO ~0.15 followed by subsequent slower increase; (ii) dependence
of 1H and 13C-NMR chemical shifts of the cation and anion on WTBAAcO in DMSO-d6, with a “inflection
point” at WTBAAcO ~0.15; (iii) dependence of the 1H- and 13C-NMR chemical shifts of the cation and
anion of TBAAcO on [cellobiose], showing large changes until WTBAAcO ~0.15, followed by small
changes at WTBAAcO > 0.15; (iv) dependence of
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to cellulose dissolution. This balance is largely controlled by hydrogen bonding and solvophobic
interactions. The favorable effect of DMSO is due to viscosity reduction and stabilization of the
cellulose-QAE complex [85].
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Similar dependence of viscosity and conductivity of cellulose/IL/MS mixtures and the wt % of
maximum dissolved cellulose on IL concentration were also observed for AlMeImCl in DMSO [87].
The rheological properties of cellulose/IL/MS mixtures (mostly DMSO as MS) were studied extensively
and data regarding viscosity of these solutions are readily available in the literature [123–135].
The comparison and evaluation of the results is not straightforward because there is no common
experimental “protocol” for cellulose dissolution (cellulose type, temperature, IL/MS ratio). The effect
of MS on the viscosity of cellulose/IL solution have been reviewed as well [136]. It is noteworthy that
the viscosity of QAE/MS solution is important but not a controlling factor because at comparable
concentration, the same IL is more efficient in DMSO than in (less viscous) DMAc [88].

Dissolution of cellulose in TBAAcO/DMSO was determined at 60 ◦C by microscopy and
turbidity measurements. The results for three QAEs suggested maximum solubilization at molar
ratio QAE/AGU of unity. This conclusion was further corroborated from NMR data. This included
1H-NMR chemical shifts of the anion and cation of QAE; diffusion coefficients of the ions of QAE
and the MS as a function of the molar ratio QAE/AGU, and the results of molecular dynamics (MD)
simulations of the system. The latter calculations indicated binding of the acetate ion to more than one
hydroxyl group of the AGU. The calculated contact time between the acetate ion and cellulose is at least
an order of magnitude longer than the contact time between any other pair of species in the system
(cation-cellulose, cation-DMSO, DMSO-DMSO), a clear indication of the strength of anion···HO-Cel
hydrogen bonding [83]. The simultaneous binding of the anion to more than one hydroxyl group in
the same AGU was also advanced to explain the efficiency as cellulose solvents of R4NF·xH2O/DMSO
and AlMeImCl/DMSO. For both solvents, the halide ion binds simultaneously to C2-OH and C3-OH
of the AGU [88,110].

We now address the effects of the volume and charge density of the cation because these variables
affect the association anion-cation of the QAE and its (solvophobic) interactions with cellulose,
thus bear on its efficiency of as solvent.

3.1.2. Acidity and Volume of the Cation

The quaternary ammonium ions are soft acids [137]. Their volumes are important in determining
anion-cation interactions whose strength are determinant to cellulose dissolution, as also shown for IL
cations [101,138,139]. This was shown by the fact that TBAF·3H2O/DMSO dissolves cellulose easily,
whereas the biopolymer is insoluble in N1111F/DMSO and only marginally soluble in N111BzF/DMSO.
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This was explained on the bases of solubility of these QAEs in DMSO at room temperature: 0.94,
0.025 mol/L and negligible, respectively [93]. As shown above, electrolyte solubility and dissociation
into free ions in the MS are required for efficient ion/AGU interactions, leading to cellulose dissolution.
This idea was corroborated by (DFT) theoretical calculations. Due to the weak interaction of (F−)
with the voluminous (TBA+) cation of TBAF, the anion transfers significant amount of charge into
the antibonding orbital of the Cel-OH groups leading to the disruption of the hydrogen bonding
and cellulose dissolution. Due to the smaller volume of (N1111

+) of N1111F, the (F−) transfers more
negative charge into the positively charged cation, hence cannot disrupt the hydrogen bonding
of cellulose; the biopolymer is insoluble [89]. In a systematic study on the effect of QAE cation
volume on cellulose dissolution, neat N222RAcO, N222RPrO, N333RAcO, N333RPrO and their solutions
in DMSO were studied (N222R and N333R refer to derivatives of triethylamine and tri-(n-propyl)amine,
respectively; R = n-alkyl, from butyl to dodecyl). Neat QAE with (R = n-butyl) did not dissolve
cellulose, independent of the structure of the parent tertiary amine (N222 or N333). In general, addition
of DMSO increased cellulose solubility. The efficient QAEs are those with R longer than n-hexyl,
as illustrated in Figure 5. For the most efficient QAE N2228AcO at 80 ◦C the calculated molar ratio
QAE/AGU is 4.8 (neat QAE) and 2.1 (20 wt % DMSO) [73]. The latter (electrolyte/AGU) ratio is
smaller than that observed for TBAAcO/DMSO [83], and may reflect the effect of the cation steric
hindrance in both QAEs.
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Regarding the molecular structures formed in solutions of cellulose/QAE/DMSO quantum
chemistry calculations were performed on cellobiose, methylated at the positions O-4 and O-1 as model
for cellulose, and QAEs (N1111F, NAl4F, N11Bz2F, and TBAF)/DMSO. We present the corresponding
structures in Figure 6 (see reference [90] for details of these calculations).
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In Figure 6, (A) is cyclic whose structure is similar to that indicated elsewhere [140], whereas
(B) and (C) are linear with the (F−) bridging the sulfur atom of DMSO either to the quaternary
nitrogen of the electrolyte, or to one of the OH groups of the cellulose model. Structure (A´) is the
theoretically optimized version of (A). Interestingly, during geometry optimization of (A), the initial
cyclic aggregates changed to an F−-centered structure, with change in connectivity, as shown in
structure (A´). Based on the results of these calculations, we suggested that the aggregates formed in
the system cellulose model/R4NF/DMSO are best represented by (C). This structure is corroborated
by the above-mentioned NMR and FTIR data [82,89].

3.2. Salts of Super Bases

A new class of QAEs based on salts of super bases was recently introduced as potential
solvents for cellulose [36,142–146]. These QAEs are prepared by neutralizing superbases,
e.g., 1,1,3,3-tetramethylguanidine (TMG), 1,5-diazabicyclo-[[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo-
[[5.4.0]undec-7-ene (DBU) with carboxylic acids, such as acetic or propionic acid. The mechanism of
cellulose dissolution is mainly connected to the basic moieties of the electrolytes, which can disrupt
the strong intra- and intermolecular interactions within the cellulose structure, as shown in Figure 7.
The role of solvent descriptors for regeneration of cellulose from EtMeImAcO, TMG PrO and TMG
AcO was also compared with other cellulose solvents, e.g., NMMO and LiCl/DMAc [147]. It was
found that solvent basicity (SB) was the property that changed most (almost a linear decrease) upon
addition of water. However, the ability of the mixtures to dissolve cellulose was best explained by the
net basicity, i.e. (SB-SA), rather than SB alone. A window for regeneration of cellulose was suggested
(SB < 0.8 and SB-SA < 0.35). Cellulose regeneration was divided into four stages: gelation, particle
formation, biopolymer regeneration with adsorbed IL, removal of the latter by washing. It was also
shown that there TMG-based solvents were more sensitive towards water during cellulose dissolution
than its regeneration. [86]
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3.3. Aqueous Solvents for Cellulose Dissolution and Regeneration

Because the above-mentioned QAEs solutions are alkali-free, they are suitable for cellulose
dissolution, regeneration and derivatization with reagents that are subject to hydrolysis, e.g., carboxylic
acid anhydrides and acyl chlorides. We comment now on another class of efficient cellulose solvents,
quaternary ammonium- and phosphonium hydroxides because their larger capacity of cellulose
dissolution at room temperature enhances their potential use in cellulose regeneration. Additionally,
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dissolution by these systems is clearly linked to the amphiphilic characters of cellulose and the
QAE. Unlike ILs, the presence of water in the solvent is not a barrier to cellulose dissolution.
Thus tetra-(n-butyl)phosphonium hydroxide TBPOH containing 40 wt % water dissolves 20 wt %
cellulose within 5 min at 25 ◦C under stirring. The interaction of the hydroxide anions with the
hydroxyl groups of the AGU of MCC was demonstrated by following the chemical shift and line width
of the (OH-/H2O) 1H-NMR peak as a function of increasing MCC concentration, and the crystallinity
of regenerated cellulose (type I→ amorphous) [148]. Aqueous solutions of Bu4POH also dissolve
wood discs (cedar, pine, polar). The dissolution efficiency depends on the water content of the biomass
solution; the latter content can be decreased by a slow “auto-recovery or “self-dehydration” step,
namely by storing the solution for 2–10 days at room temperature under controlled humidity [149].

The effect of water and cation size on the cellulose dissolution capacity of aqueous R4POH at
25 ◦C were studied in detail by using aqueous solutions of the following QAEs: PRRRR OH (R = ethyl,
n-butyl, n-hexyl) and NRRRROH (R = methyl, ethyl, n-butyl, n-hexyl). The QAEs with the smallest
volumes (e.g., N1111OH and N2222OH) did not dissolve 0.5 wt % cellulose. The biopolymer dissolution
capacity and dissolution time (2–20 min) depended on (n), the number of water molecules/cation
(fast dissolution at n ≤ 15). As discussed above, cellulose dissolution by these alkaline solutions
involves proton removal, e.g., from C6-OH of the AGU, leading to chemical shift change of the
attached (primary) carbon atom. The values of δ 13C-NMR signal of this primary carbon of 10 wt %
cellobiose decreased as a function of increasing (n); the limit of cellulose dissolution was reached at δ
13C of 64.8 ppm (n ≈ 15). Below this “threshold” chemical shift, cellobiose is insoluble [150].

The results of several publications highlight the importance of the amphiphilic character of
cellulose, and the solvophobic interactions in these QAE solvents. The most relevant result is the effect
of urea on dissolution of cellulose. The simplest example is where urea-inorganic base is the solvent.
Results of DSC, 1H and 13C-NMR chemical shifts showed that urea hydrate plays its positive role
in dissolution through van der Waals interactions, by accumulating on the hydrophobic face of the
AGU to prevent dissolved cellulose chains from re-aggregation [151,152]. The amphiphilic character
of both components of the system - cellulose and the QAE - was nicely exploited in using aqueous
TBAOH to dissolve cellulose. As shown below, the idea is to “match” cellulose and QAE solution,
akin to matching the HLB (hydrophilic-lipophilic balance) of the aqueous phase to that of the oil phase
in order to obtain stable oil/water emulsions [153]. The cellulose dissolving power of the aqueous
solvent is dependent on QAE concentration and the corresponding molar ratio water/QAE (nW/QAE)
which was divided (based on DSC measurements) into bound and free water, (nbound-W/QAE) and
(nfree-W/QAE), respectively. An increase in QAE concentration decreases the amount of (nbound-W/QAE),
leading to contact between the partially desolvated TBA+ cations with concomitant increase in the
solvophobic QAE-cellulose interactions. At 60 wt % TBAOH, the value of (nbound-W/QAE) is ca. 2
and cellulose is easily dissolved by solvophobic interactions. In other words, cellulose dissolution
can be induced by “tuning” the hydrophilic-lipophilic character of the QAE solution. Another
interesting approach to control this character at a fixed QAE concentration is to use urea or thiourea
as additive. Addition of urea to 55 wt % of TBAOH led to an upfield shift of the 13C-NMR peaks of
(NH2)2C=O and (C3H7CH2)4NOH, indicating the association urea-QAE with displacement of some
of the (nbound-W/QAE) of the QAE. A similar rational can be applied to the hydrophobic region of the
AGU, as depicted in Figure 8 [154].

This amphiphilic aspect was exploited in synthesis where the reagent is not very sensitive to
hydrolysis. Thus, aqueous Bu4POH was used as solvent for the benzylation of cellulose (reaction with
benzyl bromide, 10 min, 20–25 ◦C, DSBz ≈ 2.5). The surface activity of Bu4POH leads to association
with benzyl bromide and with (more hydrophobic) partially benzylated cellulose, leading to products
with relatively high DSBz. The above mentioned association (RX-QAE-cellulose ether) results in less
hydrolysis of the halide and efficient etherification reaction [155].
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4. Applications of QAEs for Cellulose Dissolution, Shaping and Derivatization

In principle, the quaternary nitrogen atom of QAEs can be attached to four different substituents
(e.g. alkyl, alkenyl, benzyl), leading to structural flexibility; hence their properties can be “tuned”
conveniently. They are stable under common conditions for cellulose processing and derivatization,
while are not subjected easily to side elimination reactions, unlike 1,3-substituted imidazole-based
ILs with their relatively acidic C2-H [156–161]. QAEs with various anions were studied, mainly for
cellulose dissolution and shaping, and biomass extraction. Cellulose derivatization is reported as well
to a lesser extent. In order to give an overview about the QAEs we classified them by their anions.

4.1. Quaternary Ammonium Hydroxides

Parallel to the development of DMSO/TBAF·3H2O Tanczos et al. studied commercially
available, relatively inexpensive tetraalkylammonium hydroxides as activating agents and solvents for
cellulose [162]. The ability to swell or dissolve cellulose better than other bases such as NaOH was
attributed to penetration of R4NOH into cellulose, combined with the amphiphilic character and size
of the ammonium cation. The good gelation properties of R4NOH were used to obtain fibrous TEMPO
oxidized cellulose nano-dispersions in water [163].

An aqueous solution of commercial TBAOH (40 wt %) was found to dissolve 10 wt % cellulose
within 24 h at room temperature [119]. As discussed above in Section 3.1.1, 18-crown-6 was added
to eliminate the undesirable effect of KBr (a side product in commercial base solutions). Without
addition of crown ether, aqueous TBAOH solutions were used to extract cellulose from wheat straw
at 60 ◦C within less than 1 h [164], and dissolve 10 wt % MCC within 2 min at room temperature
([TBAOH] = 50 and 55 wt %, respectively). Analysis of the regenerated polymer confirmed that
no degradation or chemical modification occurred. The same group found that TMAOH solutions
dissolve 25 wt % MCC in 2 min [165], and extract cellulose from sugarcane bagasse. The latter was
achieved by adding 17 to 29 wt % urea to a 40 wt % aqueous solution of TBAOH [154].

An alternative approach was employed to dissolve cellulose using lower concentrations or
R4NOH [166]. Dissolving grade pulp, 6 wt % was dissolved in a solution containing 70 wt % DMSO,
12 wt % TBAOH, and 18 wt % water. The DMSO concentration could be increased to 90 wt % without
cellulose precipitation. After complete solubilization of cellulose, β-cyclodextrin was added to the
solution to obtain elastic but robust gels. By varying the cellulose and β-cyclodextrin contents the
porosity and mean pore size of the cellulose network was adjusted. These cellulose-based hydrogels
could potentially find applications in areas such as removal of heavy metal ions from water, or in
controlled drug delivery systems [167]. Examples of the solubility of cellulose in the solvent mixtures
mentioned in this section are listed in
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Table 1, where the dissolved cellulose is given in wt %. Because of the differences in the molar
masses of the components (AGU, QAE, MS) the use of the mole fraction scale is, to our view, preferable
to wt % because it is unambiguous.

Table 1. Examples of the solubility of cellulose in tetra-(n-alkyl)ammonium hydroxide aqueous solutions.

Cellulose Solvent Dissolved Cellulose [wt %] Dissolution Conditions Cellulose Type (DP) 2 Reference

TMAOHaq (30 wt %) swelling RT - 1 [162]
TMAOHaq (25 wt %) 10 RT, 2 min MCC [165]
TBAOHaq (40 wt %) 10 RT, 24 h MCC [119]

TBAOHaq (40 wt %) +
18-crown-6 (2.0 M) 10 RT, 10 min MCC [119]

TBAOHaq (55 wt %) 10 RT, 2 min MCC [164]
TBAOH/urea/H2O

(33/17/50 wt %) 7 RT, 1 h Softwood kraft pulp (660), MCC [154]

TBAOH/DMSO/H2O
(12/70/18 wt %) 6 - 1 PHK pulp (630) [166]

1 - No data given, 2 DP - average degree of polymerization in brackets, where available

4.2. Quaternary Ammonium Carboxylates

QAE carboxylates are, by far, the most studied compounds regarding cellulose dissolution,
derivatization and shaping. They have the advantage over hydroxides, that they can be used in
non-aqueous solvents. This is an essential prerequisite to perform some cellulose derivatization,
e.g., into carboxylic esters. They are also considered to be “greener” solvents compared to their
corresponding (corrosive) halides (Cl−, F−).

Molten tetraalkylammonium carboxylates were studied regarding their ability to dissolve
and chemically modify cellulose [168]. They were obtained by quaternization of triethylamine or
tributylamine with dimethylcarbonate and subsequent conversion with the corresponding carboxylic
acid (Scheme 1). Triethylmethyl- and tributylmethylammonium formate (N1222Fo, N1444Fo) dissolve
MCC. A mixture of 8 wt % dilute formic acid (25 wt % aqueous solution) in N1222Fo dissolved 10 wt %
MCC. The 13C-NMR spectrum of this solution revealed the formation of cellulose formate intermadiate
during MCC dissolution. As expected, this ester is not stable because pure cellulose was obtained
after regeneration of the solution in water. Etherification was performed in these solutions as well.
Carboxymethyl cellulose (CMC) with a DS value of 1.55 and a block like distribution of substituents
along the polymer backbone was isolated. Hydroxypropylation of MCC, cotton, and spruce sulfite
pulp in N1222Fo yielded products with a rather low DS (0.22–1.27) in spite of the large excess of molar
ratio propylene oxide/cellulose employed (40/1) [169].

The biorefinery concept is an expanding research field and a driving force in the development
of new solvents for renewable resources, especially cellulose. Thus, QAEs are studied to selectively
extract cellulosic material or lignin from biomass. The enzyme catalyzed transformation of
cellulose dissolved in IL, e.g., transesterification or hydrolysis, was carried out in bis- and
tris(2-methoxyethyl)triethylammonium acetates (N222 Me(OEt)2AcO, N222 Me(OEt)3AcO) [170]. Many ILs
inhibit these reactions because the employed enzymes are readily denatured. Here, the cation structure
combined with the basic acetate anion enhances cellulose dissolution (up to 10 wt % MCC) while the
low anion concentration stabilizes the enzyme.

A screening of various cations with carboxylate anions as cellulose solvents was conducted by
Zhao et al. [118]. Of the QAEs tested only diethyldimethylammonium acetate (N1122AcO) dissolved
2 wt % cellulose, the formates, propionates and butyrates did not dissolve cellulose. On the other
hand, dialkoxydimethylammonium acetates dissolved up to 18 wt % cellulose (MCC) at 80 ◦C [171],
which underlines the discussion in item 3 above, namely that size, structure, and/or molecular weight
of the cation influences the solubilization process to a considerable extent. Additionally, the viscosity of
the solutions is significantly lower compared to other IL cellulose solutions, due to the higher flexibility
of the alkoxy side-chains.
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TBAAcO dissolved in various MS (28/72 by weight), such as DMSO, DMAc, DMF, pyridine,
or NMP was reported to dissolve up to 9 wt % MCC within a few min at 60 ◦C [172].
In TBAAcO/DMSO the dissolution occurred faster than in the other mixtures. The cellulose containing
solutions were also used to produce fibers and membranes. Cellulose acetate and butyrate with DS
values of around 3 and 2, respectively, were obtained by acylation in this solvent.

Miao et al. used TBAAcO and mixtures thereof as cellulose solvents as well [120]. Based on
the results of DMSO/TBAF·3H2O [173] and TBAOH [119] the introduction of the acetate anion was
expected to yield a promising cellulose solvent. However, neat TBAAcO did not dissolve cellulose,
addition of DMSO was required [120]. The dissolution optimum for cellulose was found when the
binary mixture of DMSO contained 15–20 wt % TBAAcO, vide Figure 4 [85]. Here cellulose (8 wt %)
was dissolved at room temperature within 2 min. Increasing the temperature to 40 ◦C resulted
in a noticeable increase of cellulose solvent efficiency. Thus 11, 22, 33 wt % TBAAcO in DMSO
dissolved 6, 22, and 33 wt % MCC. These QAE concentrations correspond to 1 mol acetate anion/AGU
due to hydrogen bonding of the acetate to more than one hydroxyl group of the AGU, vide 3.1.1. [83].
At 40 ◦C, up to 20 wt % MCC dissolved in the TBAAcO/DMSO/18-crown-6 mixture (2/7/1 by weight).
Additionally, high molecular weight celluloses (DP = 830) and lignin were also soluble in the same
mixture. The clear and viscous solutions of cellulose in TBAAcO/DMSO/18-crown-6 proved to be
suitable for wet-spinning and the cellulose fibers were regenerated in ethanol at room temperature.
The fibers showed more amorphous than crystalline cellulose structure based on MAS-NMR and
XRD analyses, and they were homogeneous with smooth surfaces and diameters around 40 µm
(Figure 9) [120].
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In a subsequent study, the same group regenerated cellulose fibers from TBAAcO and DMSO
without 18-crown-6. They used a softwood cellulose (DP = 1050) and prepared solutions of 4–10 wt %
at 40 ◦C. The resulting fibers had circular cross-sections and smooth surfaces. Analyses of DP after
regeneration indicated no detectable degradation of the regenerated cellulose. The fibers showed
tenacities between 2–3 cN/dtex and elongation values between 9.7–11.8% [121]. Thus, the dry strength
values are similar to those of viscose (20–25 cN/tex, 18–23% elongation) or cotton (24–36 cN/tex, 7–9%
elongation) [174].

The use of a recycled TBAAcO/DMSO solvent for the dissolution and regeneration of cellulose
was recently investigated [175]. It was shown that the TBAAcO/DMSO solvent system tolerates
addition of some non-solvents, such as water or ethanol, without cellulose precipitation. Mechanical
properties of spun filaments were not altered when prepared from a simulated recycled solvent
containing 2 wt % (cellulose) non-solvent. The ability of the system to tolerate non-solvents was
dependent on the concentration of both cellulose and TBAAcO. By increasing the concentration of
TBAAcO, more water can be tolerated for the same cellulose content [111].

Carbon nanotubes were added to a solution of cellulose in TBAAcO/DMSO, and were then
formed into composite fibers, spun at room temperature and then coagulated in a water bath.
Characterization of the fibers using SEM showed that the fibers were smooth and did not contain
micro pores, which indicated that the carbon nanotubes were well-dispersed in the cellulose matrix.
It was also shown that the mechanical and thermal properties of the composite fibers (5 wt % carbon
nanotubes) compared to neat cellulose fibers were improved: increased tensile strength (approx.
20%), elongation at break (approx. 20% increase), and thermal stability (decomposition temperature
increased by ca 20 ◦C) [176].

The TBAAcO/DMSO system was used for the homogeneous esterification of cellulose without
catalysts. After 5 h at 60 ◦C using a 5 molar excess of acetic anhydride per AGU an organo-soluble
cellulose acetate with a DSAc of 2.91 was reached. Under the same conditions, cellulose propionate
with a DSPr of 1.83 was obtained. Cellulose acetate/propionate and acetate/butyrate mixed esters
with almost full functionalization were obtained [177,178]. The conversion of cellulose with succinic
anhydride under catalyst free conditions yielded products with DSSuccinate between 0.3 and 1.2 after
1 h at 60 ◦C. As known, these products successfully absorb heavy metal ions such as copper(II) and
cadmium(II) from aqueous solutions. The concentration of absorbed metal ions increased as a function
of increasing DSSuccinate [179].

A binary mixture of tetrabutylammonium propionate with methylimidazole (2.5/7.5 by weight)
dissolves 15.7 wt % MCC at 25 ◦C. The main driving force of the dissolution was attributed to the
propionate anion, while methylimidazole was mainly acting as solvent, promoting dissociation of
the ions. The authors also claim that the architecture of regenerated cellulose films can be adjusted
in dependence of the processing strategy [180]. A set of 20 tetra-(n-alkyl)ammonium acetates and
propionates was synthesized and studied regarding the influence of the cation on cellulose dissolution,
vide 3.1.2. The majority of these QAE were able to dissolve cellulose with and without the addition of
DMSO, and triethylhexylammonium acetate was the best QAE in the set studied; 22 wt % cellulose at
90 ◦C [73].

Neat N,N-allylmethylmorpholinium acetate was shown to be an efficient cellulose solvent.
Thus 17, 28, and 30 wt % MCC were soluble in this QAE at 80, 100, and 120 ◦C, respectively, even in
the presence of some water. Also 25 wt % of high molecular weight samples (DP = 2082) was dissolved
without noticeable degradation, as confirmed by SEC analysis. SEM micrographs of native and
regenerated cellulose indicated that upon regeneration, the surface of cellulose fibers became smoother,
and uniform, as compared to rough and scattered surface of untreated cellulosic fibers. This was
attributed to re-aggregation of strongly bonded crystalline cellulose fibers into more homogeneous
macromolecular assembly upon dissolution [181].

The following QAEs for cellulose dissolution and processing are based partially on naturally
occurring compounds. Ohira et al. prepared QAEs with amino acid moieties as anions.
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N,N-Diethyl-N-(2-methoxyethyl)-N-methylammonium alaninate (N122 Me(OEt)) was the best cellulose
solvent for MCC, dissolving 6 wt % at 60 ◦C and 12 wt % at 100 ◦C within 10 min. The corresponding
acetate and chloride dissolved 7 and 10 wt % MCC, respectively, although much more slowly, ca. 48 h
for complete dissolution. The fact that the amino acid anions are better than the corresponding
carboxylates may be due to the extra amino moiety present in the former anion. Tryptophanate,
lysinate, and threoninate were tested as well; they dissolve MCC between 1 and 11 wt %. When DMSO
was added to N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium alaninate (1:1 mixture by volume,
which equals a molar fraction of DMSO χDMSO = 0.75) 11 wt % MCC were soluble at 25 ◦C after
10 min, and 22 wt % after 6 h, or after 10 min at 100 ◦C [182,183]. The dissolution of cellulose in
these solvents seems to be more suitable for fiber spinning compared to commonly used IL [22].
Cholinium cation-based QAEs with 28 amino acid and carboxylate anions were used for dissolution
of biomass [184]. The solubility of cellulose in these QAEs was poor (<1 wt % in dicholinium
malinate), but they dissolve lignin readily. They were used, therefore, for delignification of rice
straw, which confirmed similar results reported earlier [185].

Various tetra-(n-alkyl)ammonium cations (N1133, N1333, N1144) were combined with the levulinate
anion (Figure 10). The cellulose solvent obtained dissolved 10 wt % MCC in the neat N1333 levulinate.
Moreover, this cellulose solution exhibited exceptional tolerance towards water. For example, this QAE
could still dissolve cellulose efficiently in the presence of 18 wt % water, an improvement of potential
industrial significance because the energy consuming drying of the substances is not required.
By addition of 20 wt % γ-valerolactone, a co-solvent based on renewable resources, the cellulose
solubility increased to 20 wt % [186].
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Relevant examples of carboxylate-based QAEs as cellulose solvents are summarized in Table 2.



Molecules 2018, 23, 511 16 of 38

Table 2. Examples of the solubility of cellulose in quaternary ammonium carboxylates.

Cellulose Solvent Dissolved Cellulose
[wt %] Dissolution Conditions Cellulose Type (DP) 2 Reference

N1222Fo - 1 155 ◦C MCC (330) [168]
N1222Fo/Formic Acid/H2O (92/2/6 wt %) 10 80 ◦C, 15 min MCC (330) [168]
N1222Fo/Formic Acid/H2O (92/2/6 wt %) 4 80 ◦C, 15 min Borregaard LVU pulp (1370) [169]

N1444Fo - 1 80 ◦C MCC (330) [168]

N222 Me(OEt)2AcO 10 110 ◦C MCC (225) [170]
N222 Me(OEt)3AcO 10 110 ◦C MCC (225) [170]

N1122AcO 2 100 ◦C, 30 min α-cellulose [118]
N11[Et(OEt)]2AcO 18 80 ◦C MCC (240) [171]

N11 Et(OEt) Me(OEt)AcO 17 80 ◦C MCC (240) [171]
N11[Me(OEt)]2AcO 15 80 ◦C MCC (240) [171]
N112 M(OEt)AcO 13 80 ◦C MCC (240) [171]

TBAAcO/DMSO (15/85 by weight) 8 RT, 2 min MCC (250) [85]
TBAAcO/DMSO (15/85 by weight) 1 RT, 13 min Cotton (4080) [85]
TBAAcO/DMSO (33/67 by weight) 15 40 ◦C MCC (330) [83]
TBAAcO/DMSO (22/78 by weight) 10 40 ◦C MCC (330) [83]
TBAAcO/DMSO (11/89 by weight) 6 40 ◦C MCC (330) [83]

TBAAcO/DMSO/18-crown-6 (2/7/1 by weight) 12 40 ◦C Pulp (830) [120]
TBAAcO/DMSO/18-crown-6 (2/7/1 by weight) 20 40 ◦C MCC (200) [120]

TBAPrO/methylimidazole (25/75 by weight) 15.7 RT MCC (229) [180]
N2226AcO 22 90 ◦C MCC (330) [73]

N2226AcO/DMSO (80/20 by weight) 20 80 ◦C MCC (330) [73]
N,N-allylmethylmorpho- liniumAcO 17 80 ◦C, 20 min MCC (789) [181]
N,N-allylmethylmorpho- liniumAcO 28 100 ◦C MCC (789) [181]
N,N-allylmethylmorpho- liniumAcO 11 80 ◦C, 20 min Metsä Serla (2082) [181]

N122 Me(OEt) alaninate 12 100 ◦C, 10 min MCC [182]
N122 Me(OEt) alaninate 6 60 ◦C, 10 min MCC [182]

N122 Me(OEt)AcO 7 60 ◦C MCC [182]
N122 Me(OEt)Cl 10 120 ◦C, 48 h MCC [182]

N122 Me(OEt)/DMSO (25/75 by mol) 11 RT, 10 min MCC [182]
N122 Me(OEt)/DMSO (25/75 by mol) 22 RT, 6 h MCC [182]

di-ChCl malinate <1 90 ◦C MCC [184]
N1333 levulinate 10 90 ◦C, 2 h MCC (200) [186]

N1333 levulinate/γ-valero- lactone (80/20 by weight) 20 90–110 ◦C MCC (200) [186]
N1144 itaconate 10 90–110 ◦C MCC (200) [186]

N1144 AcO 9.5 90–110 ◦C MCC (200) [186]

1 - No data given, 2 DP - average degree of polymerization (in brackets), where available

4.3. Quaternary Ammonium Halides

4.3.1. Quaternary Ammonium Chlorides (QACls)

Until present, only a few QACls, which dissolve cellulose, were used for various derivatization
reactions. Benzyldimethyltetradecylammonium chloride (N11-14-Bz Cl) dissolves up to 5 wt %
MCC, a cellulose concentration that is sufficient for chemical modification of the biopolymer but
not high enough for its shaping [187]. N11-14-Bz Cl was used for the homogeneous etherification
of cellulose to obtain hydroxypropyl cellulose [188]. This compound belongs to the group of
“benzalkonium chlorides” and is commercially available as trihydrate or in solution as disinfectant
or textile softner. Other QACls that dissolve MCC are triethylheptylammonium chloride, N2227Cl
(10 wt %), and triethyloctylammonium chloride, N2228Cl (15 wt %) [189–193]. Several co-solvents
were employed as well in order to decrease the viscosity and avoid high dissolution temperatures,
in particular DMAc and DMSO. For example, up to 10 wt % MCC dissolves at 60 ◦C in 1:1
N2228Cl/DMAc mixtures by weight; the N2228Cl concentration can be decreased by further addition
of DMAc until the mole fraction (χ) was the same as in a conventional LiCl/DMAc mixture
(χN2228Cl =χLiCl) without affecting the ability to dissolve cellulose. The DMAc/N2228Cl solvent was
successfully used as SEC eluent for the determination of cellulose molar mass distribution [61].
Besides DMAc, DMF, DMI, pyridine and, surprisingly, acetone were found to form translucent
cellulose solutions of low viscosity. Because of its volatility, acetone is a specially promising
diluent for cellulose shaping (Figure 11). 13C-NMR spectra of cellulose dissolved in N2228Cl/DMSO
and N2228Cl/acetone revealed that no derivatization occurred on the cellulose backbone [192,193].
In subsequent studies it was found that solutions of N2228Cl in the following MSs dissolve cellulose:
DMSO, DMAc, DMF, 2-butanone, N-methyl-2-pyrrolidone (NMP), 1-methylimidazole, ethyl acetate,
2-methyltetrahydrofuran, tetrahydropyran, 1,3-dimethyl-2-imidazolidinone, and 3-pentanone [194].
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These cellulose solutions exhibited comparably low viscosities, which is beneficial for derivatization
reactions but presumably disadvantageous for fiber spinning (Table 3).Molecules 2018, 22, x  18 of 39 
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Table 3. Zero shear viscosities (η0 ) of cellulose solutions (2.4 wt %), 20 ◦C [193].

2.4 wt % Cellulose Dissolved in η0 [mPa·s]

BuMeImCl 197,000
EtMeImAcO 2747

DMAc/BuMeImCl 1346
DMSO/N2228Cl 237

DMAc/LiCl 147
DMAc/N2228Cl 87

Acetone/N2228Cl 47

Studies on cellulose derivatization were carried out [194,196]. Silylation, tosylation, carbanilation
and especially acetylation reactions were conducted successfully in the binary mixtures of N2228Cl/MS.
The latter one led to cellulose acetates with DSAc ranging from 0.16 to 2.79 depending on the reaction
conditions. Within 2 h at 50 ◦C using acetyl chloride/pyridine an organo- soluble (acetone, DMSO,
CHCl3) cellulose acetate with DSAc = 2.79 was isolated. Under the same reaction conditions but with
LiCl/DMAc or BuMeImCl as solvents the DSAc values were almost identical with 2.83 and 2.81.

A mixture containing tetraethylammonium chloride was used for cellulose dissolution.
The optimum conditions to dissolve up to 8.7 wt % cellulose within 15 min were a mixture of:
NaOH 8 wt %, DMAc 10 wt %, N2222Cl 6 wt %, water 76 wt % and a dissolution temperature of −5 ◦C.
No degradation or derivatization during dissolution or regeneration was observed [197].

4.3.2. Quaternary Ammonium Fluorides (QAFs)

Among QAFs, the cellulose solvent most investigated is the mixture DMSO/TBAF·3H2O,
first described as solvent for cellulose in 2000. This solvent enabled cellulose dissolution with
a degree of polymerization up to 650 within 15 min without pretreatment, e.g., previous drying.
The 13C-NMR spectrum showed that DMSO/TBAF·3H2O belongs to the class of non-derivatizing
solvents, as confirmed by the presence of the signals of unmodified AGU (Figure 12) [173].
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DMSO/TBAF·3H2O was used for homogeneous derivatization of cellulose by transesterification
employing vinyl esters of different carboxylic acids, resulting in cellulose esters with varying
DS. Ciacco et al. employed sisal cellulose for reactions with acetic anhydride, stearic anhydride,
vinyl acetate and vinyl laurate. The DS-values of the esters produced showed that the anhydrides
were less reactive as compared to the vinyl esters. This observation may be attributed to the much
faster hydrolysis of the anhydrides (relative to the vinyl esters) by water introduced by TBAF·3H2O.
This conclusion was corroborated by the observation that the obtained DSAc was 1.29 and 0.3 for
experiments run under identical experimental conditions except for TBAF·3H2O of 6 and 11 wt %,
respectively. Because the use of molecular sieves proved inefficient, and use of NaH led to the
formation of dimsyl ions and side reactions, water was removed by distillation of 30 vol% DMSO [198].
This strategy is akin to water removal from the system cellulose/LiCl-DMAc [199]. The partial
drying of TBAF·xH2O/DMSO increased the DSAc to 1.15. The distillation of 50 vol% of DMSO before
acetylation of cotton linters resulted in an increasing DSAc from 1.0 to 1.8 [200]. As discussed above,
dry TBAF can be generated in situ from the reaction of TBACN with C6F6. Although the solvent
was successfully employed for cellulose acylation and carbanilation, it contains hexacyanobenzene
byproduct that forms radical anions readily [201,202]; cellulose was insoluble in this medium after
28 h [93]. Regarding the molecular structure of the acylating agent, it was observed that the DS-values
of the ester increased with increasing chain length of the acylation agents. As shown from kinetic data
of cellulose acylation by carboxylic acid anhydrides in LiCl/DMAc and IL/MSs, the reason for this
dependence is a compensation of the reaction entropy and enthalpy of activation [88,203].

Cellulose esters were synthesized in TBAF·3H2O/DMSO using the following carboxylic acids:
acetic, stearic, adamantane-1-carboxylic, and 2-furancarboxylic, in the presence of N,N′-carbonyl-
diimidazole (CDI) as acid activation agent, see the reaction scheme in Figure 13 [204].
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Subsequent studies used the same activation approach with CDI in TBAF·3H2O/DMSO to
produce cellulose esters with elaborate structures. The acids employed included (−)-menthyloxyacetic
acid, 3-(2-furyl)-acrylcarboxylic acid, furan-2-carboxylic acid and 4’-carboxybenzo-18-crown-6 as well
as carboxymethyl-β-cyclodextrin [205]. Another activating agent, 1H-benzotriazole, was employed
with the following carboxylic acids: acetic, benzoic, butyric, caprylic, myristic and stearic. Use of this
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activating agent in TBAF·3H2O/DMSO led to cellulose esters, whereby the preferred functionalization
occurred at C-6 of the AGU [206].

Another interesting application of TBAF·3H2O/DMSO is regioselective deacetylation. During
deprotection of silylated cellulose acetate with TBAF·3H2O/THF, cleavage of the acetate groups was
observed. Further investigations employing cellulose acetate revealed regioselective deacetylation
at positions C-2 and C-3 of the AGU [207,208]. The regioselectivity of deacylation was explained by
the mechanism shown in Figure 14, where TBA+ acts as a general-acid catalyst, whereas F− induces
deacetylation via ketene intermediate [209]. Formation of the latter was inferred from a kinetic isotope
effects experiment [210].

Formation of cellulose succinate was investigated in the presence of N2222Cl/DMSO and
TBAF·3H2O/DMSO. The resulting DSSuccinate increased with increasing concentration of the respective
QAE until 11 wt %, DS = 1.88 and 2.09 were obtained, respectively. Increasing the QAE concentration
to 16 wt % increased the DSSuccinate to 2.01 for N2222Cl/DMSO, but resulted in decrease in case of
TBAF·3H2O/DMSO. The results of intrinsic viscosity of a solution of Mulberry wood cellulose and 2D
NOESY experiments of cellobiose in both solvents were explained on basis of formation of hydrogen
bonds between the hydroxyl groups (of AGU or cellobiose) and the relatively acidic α-methylene
hydrogens of N2222

+ or TBA+.
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Thus, the concentration of QAE, and steric hindrance by QAE+ control the accessibility of the
hydroxyl groups of the AGU, affecting the DSSuccinate-value [211]. The production of superabsorbent
hydrogels was carried out using succinic anhydride in LiCl/NMP and TBAF·3H2O/DMSO in the
presence of DMAP as catalyst. Esters with similar DSSuccinate between 0.1–3.0 were obtained in both
solvents, depending on the reaction conditions. Solution gelation was observed during this synthesis;
it was attributed to crosslinking, initiated by DMAP. The products obtained at 60 ◦C showed similar or
even better water absorbency compared to the “conventional” absorbent sodium polyacrylate [212].
Cellulose derivatization by bulky acyl moieties to produce precursors for dendronized cellulose
derivatives was carried out in TBAF·3H2O/DMSO and LiCl/DMAc. Thus, 3,5-bis(benzyloxy)benzoic
acid (activated with CDI), and 3,5-bis(benzyloxy)benzoyl chloride reacted with cellulose. Structure
elucidation of the esters by means of FTIR and NMR indicated substitution at position C2 despite the
bulkiness of the substituents [213].

Besides acylation, cellulose etherification was carried out in TBAF·3H2O/DMSO,
e.g., sisal cellulose and cotton linters was modified using benzyl chloride in the presence of
finely divided solid NaOH or aqueous NaOH solution. The DSBz varied between 0.4 and 2.85;
a large excess of NaOH (NaOH/AGU molar ratio 6/1 to 18/1) was needed to obtain products with
a higher DSBz. The reactions employed without NaOH led to low DS-values, indicating that the
basicity of the F− ion alone is not sufficient for activating the hydroxyl groups of the polymer [214].
The structure of cellulose benzyl ether and hence its solubility in MS (e.g. DMSO, DMAc, DMF)
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depended on the chosen reaction conditions, either the homogeneous reaction in TBAF·3H2O/DMSO,
or the heterogeneous one in aqueous NaOH. 1H-NMR data indicated that benzyl moieties are
regularly distributed along the polymer backbone in the product from the homogeneous reaction,
leading to better solubility, whereas a block-like distribution was found in case of the heterogeneous
reaction [215].

Another etherification of cellulose studied was the synthesis of CMC, which is of great industrial
interest, regarding its application as thickener. Successful modification of cellulose employing sodium
monochloroacetate in the presence of NaOH (powder suspended in DMSO) yielded CMC with
DS-values from 1.82 to 2.09 within 1 h. More detailed investigations of CMC preparation from
mercerized sisal cellulose and cotton linters examined the effects of different reaction conditions [214].
The influence of solid or aqueous NaOH on the resulting substitution patterns was studied. The use
of NaOH powder led to higher reactivity in TBAF·3H2O/DMSO, but samples that are less soluble in
water, due to deviation from the conventional statistical substitution pattern of the carboxymethyl
groups [216].

The synthesis of allyl cellulose in TBAF·3H2O/DMSO is interesting because the produced ether
can be further modified by addition to the double bond. Allyl cellulose with DSAl from 0.5 to 2.98 were
obtained [217]. Additionally, TBAF·3H2O/DMSO was also employed for unconventional cellulose
products. Thus, graft polymerizations on cellulose were performed in TBAF·3H2O/DMSO employing
lactones or N-carboxy-α-amino acid anhydrides [218]. TBAF·3H2O/DMSO was employed for the
synthesis of 6-deoxy-6-fluoro cellulose derivatives. Here the QAF is acting as solvent and reagent for
converting cellulose tosylate with a DSTosylate of 1.22 to 1.74 into deoxy-fluoro cellulose with DSF−
up to 0.41. Compared with other cellulose deoxy-halides, the fluorination could be performed at
room temperature. Variation of the water content of TBAF·xH2O, obtained by distillation of DMSO,
exhibited no correlation between the DSF and the amount of water removed [219].

The applications of QAFs, other than TBAF·3H2O, are less described in literature. However,
another cellulose solvent is tetraallylammonium fluoride monohydrate (TAAF·H2O)/DMSO.
Homogeneous acetylation of different types of celluloses (MCC, cotton, eucalyptus) were performed
in this solvent, resulting in CAs with DSAc from 0.4 up to 2.4, depending on reaction conditions.
An interesting result was observed for prolonged reaction times. Despite the use of an excess acetylation
agent, the resulting DSAc were relatively low, which was attributed to the fluoride ion mediated ester
hydrolysis. The latter conclusion was corroborated by following the change of DSAc of a commercial
CA sample (DSAc = 2.7) as a function of time, at 60 ◦C, in absence of acetic anhydride; DSAc decreased
to 1.7 and 1.1 after 6 and 18 h, respectively. An interesting point that is relevant to all acylation reactions
with reactive carboxylic acid derivatives (anhydrides and acyl chlorides) is the formation of acetyl
fluoride from TAAF·H2O and acetic anhydride, as indicated by FTIR. Therefore, it is possible that
many esters are produced by the reaction of cellulose with two acylating agents, namely carboxylic
acid anhydride (or acyl chloride) and the corresponding carboxylic acid fluoride [109].

One problem with TAAF·H2O is its polymerization tendency. To suppress this side reaction,
Casarano et al. used dibenzyldimethylammonium fluoride/DMSO with much less water content
(Bz2Me2AF·0.1H2O) [110]. This QAE/DMSO solution is efficient in cellulose dissolution and acylation.
Based on molecular dynamic simulations, the superior properties of BzMeAF·0.1H2O, compared to
TBAF·3H2O, were attributed to the more desolvated fluoride anion which leads to stronger interactions
(Cel-OH···F−), hence better cellulose dissolution capacity and higher biopolymer reactivity. The same
solvent mixture was also employed for etherification of cellulose. Therefore allylation, benzylation
and carboxymethylation of different types of cellulose (MCC, cotton) were carried out. The reactions
were performed following the same conditions described for TBAF·3H2O/DMSO. The resulting
DS-values of the etherified celluloses in Bz2Me2AF·0.1H2O/DMSO were comparable to those obtained
in TBAF·3H2O/DMSO [90].
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Table 4 shows selected results of dissolution experiments of cellulose in the discussed QA halides.
For the last 3 entries the amount of dissolved cellulose is given as used for the esterification reactions.
The maximum amount of cellulose soluble in these mixtures was not determined.

Table 4. Summary of the solubility of cellulose in quaternary ammonium halides.

Cellulose Solvent Dissolved Cellulose [wt %] Dissolution Conditions Cellulose Type (DP) 2 Reference

N11-14-Bz Cl 5 155 ◦C MCC (330) [187]
N2226 Cl sw 1 120 ◦C MCC (330) [61]
N2227 Cl 10 120 ◦C MCC (330) [192]
N2228 Cl 15 120 ◦C MCC (330) [192]
N2228 Cl 15 120 ◦C PHK pulps (288, 534) [194]

N2228 Cl/DMSO (1/1 by weight) 10 60 ◦C, 1 h MCC (330) [192]
N2228 Cl/DMSO (1/1 by weight) 7.5 120 ◦C, 1 h PHK pulp (534) [194]
N2228 Cl/DMAc (1/1 by weight) 10 60 ◦C, 1 h MCC (330) [192]
N2228 Cl/DMAc (1/4 by weight) 5 60 ◦C, 1 h MCC (330) [192]

N2228 Cl/acetone 10 60 ◦C, 2 h MCC (330) [193]
N2222Cl/NaOH/acetamide/H2O

(6/8/10/76 by weight) 8.7 −5 ◦C, 15 min Wood fiber (648) [197]

DMSO/TBAF·3H2O (85/15 by
weight) 2.5 RT, 15 min MCC (330), pulp (650),

linters (950) [173]

DMSO/TAAF·H2O (93/7 by
weight) 1.5 RT, 15 min MCC (175) cotton (920) [109]

DMSO/Bz2Me2AF·0.1H2O (93/7
by weight) 1.5 60 ◦C, 15 min MCC (175) cotton (920) [110]

1 sw - swelling, 2 DP - average degree of polymerization (in brackets), where available.

4.4. Other Ammonium Electrolytes and Deep Eutectic Solvents (DES)

Tetraalkylammonium dimethylphosphates have already been patented as solvents for cellulose
and reaction media for the production of cellulose esters [220–222]. Tri-(n-butyl)methylammonium
dimethylphosphate (TBMA DMPh) dissolved 12.5 wt % MCC and allowed the homogeneous,
catalyst-free synthesis of cellulose acetate with a DSAc of 2.5 using only 3 moles of acetic
anhydride/mole AGU in less than 30 min in the neat QAE. DMSO, DMF and NMP were
efficiently used as co-solvents to obtain cellulose acetate and cellulose acetate/propionate
mixed esters. Cellulose can be dissolved in (2-hydroxyethyl)trimethylammonium- (6.5 wt %),
(2-ethoxyethyl)trimethylammonium- (5.9 wt %), tri-(n-pentyl)methylammonium- (2.1 wt %) and
trimethylethylammonium dimethylphosphate (1.0 wt %) [222].

The concept of DES goes back to a publication of Abbott et al. [223]. These ionic fluids are
obtained by mixing hydrogen bond acceptors, e.g. choline chloride (ChCl), with hydrogen bond
donors, e.g., amides such as urea. In principle, they can be viewed as a type of mixed ILs, too,
but since they do not consist exclusively of ions the term DES was introduced to distinguish between
both classes of fluids [224]. In principle, they share the advantages of ILs, such as non-volatility
and structure versatility, but overcome some of their disadvantages, e.g. problematic purification or
limited biocompatibility with enzymes [225]. Recently, comprehensive reviews covering this field were
published [226,227]. Therefore, we only focus on studies regarding cellulose.

Up to 6.5 wt % cotton linters was soluble in a mixture of allyltriethylammonium chloride and
oxalic acid at 110 ◦C after 2 h [228], which is one of the highest values reported for DES. Only 2.5 wt %
was soluble in ChCl/imidazole [229]. ChCl/lactic acid (1/10) dissolved ca. 3 wt % cellulose and
13 wt % lignin. These differences in the capability of dissolving biomass constituents open up
a promising alternative towards new delignified cellulosic material [230]. Generally, DES dissolve
lignin significantly better than cellulose. Since DES possess strong hydrogen bonds, the amount of free
chloride ions is lower than in QAE or ILs, which may be the reason for lower cellulose dissolution
capacity, as shown in Table 5.
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Table 5. Summary of the solubility of cellulose in QAE and DES.

Cellulose Solvent Dissolved Cellulose [wt %] Dissolution Conditions Cellulose Type (DP) 1 Reference

TBMA DMPh 12.5 60–100 ◦C, 1 h MCC (335) [222]
TMEA DMPh 6.5 60–100 ◦C, 1 h MCC (335) [222]
TPMA DMPh 2.1 60–100 ◦C, 1 h MCC (335) [222]

N222AlCl/oxalic acid (1/1 by mol) 6.5 110 ◦C, 2 h Cotton linters (575) [228]

ChCl/oxalic acid (1/1 by mol) 1 110 ◦C, 2 h Cotton linters (575) [228]
ChCl/imidazole (3/7 by mol) 2.5 110 ◦C, 1.5 h Cotton linters (575) [229]

ChCl/urea (1/2 by mol) 1.5 110 ◦C, 2 h Cotton linters (575) [229]
ChCl/lactic acid (1/10 by mol) 3 60 ◦C, 20 min Fibrous cellulose [230]

1 - DP - average degree of polymerization (in brackets), where available.

The acidic treatment of wood cellulose fibers with ChCl/oxalic acid led to the degradation
of the amorphous regions without affecting the crystalline domains. Subsequent disintegration
yielded cellulose nanocrystals with a width/length ratios of 9–17/310–410 nm. Compared to common
procedures for obtaining nanocrystals, this method uses milder conditions with easily obtainable
and biodegradable solvents [231]. Treatment of cellulose board pulp grades with ChCl/urea showed
enhanced nanofibrillation. This behavior is a promising route to treat waste board and paper [232].

There are some examples for the successful derivatization of cellulose in DES. Thus, Abbott et
al. carried out acetylation reactions with monosaccharides and cellulose. ChCl/ZnCl2 was used as
reaction medium, acetic anhydride as reagent and the mixture was stirred for 3 h at 90 ◦C. DSAc

between 0.4 and 1.5 were obtained. The partial solubility of the samples in acetone indicates a block
like distribution of the acetyl substituent along the polymer chain. This result is typical for reactions
conducted under heterogeneous conditions (swollen solid cellulose/acetylating bath). Therefore,
it is assumed that the cellulose used in this experiment was suspended or just partially dissolved
in the DES [233]. Etherification reactions towards cationic functionalized cellulose for potential
treatment of waste water of the textile industry were reported, using chlorocholine chloride/urea
solvent [234]. After 15 h at 90 ◦C in presence of NaOH, ethyltrimethylammonium cellulose with
a substitution of 0.5% of quaternary nitrogen per mole of AGU was isolated, which corresponds
to a DS < 0.1. Other modification reactions of cellulose in DES were studied, leading to cellulose
succinylates and methylcarbamates. The solvents employed were LiCl/urea and ZnCl2/dimethylurea,
respectively [235,236].

5. Salts of Superbases

As indicated in Section 3.2, a new class of cellulose solvents are salts of superbases [142].
The cellulose dissolution capacity of the different salts varies. Several acid-base conjugates were
prepared by combining bases and superbases with acetic and propionic acid [143]. For TMG,
short-chain carboxylates were able to rapidly dissolve 5 wt % MCC in less than 10 min. The formates
and butyrates needed longer to dissolve the same amount of cellulose. Cellulose regenerated from
TMGAcO solution exhibited slightly lower molecular weights than the starting material, which
was attributed to the presence of small amounts of excess acetic acid. The occurrence of polymer
degradation in carboxylate-based ILs is not unusual as the authors showed in comparative dissolution
experiments with the IL EtMeImAcO [142]. A comparison of the dissolution capacities was also
made between the propionates of TMG, DBN and DBU. High molecular weight cellulose (PHK) pulp
was used and the maximum biopolymer loading was compared with EtMeImAcO; both solvents
have comparable dissolution efficiency, 15–16 wt % and 18 wt % for the QAEs and IL, respectively.
A significant advantage of these QAEs is that they are, unlike ILs, distillable under reduced pressure,
i.e., the pure base can be recovered and reused [143].

The salts of super bases were employed as reaction media for cellulose derivatization, e.g.,
acetylation under homogeneous conditions. The derivatization was carried out with acetic anhydride
in combination with different MSs (acetone, acetonitrile, DMSO). DSAc values in the range from
0.90 to 2.89 were obtained depending on the chosen reaction conditions [237]. TMG-based QAEs,
including TMG tetrafluoroborate and TMG lactate, were employed for conversion of MCC to
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5-hydroxymethylfurfural. In this application, DMAc/LiCl was the solvent, whereas the QAE acted
as catalyst [238]. TMG was also employed to obtain cellulose gels. The latter were produced by
combining cellulose at room temperature with TMG in different ratios and were evaluated for possible
applications to capture CO2 [239].

There are also interesting developments in the use of salts of super bases for shaping and
regeneration of cellulose, e.g., for production of cellulose textile fibers or as reinforcing structures in
composite materials [240]. The process suggested, called Ioncell-F, is based on DBN AcO as solvent
for cellulose. Although DBN AcO is solid at room temperature, its low melting point (63 ◦C) and
the low viscosity of the melt makes it a useful medium. The fiber spinning technique is a dry-jet
wet spinning process where the cellulose solution (15–17 wt %) is extruded and drawn in air and
the fibers become highly oriented upon coagulation in cold water, resulting in fibers with high
tenacities. The morphology of the fibers is similar to the Lyocell fibers, with smooth fiber surfaces,
round cross-sections, and homogeneous, dense fibrillar structure (Figure 15) [11]. An advantage of the
process is also that moderate process temperatures of 75–80 ◦C is used, which avoids the otherwise
extensive cellulose degradation.
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Figure 15. Scanning electron microscopy images of viscose (a), Lyocell (b) and Ioncell-F (c). The insets
in the left corners show a 2.8 and 2.5 times magnification of the body of the viscose (a) and Ioncell-F (c);
reprinted with permission from [11], Copyright (2016) by SAGE Publications.

The Ioncell-F process has been covered in a series of publications, and the earlier studies were
conducted with a simple experimental spinning set-up, using a monofilament spinneret with a diameter
of 100 µm [241,242]. It was found that the spin dope had similar rheological properties as the NMMO
dope. An investigation was conducted with focus on the effects of the spinning parameters on the
mechanical properties and orientation of the fibers. The parameters investigated included spinning
stability, extrusion velocity, draw ratio, spinneret aspect ratio, and coagulation bath temperature (for
definition of these terms see the Supplementary Material). It was found that mechanical properties
were independent of extrusion velocity and that the orientation of the fibers was nearly complete
at a draw ratio of 5. Another conclusion was that fibers with high tenacities were formed at 15 ◦C
(coagulation bath), but not at 30 or 45 ◦C. In following studies, the spinning equipment was upgraded
to a multihole spinneret with 36 holes and a capillary diameter of 100 µm [243]. The spinning process
was evaluated using a 13 wt % dissolved PHK pulp. Results of molar mass distribution before
and after cellulose dissolution (at 80 oC) and regeneration showed a slight degradation of the high
molecular weight fraction. This degradation, however, was substantially lower than that reported for
imidazolium-based ILs or NMMO. Additionally, it was found that the draw ratio can be gradually
increased up to 18, which led to fast increase in fiber orientation and crystallinity. Tenacity values
similar to those of commercial Lyocell fibers (40–42 cN/tex) were reached at medium draw ratio of
roughly 5, and further increased draw led to fibers with tenacities above 50 cN/tex. Fibers from this
process were also used for yarn spinning, and compared to commercial viscose fibers, using the same
equipment. DBN AcO based yarns had higher tenacity but lower elongation and the yarn prepared
from the Ioncell-F fibers was also slightly thinner and more uneven than the viscose yarn. Furthermore
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it was shown that enhanced spinnability increased orientation and high-tenacity fibers were achieved
when the cellulose solutions had a large (>20%) fraction of high molecular weight cellulose (DP > 2000)
and a minimum polydispersity index of 3.4 [244].

Using the Ioncell-F process for textile applications was further investigated [11]. Ioncell fibers
were compared with commercial viscose fibers and converted into two-ply yarn using ring spinning
technology. The yarns made using DBN AcO were stronger but more brittle and had higher
irregularities than the viscose yarns. However, the Ioncell yarns showed good behavior during
the knitting and weaving processes and were produced into garment demonstrators, such as a knitted
scarf and a dress. The Ioncell yarn could be dyed in a batch process with reactive dyes that are
commonly used on industrial scale. Detailed studies on reasons to spinning failure, such as a breach in
the coagulation bath, has also been covered [245]. It was found that NMMO·2H2O and DBN AcO were
good spinning solvents, while EtMeImAcO and TMG AcO were poor spinning solvents. The extent of
stretching of the forming filaments was simulated by calculating the diffusion dynamics. Thus a good
solvent for spinning must also be a solvent that solidifies the structure of the fiber during regeneration,
thus permitting increased and retained orientation. Gelatinous dopes that already have a gel network
before regeneration or dopes that weaken upon the addition of water (water progressing towards the
center of the fiber and leading to fiber breach) were instead poor spinning solvents.

Moreover, the Ioncell-F process has been investigated with cellulose from other types of feedstock.
The use of cotton waste to produce virgin fibers of higher quality compared to mechanically recycled
material has been reported [246]. However, it was necessary to use a pretreatment to adjust the DP
of the cellulose. The material was dissolved and regenerated, and fibers with tenacities as high as
58 cN/tex (870 MPa) were obtained. Another approach the use cellulosic waste, e.g., paper and
cardboard, and solubilize all biopolymers in the material (i.e. also hemicelluloses and lignin) in the
DBN AcO solvent to prepare a spin dope [247]. Also in this case, a series of refining steps (mechanical,
chemical, enzymatic) of the raw material and an adjustment of the DP of the cellulose were required to
achieve dissolution. The fibers showed again high tenacities and prototype textiles were produced to
evaluate the fiber quality and the possibility to use lignin as a natural (beige/brown) dye.

A challenge to reach commercial success for the Ioncell-F process, and in general for ILs and
QAEs, is the development of a viable and efficient solvent recovery system. Initial laboratory
scale recycling trials were conducted and the results showed that DBN AcO can be recycled
from aqueous media with an average recovery rate of 95.6 wt % using rotary evaporators [248].
The recycling of the solvent did not affect the chemical composition or DP of the recovered cellulose,
however the color of the regenerated material became gradually darker with each regeneration cycle.
Additionally, DBN AcO itself underwent detectable hydrolysis (6.0–13.6 mol% per cycle) yielding
3-(aminopropyl)-2-pyrrolidonium acetate. With increasing amount of this byproduct solubility of
cellulose decreased and ceased at 30.6–45.6 wt % hydrolysis product. Water evaporation using
a thin film short evaporation path; stability and toxicity tests of DBN AcO, and tests to remove
oligosaccharides from the coagulation bath are being conducted [247].

Switchable ILs are another class of electrolytes worth a short mentioning in the frame of this
review [226]. They are formed by mixing equimolar amounts of an alcohol with a strong organic
base, e.g. amidines such as DBU, with gaseous CO2 at ambient pressure and room temperature.
By combining these three components, an exothermic transformation takes place, converting the
mixture to an ionic fluid by formation of the alkyl carbonate, between CO2 and the alcohol to
subsequently form the amine salt (Figure 16). Addition of N2 or other gases leads to a shift of
the CO2, and the system is surprisingly found to be fully reversible, resulting once more in the starting
materials [249]. Suitable applications for such QAEs are supposedly in biomass processing [250–252]
or for CO2 capture [253]. The switchable IL that is produced from DBU, methanol and CO2 was also
shown to be able to dissolve cellulose. It could be used as reaction media for acylation of cellulose and
yielded DSAc values of up to 2.94 depending on reaction conditions [254].
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6. Conclusions

Solutions of QAEs in MSs are exciting solvents for cellulose because of their structural versatility,
and easy recycling. Cellulose dissolution is favored if the QAE is composed of a small, hard anion
and a voluminous cation. The dissolution proceeds by a cooperative mechanism. The anion interacts
with the hydroxyl groups of the AGU, leading to hydrogen bond disruption; the polymer chain thus
acquires a negative charge. The repulsion between the negatively charged cellulose-anion complex is
enhanced by: (i) steric crowding due to the attached sheath of the corresponding cation of the QAE;
(ii) solvophobic interactions of the latter with the hydrophobic face of the AGU. Thus, the hardness of
the anion and the hydrophobic character of the cation are important for cellulose dissolution.

The most employed QAEs are the halides, in particular TBAF·3H2O, the carboxylates, hydroxides
and dialkyl phosphates. Solutions of cellulose/QAE/MS were successfully employed for derivatization
of cellulose under homogeneous conditions into esters and mixed esters. Cellulose ethers were also
obtained under homogeneous and heterogeneous conditions with difference in the distribution of the
ether group along the biopolymer backbone, leading to different solubility, e.g., in water. Solutions of
QA-hydroxides are suitable for cellulose dissolution, shaping and derivatization if the reagent is not
particularly sensitive to hydrolysis.

The use of QAEs for regeneration and shaping as well as chemical modification of cellulose was
reported to a limited extent in the literature. However, initial results from cellulose dissolved in QAEs,
dominantly TBAAcO and TBAOH, showed high potential and their use in processing of cellulose is
an active field of investigation. QA halides, such as TBAF and N2228Cl, proved to be excellent media
for various acylation reactions. Some unconventional products are reported as well. Dissolution of
cellulose in salts of super bases revealed promising results, and there are currently intensive research
on shaping cellulose from such solvents. The formed fibers (Ioncell-F) showed favorable mechanical
properties. However, the recovery of the solvent from such processes needs to be developed further.
A common protocol for cellulose dissolution is needed to provide more consistency in data reporting,
as already mentioned by Wang et al. [138] and Pinkert et al. [18,255].

The intended application of each cellulose solution, e.g., fiber spinning or chemical modification
is a decisive factor for the choice of the right solvent system. From the sustainability point of view,
the solvent should be stable under processing conditions and easily to recycle in a continuous process.
The importance of other properties such as viscosity of the biopolymer solution and toxicity of QAE
and MS should be taken into consideration.
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Abbreviations and Acronyms

AcO Acetate
AGU Anhydroglucose unit
Al Allyl group
AlMeImCl 1-Allyl-3-methylimidazolium chloride
BuMeImCl 1-Butyl-3-methylimidazolium chloride
Bz Benzyl group
CDI N,N′-Carbonyldiimidazole
Cel Cellulose
ChCl Choline chloride
CMC Carboxymethyl cellulose
DBN 1,5-Diazabicyclo[[4.3.0]non-5-ene
DBU 1,8-Diazabicyclo[[5.4.0]undec-7-ene
DFT Density functional theory
DMAc N,N-Dimethylacetamide
DMF N,N-Dimethylformamide
DMPh Dimethylphosphate
DMSO Dimethyl sulfoxide
DP Average degree of polymerization
DS Average degree of substitution
DSC Differential scanning calorimetry
EtMeImAcO 1-Ethyl-3-methylimidazolium acetate
Fo Formate group
IL Ionic liquid
MCC Microcrystalline cellulose
MD Molecular dynamics simulations
Me(OEt) Methoxyethyl
MS Molecular solvent
NMMO N-Methylmorpholine N-oxide
NMP N-Methyl-2-pyrrolidone

NRRRR
Quaternary ammonium ion, R = 1 (methyl), 2 (ethyl), Al (allyl), Bz (benzyl), Me(OEt)
(2-methoxyethyl), e.g., N222 Me(OEt)2 = bis(2-methoxyethyl)triethyl ammonium

PHK Prehydrolysis kraft
PrO Proprionate group
QACl Quaternary ammonium chloride
QAF Quaternary ammonium fluoride
SA Solvent acidity as determined by solvatochromic probes (also designated as α)
SB Solvent basicity as determined by solvatochromic probes (also designated as β)
SEC Size exclusion chromatography
SEM Scanning electron microscopy
TBA Tetra-(n-butyl)ammonium
TBAAcO Tetra-(n-butyl)ammonium acetate
TBACN Tetra-(n-butyl)ammonium cyanide
TBAF Tetra-(n-butyl)ammonium fluoride
TBAOH Tetra-(n-butyl)ammonium hydroxide
TBPOH Tetra-(n-butyl)phosphonium hydroxide
TMG Tetramethylguanidine, Tetramethylguanidinium
χ Mole fraction
W Mass fraction
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