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Abstract: Buchwald-Hartwig-Migita cross-coupling of 1-thiosugars with α- or β-3-iodo-N-
glycosylquinolin-2-ones has been accomplished under mild and operationally simple reaction
conditions through the use of a Pd-G3 XantPhos palladacycle precatalyst. This new methodology
has been successfully applied to a variety of α- or β-mono-, di-, and poly-thiosugar derivatives
to efficiently synthesize a series of α- or β-N,S-bis-glycosyl quinolin-2-ones, which are difficult to
synthesize by classical methods.

Keywords: thiosugars; Buchwald-Hartwig-Migita coupling; N-glycosylquinolin-2-ones; bis-N,S-
glycosyl quinolin-2-ones

1. Introduction

Heteroaryl-glycosides are of high importance in medicinal chemistry and commonly found
in many compounds of enormous practical importance, ranging from natural compounds to
pharmaceutical agents [1–19] (Figure 1). While these derivatives clearly hold great potential in
medicinal chemistry, relatively little attention has been devoted to the synthesis of heteroaryl-bis-
glycosides bearing two different sugar moieties, such as thiosugars and aminosugars, in the same
heterocycle. One of the most important subfamilies of heteroaryl-N-glycosides is N-glycosyl
quinolin-2-ones, in which a glycosyl unit is attached to a quinolin-2-one core. Quinolin-2-(1H)-ones
are present in many biologically active compounds and pharmaceutical agents [20–27]. Thus, the
attachment of S- and N-glycosyl units to a quinolin-2-one nucleus can cause several changes in their
features, including their chemical, physical, biochemical, and biological properties. Thus, developing a
simple method for the synthesis of bis N,S-glycosyl quinolin-2-ones would be of great interest for the
preparation of large libraries of new potentially active compounds. Recently, our group reported an
efficient protocol for the synthesis of N-glycosyl quinolin-2-ones (Figure 1) via a palladium-catalyzed
intramolecular N-arylation of various substituted (2-iodophenyl)-acrylamidosugars [28,29]. As part
of our continued efforts to functionalize sugars under transition-metal catalysis to access complex
glycosides [30–36], we envisioned whether N-glycosyl quinolin-2-ones of type (1) could be utilized
as a building block in the synthesis of 3-thioglycosyl N1-glycosyl quinolin-2-ones (3) through
C3-halogenation followed by the Pd(0)-catalyzed Buchwald-Hartwig-Migita (B-H-M) coupling reaction
with various thiosugars (Figure 1). This modular strategy is conceptually attractive in terms of
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diversifying the N-glycosyl quinolinone frameworks with the aim of identifying novel scaffolds of
biological interest. Herein, we report our success in the development of such a strategy.
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N-bromosuccinimide in anhydrous dimethylformamide (DMF). Under these conditions, 
3-bromo-N-glucopyranosylquinolin-2-ones 2a–c were isolated in good yields (Scheme 1). To 
compare the reactivity of brominated quinolinones 2a–c with its analogue, in which the bromine 
atom is replaced by the iodine one, derivatives 2d–f were synthesized from 2a–c through a halogen 
exchange by a Cu-catalyzed Finkelstein reaction [37]. Finally, compound β-2g bearing an 
unprotected sugar was also prepared in order to study the influence of a free hydroxyls group on the 
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Figure 1. (A) Heteroaryl glycoside-based bioactive molecules; (B) General structure of the targeted
-N,S-bis-glycosylated quinolinones (3).

2. Results and Discussion

2.1. Synthesis of Starting Materials

To establish the appropriate conditions for the coupling of 3-halo-N-glycosyl quinolin-2-ones
with various thiosugars, we initially started our chemistry by the synthesis of the appropriate
α- or β-3-halo-N-glycosyl quinolin-2-ones 2a–g (Scheme 1). The compounds 2a–c were prepared
by the electrophilic regioselective aromatic bromination of N-glycosyl quinolin-2-one 1a–c
using N-bromosuccinimide in anhydrous dimethylformamide (DMF). Under these conditions,
3-bromo-N-glucopyranosylquinolin-2-ones 2a–c were isolated in good yields (Scheme 1). To compare
the reactivity of brominated quinolinones 2a–c with its analogue, in which the bromine atom is replaced
by the iodine one, derivatives 2d–f were synthesized from 2a–c through a halogen exchange by a
Cu-catalyzed Finkelstein reaction [37]. Finally, compound β-2g bearing an unprotected sugar was also
prepared in order to study the influence of a free hydroxyls group on the outcome of the coupling.
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2.2. Optimization of the Reaction Conditions on the Model Study 

With these starting materials in hand, we turned our attention to explore the feasibility of the 
coupling of the quinolones β-2a and β-2d with tetra-O-acetylated 1-thio-β-D-galactopyranose 1a 
under various reaction conditions (Scheme 2). When β-2a and 1a were mixed under our previously 
reported conditions [38] (G3-XantPhos (5 mol %), Et3N (1.5 equiv.) in tetrahydrofuran (THF) at room 
temperature), only the starting material was recovered unchanged; however, when the reaction 
mixture was heated at 60 °C, product 3a was detected by NMR of the crude reaction mixture and the 
conversion rate was calculated to be around 35% (Table 1, entry 2). The conversion rate has never 
exceeded 50%, even when the amount of the thiogalactose 1a was increased until 2.5 equiv. and the 
reaction temperature was at 100 °C, probably due to the fact that the formation of disulfide dimer 
was faster than the coupling of product 3a. In the next set of experiences, we decided to use the 
iodinated quinolinone β-2d instead of β-2a. Delightfully, the coupling of β-2d with 1a in the 
presence of Pd-G3-XantPhos (5 mol %), with Et3N (1.2 equiv.) as the base in THF at room 
temperature, led to N-β-glycosyl S-β-galactosyl quinolin-2-one 3a (J1,2 = 9.9 Hz) in 70% yield (entry 3, 
Table 1). Decreasing the amount of thiogalactose 1a into 1.5 equiv. led to a lower conversion rate 
(40%, entry 4), indicating that the thiosugar concentration plays a critical role in the outcome of the 
reaction. It should be noted that the palladium catalyst is necessary to achieve this transformation, 
since no reaction occurs when the coupling is conducted in the absence of the Pd-G3-precatalyst. 
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1-thio-β-D-galactopyranose 1a with 3-halo N-glucosylquinolinone β-2a,d. 

Entry Comp. β-2 1a (equiv.) Time (h) Temperature (°C) Conversion rate a Yield (%) b

1 2a 1.5 5 r.t. 0 - 
2 2a 1.5 5 60 36% - 
3 2a 2.5 1 100 42% - 
4 2d 2.5 3 r.t. 100% 70% 
5 2d 1.5 3 r.t. 40% - 

a Conversion rate was determined by 1H-NMR in the crude reaction mixture based on the chemical 
shift (ppm) of the proton signal H4 for haloquinolinone β-2a,b (δ = 8.35) and 3a (δ = 8.27); b Yield of 
isolated 3a. 

Scheme 1. Halogenation of N-(β-glucopyranosyl)quinolin-2-ones.

2.2. Optimization of the Reaction Conditions on the Model Study

With these starting materials in hand, we turned our attention to explore the feasibility of the
coupling of the quinolones β-2a and β-2d with tetra-O-acetylated 1-thio-β-D-galactopyranose 1a
under various reaction conditions (Scheme 2). When β-2a and 1a were mixed under our previously
reported conditions [38] (G3-XantPhos (5 mol %), Et3N (1.5 equiv.) in tetrahydrofuran (THF) at
room temperature), only the starting material was recovered unchanged; however, when the reaction
mixture was heated at 60 ◦C, product 3a was detected by NMR of the crude reaction mixture and the
conversion rate was calculated to be around 35% (Table 1, entry 2). The conversion rate has never
exceeded 50%, even when the amount of the thiogalactose 1a was increased until 2.5 equiv. and the
reaction temperature was at 100 ◦C, probably due to the fact that the formation of disulfide dimer
was faster than the coupling of product 3a. In the next set of experiences, we decided to use the
iodinated quinolinone β-2d instead of β-2a. Delightfully, the coupling of β-2d with 1a in the presence
of Pd-G3-XantPhos (5 mol %), with Et3N (1.2 equiv.) as the base in THF at room temperature, led to
N-β-glycosyl S-β-galactosyl quinolin-2-one 3a (J1,2 = 9.9 Hz) in 70% yield (entry 3, Table 1). Decreasing
the amount of thiogalactose 1a into 1.5 equiv. led to a lower conversion rate (40%, entry 4), indicating
that the thiosugar concentration plays a critical role in the outcome of the reaction. It should be noted
that the palladium catalyst is necessary to achieve this transformation, since no reaction occurs when
the coupling is conducted in the absence of the Pd-G3-precatalyst.
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Scheme 2. Coupling of the quinolones β-2a and β-2d with tetra-O-acetylated 1-thio-β-D-
galactopyranose 1a under various reaction conditions.

Table 1. Survey of reaction conditions for the coupling of tetra-O-acetylated 1-thio-β-D-galactopyranose
1a with 3-halo N-glucosylquinolinone β-2a,d.

Entry Comp. β-2 1a (equiv.) Time (h) Temperature (◦C) Conversion Rate a Yield (%) b

1 2a 1.5 5 r.t. 0 -
2 2a 1.5 5 60 36% -
3 2a 2.5 1 100 42% -
4 2d 2.5 3 r.t. 100% 70%
5 2d 1.5 3 r.t. 40% -

a Conversion rate was determined by 1H-NMR in the crude reaction mixture based on the chemical shift (ppm) of
the proton signal H4 for haloquinolinone β-2a,b (δ = 8.35) and 3a (δ = 8.27); b Yield of isolated 3a.
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2.3. Scope and Limitation of the Cross-Coupling

Motivated by these results, we next explored the scope of the coupling reaction of structurally
diverse mono-, di-, and tri-thiosugar derivatives 1a–f with various α- or β-N-glucosylquinolinones
2d–g (Scheme 3). Gratifyingly, all of the couplings proceeded in good yields as well as with a retention
of the anomeric configuration. The nature of the N-β-glucosylquinolinone partner does not interfere
with the outcome of the reaction, since both O-acetylated β-glucosylquinolinone β-2d and unprotected
β-glucosylquinolinone β-2g were successfully coupled. Regarding the thio-nucleophilic partners, this
coupling reaction tolerates a large variety of thiosugars 1a–f: O-acetylated 1-thio-β-D-galactopyranose
1a, O-acetylated 1-thio-β-D-glycopyranose 1b, O-acetylated N-Ac-1-thio-β-D-glucopyranose 1c, and
O-benzoylated 1-thio-β-D-glucopyranose 1d were coupled with both glucosylquinolinones β-2d and
β-2g to give the β-N,S-bis-glycosyl quinolin-2-ones 3a–f without any loss of reactivity, except for the
O-acetylated β-glucosylquinolinone β-2f due to the steric effects (Figure 2).
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Figure 2. Scope of thiosugars 1a–f for the Pd-catalyzed coupling with N-glucosylquinolinones 2d–g a.
a Conditions: Reactions of 1 (2.5 equiv.) with 2 (1.0 equiv.) were performed in a resealable tube by
using Pd-G3-XantPhos (5 mol %) and Et3N (1.5 equiv.) in 1,4-dioxane (0.1 M) at room temperature for
3 h; b Yield of isolated; c THF:H2O (8:2) was used as a solvent.
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Importantly, this procedure is not limited to only β-glucosyl quinolin-2-ones, but it also worked
successfully with 1-N-glucosylquinolin-2-one α-2e, which had an anomeric α-configuration. In this
case, the corresponding α-N,S-bis-glycosyl quinolin-2-one 3j was obtained with a slightly lower
yield of 35%. Finally, the efficiency of this C–S bond-forming reaction was well-demonstrated
by the coupling of more complex di- and trisaccharide derivatives. Thus, 1-thio-β-D-cellobiose
1e as well as 1-thio-β-D-maltotriose 1f were readily reacted with β-2d and β-2g to give the
corresponding thioglycosides 3g–i in 97%, 57% and 98% yields, respectively. More importantly,
the stereochemistry of the β-1,4′-O-glycosidic bond in the di-saccharides 3g,h and the α-1,4′ in
β-tri-saccharide 3i remained intact. It is worth noting that all our attempts to react an unprotected
thiogalactose with β-2d or β-2g under our optimized conditions failed. Alternatively, in order to
produce completely unprotected β-N,S-bis-glycosyl quinolin-2-ones and show that their purification
and characterization may be achieved easily, the deprotection of representative β-N,S-bis-glycosyl
quinolin-2-one was performed (Scheme 4). Thus, acetyl protecting groups of 3b could be removed
through the Zemplen reaction [39–41] by using a catalytic amount of potassium carbonate as the base
in methanol. Under these conditions, unprotected β-N,S-bis-glycosyl quinolin-2-one 4a was isolated in
a quantitative yield.
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3. Materials and Methods

3.1. General Experimental Methods

The compounds were all identified by the usual physical methods, that is, 1H-NMR, 13C-NMR,
IR, and MS (ESI). 1H- and 13C-NMR spectra were measured in CDCl3 or DMSO-d6, Acetone-d6

or MeOH-d4 with NMR 300 and 400. 1H chemical shifts are reported in ppm from an internal
standard trimethylsilane (TMS). The following abbreviations are used: m (multiplet), s (singlet), bs
(broad singlet), d (doublet), t (triplet), dd (doublet of doublet), td (triplet of doublet), q (quadruplet),
qui (quintuplet), sex (sextuplet). 13C chemical shifts are reported in ppm from the central peak
of deuterochloroform (77.14), acetone d6 (29.84 and 206.26), MeOH (49.00), and DMSO (39.52).
High resolution mass spectra (HR-MS) were recorded on a Micromass spectrometer, using ESI. IR
spectra were measured and are reported in wave numbers (cm−1).

3.2. Typical Procedure A for the Synthesis of β or α 3-iodo N-glucosylquinolinones 2a–c

A 50-mL round tube flash was charged with 1a–c (1 equiv.), freshly crystallized
N-bromosuccinimide (NBS) (2.5 equiv.). Under an argon atmosphere, anhydrous DMF was added.
The mixture was heated to 70 ◦C and stirred until reaction completeness (72 h) ascertained by thin
layer chromatography (TLC). The crude was diluted with EtOAc and extracted with saturated NH4Cl
(50 mL × 3). The organic layer was washed with water, dried by MgSO4, and concentrated under
vacuum. The residue was purified by silica gel column chromatography.

3.3. Typical Procedure B for the Synthesis of β or α 3-iodo N-glucosylquinolinones 2d–g

A reactor tube was charged with CuI (10 mol %), trans-N,N′-dimethylcyclohexane-1,2-diamine
(20 mol %), NaI (2 equiv.), and β- or α-3-bromo N-glucosylquinolinones 2a–c (1 equiv., 0.721 mmol)
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followed by the addition of 1,4-dioxane (12 mL). The reaction under argon atmosphere was then stirred
at 110 ◦C in an oil bath overnight. The mixture was cooled to room temperature. The crude product
was purified by silica gel flash chromatography.

3.4. Typical Procedure C for Pd-Catalyzed Coupling of Thiosugars (1a–f) with β- or α-3-iodo
N-glucosylquinolin-2-ones (2d–g)

A resealable and dry tube (5 mL) was charged with XantPhos Pd-G3 (5.0 mol %), thiosugar 1a–f
(2.5 equiv.), and 3-iodo N-glucosylquinolin-2-ones 2d–g (0.083 mmol, 1.0 equiv.). The tube was capped
with a rubber septum, evacuated, and backfilled with argon. Then, THF (1 mL) or THF/H2O (0.8 mL
THF, 0.2 mL H2O) for unprotected compounds and Et3N (1.2 equiv.) were added. The tube was sealed
and the mixture was stirred at room temperature for 2–3 h. After evaporation of the THF or THF/H2O,
the residue was then purified by flash chromatography over silica gel. This first purification was
followed by HPLC preparative for products 3e, 3g, 3h, 3i and 3j. The column used was XSELECT
4.6 × 150 mm–5 µm.

3.5. Typical Procedure D for the Synthesis of Unprotected 3-iodo Glucosylquinolinone β-2g

A mixture of 3-iodo β-N-glucosylquinolinones (100 mg, 1.0 equiv.) and K2CO3 (12 mg, 0.5 equiv.)
in methanol (3 mL) was placed in a small balloon and the mixture was stirred under argon at room
temperature for 30 min to 1 h. The crude mixture was then filtered through celite, washed with 10 mL
of methanol, and filtered for only 1 min. The filtrate was concentrated under reduced pressure at 25 ◦C
for 1–2 h.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(3-bromo-2-oxoquinolin-1(2H)-yl)tetrahydro-2H-pyran-3,4,5-triyl
triacetate 2a: Following procedure A, A 50-mL round tube flash was charged with 1a N-(2,3,4,6-tetra-O-
acetyl-1-deoxy-α-D-glucopyranosyl)-quinolin-2-one (500 mg, 1 equiv.) and freshly crystallized NBS
(469 mg, 2.5 equiv.). Under an argon atmosphere, 30 mL of anhydrous DMF was added. The mixture
was heated to 70 ◦C and stirred until reaction completeness (72 h), ascertained by TLC. The crude was
diluted with EtOAc and extracted with saturated NH4Cl (50 mL × 3). The organic layer was washed
with water, dried by MgSO4, and concentrated under vacuum. The residue was purified by silica gel
column chromatography (cyclohexane/EtOAc 6/4) to afford the desired product 2a as white powder
(345 mg, 59%); m.p. = 213–215 ◦C. [α]20

D + 103.0 (c, 1.0 in CHCl3). 1H-NMR (300 MHz, CDCl3) δ 8.08 (s,
1H), 7.95 (d, J = 8.8 Hz, 1H), 7.58 (dd, J = 7.3 Hz, 8.6 Hz, 1H), 7.48 (d, J = 7.4 Hz, 1H), 7.29 (t, J = 7.9 Hz,
1H), 6.89 (d, J = 10.0 Hz, 1H), 5.89 (t, J = 9.3 Hz, 1H), 5.46 (t, J = 9.3 Hz, 1H), 5.36 (t, J = 9.8 Hz, 1H), 4.30
(dd, J = 12.4, 4.4 Hz, 1H), 4.23 (dd, J = 12.5, 2.0 Hz, 1H), 4.08–4.00 (m, 1H), 2.09 (s, 6H), 2.00 (s, 3H), 1.81
(s, 3H); 13C-NMR (75 MHz, CDCl3) δ 170.5 (C), 169.9 (C), 169.8 (C), 169.3 (C), 158.8 (C), 142.8 (CH),
137.1 (C), 130.8 (CH), 128.9 (CH), 123.9 (CH), 121.1 (C), 116.9 (CH), 82.4 (CH), 75.3 (CH), 73.8 (CH), 68.0
(CH), 67.9 (CH), 61.8 (CH2), 20.9 (CH3), 20.7 (CH3), 20.7 (CH3), 20.3 (CH3). FT-IR (neat, cm−1) 1757,
1652, 1366, 1229, 1032, 905, 837. HRMS (ESI, m/z) calcd. for C23H24NO10BrNa [M + Na]+: 576.0481
found 576.0485.

(2S,3S,4R,5S,6R)-2-(acetoxymethyl)-6-(3-bromo-2-oxoquinolin-1(2H)-yl)tetrahydro-2H-pyran-3,4,5-triyl
triacetate 2b: Following procedure A, a 30-mL round tube flash was charged with 1b
N-(2,3,4,6-tetra-O-acetyl-1-deoxy-α-D-glucopyranosyl)-quinolin-2-one (200 mg, 1 equiv.) and
freshly crystallized NBS (188 mg, 2.5 equiv.). Under an argon atmosphere, 12 mL of anhydrous
DMF was added. The mixture was heated to 70 ◦C and stirred until reaction completeness (72 h),
ascertained by TLC. The crude was diluted with EtOAc and extracted with saturated NH4Cl
(50 mL × 3). The organic layer was washed with water, dried by MgSO4, and concentrated under
vacuum. The residue was purified by silica gel column chromatography (heptane/EtOAc 6/4) to
afford the desired product 2b as white powder (173 mg, 74%); 1H-NMR (300 MHz, CDCl3) δ 8.11 (s,
1H), 7.76 (d, J = 8.6 Hz, 1H), 7.54 (dd, J = 8.6 Hz, 7.4, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.26 (t, J = 7.4 Hz,
1H), 5.37 (t, J = 6.4 Hz, 1H), 5.24 (t, J = 7.8 Hz, 1H), 4.71–4.62 (m, 1H), 4.39 (dd, J = 12.4, 4.8 Hz, 1H),
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4.16 (dd, J = 12.4, 2.7 Hz, 1H), 2.10 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 1.73 (s, 3H); 13C-NMR (75 MHz,
CDCl3) δ 170.7 (C), 169.9 (C), 169.8 (C), 169.8 (C), 159.5 (C), 142.4 (CH), 139.4 (C), 130.7 (CH), 128.1
(CH), 123.7 (CH), 121.3 (C), 117.1 (C), 116.6 (CH), 80.8 (CH), 73.4 (CH), 72.5 (CH), 70.2 (CH), 68.0 (CH),
61.7 (CH2), 21.0 (CH3), 20.9 (CH3), 20.9 (CH3), 20.4 (CH3).

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(3-bromo-4-(4-methoxyphenyl)-2-oxoquinolin-1(2H)-yl)tetrahydro-2H-
pyran-3,4,5-triyl triacetate 2c: Following procedure A, a 10-mL round tube flash was charged with 1c
(50 mg, 1 equiv.) and freshly crystallized NBS (39 mg, 2.5 equiv.). Under an argon atmosphere, 3 mL of
anhydrous DMF was added. The mixture was heated to 70 ◦C and stirred until reaction completeness
(4 h), ascertained by TLC. The crude was diluted with EtOAc and extracted with saturated NH4Cl
(50 mL × 3). The organic layer was washed with water, dried by MgSO4, and concentrated under
vacuum. The residue was purified by silica gel column chromatography (cyclohexane/EtOAc 5/5)
to afford the desired product 2c as pale yellow solid (34 mg, 60%); m.p.: 105–107 ◦C; Rf = 0.48
(Ethyl/Cyclohexane: 5/5); [α]17

D + 35.55 (c, 1.0 in CHCl3); IR (neat): 2963, 1756, 1650, 1604, 1554, 1511,
1455, 1366, 1260, 1248, 1033,1013,802, 763 cm−1; 1H-NMR (300 MHz, CDCl3) δ 8.00 (d, J = 8.5 Hz, 1H),
7.59–7.53 (m, 1H), 7.22–7.13 (m, 4H), 7.02 (dd, J = 17.8, 9.3 Hz, 3H), 5.97 (t, J = 9.3 Hz, 1H), 5.44 (dt,
J = 30.0, 9.5 Hz, 2H), 4.33–4.24 (m, 2H), 4.17–4.09 (m, 1H), 3.90 (s, 3H), 2.11 (s, 6H), 2.02 (s, 4H), 1.85
(s, 2H); 13C-NMR (75 MHz, CDCl3) δ 170.56, (C) 169.95 (C), 169.77 (C), 169.65 (C), 169.28 (C), 160.00
(C), 158.88 (C), 152.51 (C), 136.55 (C), 130.55 (CH), 130.08 (CH), 129.90 (CH), 129.42 (C), 129.25 (CH),
123.56 (CH), 122.35 (C), 116.76 (CH), 114.23 (2CH), 82.55 (CH), 75.33 (CH), 73.96 (CH), 68.05 (CH),
61.85 (CH2), 55.49 (CH) 20.86 (CH3), 20.75 (CH3), 20.73 (2CH3), 20.37 (CH3); HR-MS (ESI positive,
m/z): found 682.0894 ([M + Na]+), calc. for C30H30NO11NaBr (M + Na): 682.0900.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(3-iodo-2-oxoquinolin-1(2H)-yl)tetrahydro-2H-pyran-3,4,5-triyl
triacetate 2d: Following procedure B, a solution of β-3-bromo N-glycosylquinolinone 2a (0.722 mmol,
400 mg), NaI (1.443 mmol, 217 mg), trans-N,N′-dimethylcyclohexane-1,2-diamine (21 mg, 0,14 mmol),
and CuI (14 mg, 0.072 mmol) was stirred at 110 ◦C overnight. The crude product was purified by silica
gel flash chromatography (Cyclohexane/EtOAc 5/5), and the product 2d was isolated as a pale yellow
solid (362 mg, 83%); m.p.: 222.7–223.8 ◦C; Rf = 0.56 (Cyclohexane/EtOAc: 5/5); [α]17

D + 96.29 (c, 1.0 in
CHCl3); IR (neat): 1746, 1648, 1596, 1365, 1217, 1077, 914, 751 cm−1; 1H-NMR (300 MHz, CDCl3) δ 8.35
(s, 1H), 7.95 (d, J = 8.6 Hz, 1H), 7.58 (t, J = 7.9 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.31–7.24 (m, 1H), 6.89
(d, J = 9.8 Hz, 1H), 5.88 (t, J = 9.3 Hz, 1H), 5.49–5.29 (m, 2H), 4.33–4.19 (m, 2H), 4.07–3.97 (m, 1H), 2.10
(s, 6H), 2.00 (s, 3H), 1.80 (s, 3H); 13C-NMR (75 MHz, CDCl3) δ 170.55, 169.90, 169.76, 169.24, 159.22,
150.33, 137.80, 131.02, 128.61, 123.69, 122.32, 116.94, 92.17, 82.92, 75.30, 73.77, 68.03, 67.94, 61.82, 20.85,
20.74, 20.70, 20.27; HR-MS (ESI positive, m/z): found 624.0339 ([M + Na]+), calc. for C23H24NO10NaI
(M + Na): 624.0343.

(2S,3S,4R,5S,6R)-2-(acetoxymethyl)-6-(3-iodo-2-oxoquinolin-1(2H)-yl)tetrahydro-2H-pyran-3,4,5-triyl
triacetate 2e: Following procedure B, α-3-bromo N-glycosylquinolinone 2b (0.288 mmol, 160 mg), NaI
(0.577 mmol, 87 mg), trans-N,N′-dimethylcyclohexane-1,2-diamine (8.2 mg, 0,057 mmol), and CuI
(5.5 mg, 0.028 mmol) were stirred at 110 ◦C overnight. The crude product was purified by silica gel
flash chromatography (EtOAc/heptan: 5/5), and the product 2e was isolated as a pale yellow solid
(124 mg, 73%): m.p.: 111.4–123.4 ◦C; Rf = 0.26 (EtOAc/heptan: 5/5); [α]16

D + 370 (c, 1.0 in CHCl3); IR
(neat): 1739, 1641, 1596, 1367, 1260, 1205, 1031, 817, 798 cm−1; 1H-NMR (300 MHz, CDCl3) δ 8.37 (s,
1H), 7.77 (d, J = 8.7 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 6.70
(d, J = 6.2 Hz, 1H), 6.01 (t, J = 6.7 Hz, 1H), 5.36 (t, J = 6.3 Hz, 1H), 5.23 (t, J = 7.7 Hz, 1H), 4.70–4.63
(m, 1H), 4.39 (dd, J = 12.4, 4.9 Hz, 1H), 4.17 (dd, J = 12.4, 3.0 Hz, 1H), 2.13–2.04 (m, 9H), 1.73 (s, 3H);
13C-NMR (75 MHz, CDCl3) δ 170.73 (C), 169.93 (C), 169.76 (2C), 160.03 (C), 149.95 (CH), 140.12 (C),
130.86 (CH), 127.84 (CH), 123.48 (CH), 122.48 (C), 116.70(CH), 93.58 (C), 80.99 (CH), 73.35 (CH), 72.45
(CH), 70.17 (CH), 68.06 (CH), 61.67 (CH2), 21.06 (CH3), 20.94 (CH3), 20.89 (CH3), 20.46 (CH3); HR-MS
(ESI positive, m/z): found 624.0344 ([M + Na]+), calc. for C23H24NO10NaI (M + Na): 624.0343.
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(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(3-iodo-4-(4-methoxyphenyl)-2-oxoquinolin-1(2H)-yl)tetrahydro-2H-
pyran-3,4,5-triyl triacetate 2f: Following procedure B, N-glycosylquinolinone β-2c (0.136 mmol, 90 mg),
NaI (0.272 mmol, 41 mg), trans-N,N′-dimethylcyclohexane-1,2-diamine (4 mg, 0,027 mmol), and CuI
(3 mg, 0.0135 mmol) were stirred at 110 ◦C overnight. The crude product was purified by silica gel
flash chromatography (Cyclohexane/EtOAc 6/4), and the product 2f was isolated as a yellow solid
(67 mg, yield 70%); m.p.: 106.6–121.8 ◦C; Rf = 0.48 (Cyclohexane/EtOAc 6/4); [α]16

D + 22.35 (c, 1.0
in CHCl3); IR (neat): 1756, 1652, 1604, 1511, 1367, 1249, 1217, 1113, 1097, 1035, 765 cm−1; 1H-NMR
(300 MHz, Acetone) δ 8.34 (d, J = 8.6 Hz, 1H), 7.70–7.63 (m, 1H), 7.26–7.06 (m, 5H), 7.02 (d, J = 9.9 Hz,
1H), 5.98 (t, J = 10.6 Hz, 1H), 5.59 (t, J = 9.5, 1H), 5.47 (t, J = 9.2 Hz, 1H), 4.37–4,28 (m, 3H), 4.06 (d,
J = 7.1 Hz, 1H), 3.92 (s, 3H), 2.11–2.01 (m, 9H), 1.97 (s, 3H); 13C-NMR (75 MHz, Acetone) δ 170.84,
170.25, 169.48, 167.30, 161.09, 154.96, 137.19, 131.79, 130.85, 130.54, 130.05, 124.11, 117.14, 115.16 (3),
83.93, 76.03, 74.54, 69.00 (2), 62.72, 55.89, 20.84 (2), 20.72, 20.30. HR-MS (ESI positive, m/z): found
730.0739 ([M + Na]+), calc. for C30H30NO11NaI (M + Na): 730.0761.

3-iodo-1-((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)quinolin-2(1H)-one
2g: Following procedure D, a mixture of β-2d (100 mg, 1.0 equiv.) and K2CO3 (12 mg, 0.5 equiv.)
in methanol (3 mL) was stirred under argon at room temperature for 30 min to 1 h. The crude
mixture was then filtered through celite, washed with 10 mL of methanol, and filtered for only 1 min.
The filtrate was concentrated under reduced pressure at 25 ◦C for 1–2 h. The product 2g was isolated
as a pale brown solid (100 mg, yield 99%); m.p.: 155.2–171.8 ◦C; Rf = 0.4 (Ethyl/MeOH: 9/1); [α]18

D + 45
(c, 1.0 in MeOH); IR (neat): 3360, 1629, 1589, 1451, 1314, 1277, 1082, 766, 749 cm−1; 1H-NMR (300 MHz,
MeOD-d4) δ 8.59 (s, 1H), 8.10 (d, J = 8.9 Hz, 1H), 7.58 (t, J = 9.7 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 6.57 (d,
J = 9.8 Hz, 1H), 4.27 (t, J = 9.0 Hz, 1H), 3.94 (d, J = 11.8 Hz, 1H), 3.81 (dd, J = 12.5, 4.6 Hz, 1H), 3.62–3.53
(m, 3H); 3C-NMR (75 MHz, MeOD) δ 161.39, 151.53, 132.47, 131.55, 129.90, 129.46, 124.33, 124.02,
119.17, 86.94, 81.86, 79.54, 71.30, 70.75, 62.62; HR-MS (ESI positive, m/z): found 455.9928 ([M + Na]+),
calc. for C15H16NO6NaI (M + Na): 455.9920.

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((2-oxo-1-((2R,3R,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-
2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3a: Following
procedure C, 3-iodo N-β-glycosylquinolinone β-2d (0.0831 mmol, 50 mg) and β-thiogalactose 1a
(0.2077 mmol, 76 mg) were stirred at room temperature for 3 h. The crude product was purified by
silica gel flash chromatography (Cyclohexane/EtOAc 4/6). The product 3a was isolated as pale yellow
solid (46 mg, yield 70%); m.p.: 222.7–223.8 ◦C; Rf = 0.4 (Cyclohexan/EtOAc: 4/6); [α]17

D + 16.21 (c,
1.0 in CHCl3); IR (neat): 1745, 1648, 1595, 1367, 1208, 1034, 794, 733,702 cm−1; 1H-NMR (300 MHz,
Acetone) δ 8.28 (d, J = 8.7 Hz, 1H), 7.98 (s, 1H), 7.69–7.58 (m, 2H), 7.33 (t, J = 7.5 Hz, 1H), 6.94 (d,
J = 9.7 Hz, 1H), 5.94 (t, J = 9.3 Hz, 1H), 5.60–5.26 (m, 6H), 4.50 (t, J = 6.3 Hz, 1H), 4.41–4.26 (m, 3H), 4.18
(d, J = 6.3 Hz, 2H), 2.19 (s, 3H), 2.10–1.92 (m, 21H); 13C-NMR (75 MHz, Acetone-d6) δ 169.87(C), 169.75
(C), 169.67 (C), 169.25 (C), 169.21 (C), 169.15 (C), 169.04 (C), 168.38 (C), 159.72 (C), 135.91 (C), 135.60
(CH), 129.62 (CH), 128.41 (CH), 127.91 (C), 123.16 (CH), 121.09 (C), 117.49 (CH), 81.87 (CH), 81.25 (CH),
74.84 (CH), 74.51 (CH), 73.38 (CH), 71.56 (CH), 67.88 (CH), 67.81 (CH), 67.74 (CH), 66.74 (CH), 61.96
(CH2), 61.55 (CH2), 19.74 (6CH3), 19.61 (CH3), 19.20 (CH3). HR-MS (ESI positive, m/z): found 860.2037
([M + Na]+), calc. for C37H43NO19NaS (M + Na): 860.2048.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-oxo-1-((2R,3R,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-
2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3b: Following
procedure C, 3-iodo N-β-glycosylquinolinone β-2d (0.0831 mmol, 50 mg) and β-thioglucose 1b (0.2077
mmol, 76 mg) were stirred at room temperature for 3 h. The crude product was purified by silica gel
flash chromatography (diethylether/Pentan: 9/1), and the product 3b was isolated as a pale yellow
solid (62 mg, yield 89%); m.p.: 221.8–223 ◦C; Rf = 0.33 (diethylether/Pentan: 9/1); [α]17

D + 23.07 (c,
1.0 in CHCl3); IR (neat): 1756, 1649, 1595, 1366, 1206, 1032, 914, 798,764 cm−1; 1H-NMR (300 MHz,
Acetone) δ 8.27 (d, J = 8.8 Hz, 1H), 7.92 (s, 1H), 7.70–7.58 (m, 2H), 7.33 (t, J = 7.5 Hz, 1H), 6.94 (d,
J = 9.8 Hz, 1H), 5.94 (t, J = 9.4 Hz, 1H), 5.58 (dd, J = 18.7, 9.2 Hz, 1H), 5.51–5.38 (m, 3H), 5.21–5.09 (m,
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2H), 4.40–4.16 (m, 6H), 2.08–1.96 (m, 24H); 13C-NMR (75 MHz, Acetone) δ 169.75 (C), 169.37 (C), 169.20
(C), 169.14 (2C), 168.97 (C), 168.91 (C), 168.38 (C), 159.68 (C), 135.86 (C), 135.31 (CH), 129.63 (CH),
128.46 (CH), 127.84 (C), 123.16 (CH), 121.08 (C), 117.48 (CH), 81.30 (2CH), 75.47 (CH), 74.85 (CH), 73.42
(2CH), 69.69 (CH), 68.49 (CH), 67.88 (CH), 67.81 (CH), 62.34 (CH2), 61.55 (CH2), 19.73 (3CH3), 19.68
(2CH3), 19.61 (2CH3), 19.20 (CH3); HR-MS (ESI positive, m/z): found 860.2056 ([M + Na]+), calc. for
C37H43NO19NaS (M + Na): 860.2048.

(2R,3R,4S,5R,6S)-2-((benzoyloxy)methyl)-6-((2-oxo-1-((2R,3R,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)
tetrahydro-2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate
3c: Following procedure C, 3-iodo N-β-glycosylquinolinone β-2d (0.0831 mmol, 50 mg) and
O-benzoylated 1-thio-β-d-glucopyranose 1d (0.2077 mmol, 128 mg) were stirred at room temperature
for 3 h. The crude product was purified by silica gel flash chromatography (Cyclohexan/EtOAc: 5/5),
and the product 3c was isolated as a pale yellow solid (52 mg, yield 58%); m.p.: 221–249 ◦C; Rf = 0.4
(Cyclohexan/EtOAc: 5/5); [α]17

D + 86.95 (c, 1.0 in CHCl3); IR (neat): 1728, 1648, 1597, 1452, 1367,
1277,1215, 1111,1086, 1068,801,766,708 cm−1; 1H-NMR (300 MHz, Acetone-d6) δ 8.24 (d, J = 8.4 Hz, 1H),
8.05–7.92 (m, 7H), 7.88–7.83 (m, 2H), 7.63–7.38 (m, 14H), 7.19 (t, J = 7.3 Hz, 1H), 6.88 (d, J = 9.7 Hz,
1H), 6.21 (t, J = 9.3 Hz, 1H), 5.93–5.78 (m, 4H), 5.57–5.38 (m, 2H), 4.89–4.72 (m, 2H), 4.59 (dd, J = 12.3,
6.2 Hz, 1H), 4.39–4.25 (m, 3H), 2.09–2.02 (m, 9H), 1.93 (s, 3H);13C-NMR (75 MHz, Acetone-d6) δ 169.73,
169.40, 169.14, 168.23, 168.84, 165.58, 165.17, 164.97, 164.77, 159.64, 135.85, 135.75, 135.04, 133.59, 133.54,
133.45, 133.18, 129.79, 129.5–128.53 (m), 123.06, 120.95, 117.36, 81.94, 81.30, 75.86, 74.81, 74.20, 73.27,
70.44, 69.59, 67.85, 67.77, 63.41, 61.55, 19.72, 19.58, 19.01; HR-MS (ESI positive, m/z): found 1086.2856
([M + H]+), calc. for C57H52NO19S (M + H): 1086.2854.

(2R,3R,5R,6R)-2-(3-(((2S,3R,4R,5S,6R)-3-acetamido-4,5-diacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-
yl)thio)-2-oxoquinolin-1(2H)-yl)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3d: Following
procedure C, 3-iodo N-β-glycosylquinolinone β-2d (0.083 mmol, 50 mg) and N-acetyl-O-acetylated
1-thio-β-d-glucopyranose 1c (0.2077mmol, 76 mg) were stirred at room temperature for 3 h.
The crude product was purified by silica gel flash chromatography (dichloromethan/EtOAc: 2/8).
The product 3d was isolated as a white solid (62 mg, yield 90%); m.p.: 258.9–261.5 ◦C; Rf = 0.28
(dichloromethan/EtOAc: 2/8); [α]17

D + 20 (c, 1.0 in CHCl3); IR (neat): 1740, 1649, 1596, 1367, 1260,
1213,1076, 796,748 cm−1; 1H-NMR (400 MHz, CDCl3) δ 7.97 (s, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.51 (t,
J = 7.5 Hz, 2H), 7.27–7.21 (m, 1H), 6.86 (d, J = 9.9 Hz, 1H), 6.75 (s, 1H), 5.88 (t, J = 9.4 Hz, 1H), 5.47–5.30
(m, 3H), 5.22–5.17 (m, 1H), 5.06 (t, J = 9.7 Hz, 1H), 4.25–4.03 (m, 6H), 3.81–3.74 (m, 1H), 2.09–1.85
(m, 24H); 13C-NMR (101 MHz, CDCl3) δ 170.77 (2C), 170.62 (C), 170.47 (C), 169.85 (C), 169.56 (C),
169.43 (C), 168.66, (C) 161.38 (C), 143.41 (CH), 136.63(C), 130.77 (CH), 129.30 (CH), 124.77 (C), 123.84
(CH), 120.99 (C), 116.84 (CH), 90.76 (CH), 82.98 (CH), 81.62 (CH), 76.03 (CH), 75.13 (CH), 73.85 (CH),
73.65 (CH), 70.79 (CH), 68.81 (CH), 68.04 (CH), 67.80 (CH), 62.44 (CH2), 61.62 (CH2), 23.51 (CH3),
23.10 (CH3), 21.00 (CH3), 20.77 (CH3), 20.65 (CH3), 20.63 (CH3), 20.59 (CH3), 19.98 (CH3); HR-MS (ESI
positive, m/z): found 859.2211 ([M + Na]+), calc. for C37H44N2O18S (M + Na): 859.2208.

(2R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-oxo-1-((2R,3R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-
2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3e: Following
procedure C, 3-iodo N-β-glycosylquinolinone β-2g (0.115 mmol, 50 mg) and β-thiogalactose 1a
(0.2885 mmol, 106 mg) were stirred at room temperature for 3 h. After purification of the crude
reaction by HPLC preparative (conditions: H2O + 0.1% AF/ACN gradient from 20% to 50% in 20 min),
the product 3e was isolated as a pale yellow solid (52 mg, yield 68%); m.p.: 244–252.8 ◦C; Rf = 0.4
(Cyclohexane/EtOAc: 5/5); [α]17

D − 16 (c, 1.0 in CHCl3); IR (neat): 1750, 1633, 1561, 1367, 1211, 1046,
732 cm−1; 1H-NMR (300 MHz, Acetone-d6) δ 8.10 (d, J = 8.1 Hz, 1H), 7.92 (s, 1H), 7.65 (d, J = 7.6 Hz,
1H), 7.48 (t, J = 7.7 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 6.59 (d, J = 9.7 Hz, 1H), 5.55 (d, J = 2.9 Hz, 1H),
5.47–5.27 (m, 4H), 4.54 (t, J = 6.1 Hz, 1H), 4,33 (t, J=8 Hz,1H), 4.24–4.12 (m, 3H), 3.97–3.56 (m, 7H),
2.08–2.03 (m, 12H);13C-NMR (75 MHz, Acetone-d6) δ 169.95 (C), 169.79 (C), 169.36 (C), 159.99 (C),
135.96 (C), 133.46 (CH), 129.20 (C), 128.81 (CH), 128.02 (CH), 122.70 (CH), 121.35 (C), 118.83 (C), 117.83



Molecules 2018, 23, 519 10 of 14

(CH), 84.04 (CH), 81.38 (CH), 80.44 (CH), 78.57 (CH), 74.45 (CH), 71.65 (CH), 70.16 (CH), 69.28 (CH),
67.67(CH), 66.68(CH), 62.05 (CH2), 61.57 (CH2), 19.80 (2CH3), 19.74 (CH3), 19.63 (CH3); HR-MS (ESI
positive, m/z): found 692.1636 ([M + Na]+), calc. for C29H35NO15NaS (M + Na): 692.1625.

(2R,3R,4S,6S)-2-(acetoxymethyl)-6-((4-(4-methoxyphenyl)-2-oxo-1-((2R,3R,5R,6R)-3,4,5-triacetoxy-6-
(acetoxymethyl)tetrahydro-2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl
triacetate 3f: Following procedure C, 3-iodo-N-β-glycosylquinolinone β-2f (0.071 mmol, 50 mg) and
β-thioglucose 1a (0.1767 mmol, 65 mg) were stirred at room temperature for 3 h. The crude product
was purified by silica gel flash chromatography (EtOAc/Cyclohexane: 5/5), and the product 3f was
isolated as a pale brown solid (31 mg, yield 47%); m.p.: 143.4–150.3 ◦C; Rf = 0.36 (EtOAc/Cyclohexane:
5/5); [α]19

D − 1.42 (c, 1.0 in CHCl3); IR (neat): 1756, 1367, 1277, 1260, 1035, 766, 749 cm−1; 1H-NMR
(400 MHz, Acetone d6) δ 8.31 (d, J = 8.7 Hz, 1H), 7.63 (t, J = 8.4 Hz, 1H), 7.27 (dd, J = 9.1, 1.9 Hz, 1H),
7.19–7.11 (m, 3H), 7.07–7.01 (m, 3H), 6.04 (t, J = 9.5 Hz, 1H), 5.59 (t, J = 9.4 Hz, 1H), 5.49 (t, J = 10.3 Hz,
1H), 5.38–5.32 (m, 2H), 5.16 (t, J = 9.6 Hz, 1H), 5.06 (t, J = 9.8 Hz, 1H), 4.98–4.92 (m, 2H), 4.85 (t,
J = 9.7 Hz, 1H), 4.35–4.30 (m, 2H), 4.17 (dd, J = 12.5, 2.3 Hz, 1H), 3.89 (s, 3H), 2.07 (d, J = 4.5 Hz, 11H),
2.00 (s, 3H), 1.96 (d, J = 8.2 Hz, 10H); 13C-NMR (101 MHz, Acetone) δ 170.88, 170.66, 170.62, 170.24,
170.18, 170.06, 169.99, 169.94, 169.90, 169.69, 169.47, 131.62, 131.57, 131.24, 129.86, 129.63, 123.66, 122.91,
118.33, 114.67, 114.16, 87.75, 82.88, 82.18, 76.70, 75.95, 75.85, 74.49, 74.36, 74.19, 71.92, 70.34, 69.45, 68.98,
68.77, 68.59, 62.97, 62.53, 55.59, 20.79, 20.65, 20.55, 20.50, 20.40; HR-MS (ESI positive, m/z): found
966.2470 ([M + Na]+), calc. for C44H49NO20NaS (M + Na): 966.2466.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R,6S)-4,5-diacetoxy-2-(acetoxymethyl)-6-((2-oxo-1-
((2R,3R,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)
tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3g: Following procedure C, 3-iodo
N-β-glycosylquinolinone β-2d (0.083 mmol, 50 mg) and β-thiocellebiose 1e (0.2077 mmol, 136 mg)
were stirred at room temperature for 3 h. After purification of the crude reaction by HPLC preparative
(conditions: H2O + 0.1% AF/ACN gradient from 40% to 100% in 15 min), the product 3g was isolated
as a pale yellow solid (92 mg, yield 98%): m.p.: 154.3–157.8 ◦C; Rf = 0.53 (dichloromethane/EtOAc:
6/4); [α]19

D − 15 (c, 1.0 in CHCl3); IR (neat): 1755, 1649, 1595, 1397, 1229, 1035,910 cm−1; 1H-NMR
(400 MHz, CDCl3) δ 7.90 (d, J = 8.6 Hz, 1H), 7.63 (s, 1H), 7.52–7.43 (m, 2H), 7.26–7.22 (m, 1H), 6.81
(d, J = 9.9 Hz, 1H), 5.86 (t, J = 9.4 Hz, 1H), 5.41 (t, J = 9.3 Hz, 1H), 5.33 (t, J = 9.8 Hz, 1H), 5.24 (t,
J = 8.7 Hz, 1H), 5.12–5.03 (m, 3H), 4.96 (d, J = 10.0 Hz, 1H), 4.90 (t, J = 8.6 Hz, 1H), 4.64–4.52 (m, 1H),
4.49 (d, J = 7.8 Hz, 1H), 4.42 (d, J = 11.3 Hz, 1H), 4.33 (dd, J = 12.5, 4.5 Hz, 1H), 4.26–4.19 (m, 1H), 4.09
(dd, J = 11.9, 5.9 Hz, 1H), 4.05–3.96 (m, 2H), 3.79–3.71 (m, 2H), 3.68–3.61 (m, 1H), 2.08–2.03 (m, 10H),
2.01–1.93 (m, 23H). 13C-NMR (101 MHz, CDCl3) δ 170.57 (C), 170.49 (C), 170.33 (C), 170.27 (C), 169.86
(C), 169.81 (C), 169.73 (C), 169.48 (C), 169.40 (C), 169.14 (C), 169.08 (C), 160.26 (C), 137.79 (CH), 136.19
(C), 130.16 (CH), 128.73 (CH), 126.93 (C), 123.62 (CH), 121.04 (C), 116.84 (CH), 100.93 (CH), 82.07 (CH),
81.52 (CH), 76.94 (CH), 76.69 (CH), 75.21 (CH), 73.79 (CH), 73.62 (CH), 73.01 (CH), 72.15 (CH),71.76
(CH), 70.32 (CH), 67.95 (2CH), 67.84 (CH), 62.52 (CH2), 61.75 (CH2), 61.61 (CH2), 20.83 (CH3), 20.78
(CH3), 20.75 (CH3), 20.73 (CH3), 20.69 (CH3), 20.62 (4CH3), 20.23 (CH3), 1.10 (CH3); HR-MS (ESI
positive, m/z): found 1148.2888 ([M + Na]+), calc. for C49H59NO27NaS (M + Na): 1148.2893.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R,6S)-4,5-diacetoxy-2-(acetoxymethyl)-6-((2-oxo-1-
((2R,3R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)
tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3h: Following procedure C, 3-iodo
N-β-glycosylquinolinone β-2g (0.115 mmol, 50 mg) and β-thiocellobiose 1e (0.2885 mmol, 189 mg)
were stirred at room temperature for 3 h. After purification of the crude reaction by HPLC preparative
(conditions: H2O + 0.1% AF/ACN gradient from 20% to 50% in 15 min), the product 3h was isolated
as a white solid (63 mg, yield 57%); m.p.: 249.2–251.9 ◦C; Rf = 0.52 (EtOAc/MeOH: 9/1); [α]17

D + 7.14
(c, 1.0 in CHCl3); IR (neat): 1740, 1629, 1590, 1366, 1212, 1033, 907, 751 cm−1; 1H-NMR (300 MHz,
Acetone-d6) δ 8.09 (d, J = 8.0 Hz, 1H), 7.82 (s, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 7.90 Hz, 1H),
7.28 (t, J = 7.3 Hz, 1H), 6.58 (d, J = 9.7 Hz, 1H), 5.43–5.23 (m, 4H), 5.14–5,03 (m, 2H), 4.94–4.84 (m,
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2H), 4.60–4.30 (m, 6H), 4.25–4.14 (m, 3H), 3.96–3.56 (m, 8H), 2.05–1.92 (m, 16H); 13C-NMR (75 MHz,
Acetone-d6) δ 169.97 (C), 169.83 (C), 169.41 (C), 169.31 (C), 169.23 (C), 169.03 (C), 168.82 (C), 159.87 (C),
135.88 (C), 132.79 (CH), 130.77 (C), 128.77 (CH), 128.00 (CH), 122.63 (CH), 121.34 (C), 117.80 (CH),
100.53 (CH), 84.05 (CH), 80.55 (CH), 80.46 (CH), 78.56 (CH), 76.73 (CH), 76.45 (CH), 73.33 (CH), 72.78
(CH), 71.57 (CH), 71.53(CH), 70.25 (CH), 69.80 (CH), 69.35 (CH), 68.03 (CH), 62.69 (CH2), 61.67 (CH2),
61.57 (CH2), 19.93 (CH3), 19.84 (CH3), 19.76 (CH3), 19.71 (CH3), 19.69 (CH3), 19.61 (CH3), 19.52 (CH3);
HR-MS (ESI positive, m/z): found 980.2461 ([M + Na]+), calc. for C41H51NO23NaS (M + Na): 980.2470.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((2R,3S,4S,5R,6R)-4,5-diacetoxy-2-(acetoxymethyl)-6-(((2R,3S,4S,5R,
6S)-4,5-diacetoxy-2-(acetoxymethyl)-6-((2-oxo-1-((2R,3R,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-
2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3-yl)oxy)
tetrahydro-2H-pyran-3,4,5-triyl triacetate 3i: Following procedure C, 3-iodo N-β-glycosylquinolinone
β-2d (0.083 mmol, 50 mg) and β-thiomalthotriose 1f (0.2077mmol, 196 mg) were stirred at room
temperature for 3 h. After purification of the crude reaction by HPLC preparative (conditions:
H2O + 0.1% AF/MeOH gradient from 50% to 100% in 15 min), the product 3i was isolated as a white
solid (116.25 mg, yield 98%); m.p.: 110.8–134.3 ◦C; Rf = 0.19 (Cyclohexane/EtOAc: 4/6); [α]17

D + 40 (c,
1.0 in CHCl3); IR (neat): 1756, 1649, 1367, 1260, 1208, 1011, 794, 708, 702 cm−1; 1H-NMR (300 MHz,
CDCl3) δ 7.93 (d, J = 8.6 Hz, 1H), 7.73 (s, 1H), 7.54 (t, J = 9.1 Hz, 2H), 7.31 (d, J = 7.4 Hz, 1H), 6.85 (d,
J = 9.9 Hz, 1H), 5.91 (t, J = 9.5 Hz, 1H), 5.45–5.27 (m, 8H), 5.12–4.94 (m, 4H), 4.86 (dd, J = 10.5, 4.0 Hz,
1H), 4.75 (dd, J = 10.3, 4.0 Hz, 1H), 4.49–4.18 (m, 8H), 3.99–3.89 (m, 4H), 2.12–1.96 (m, 42H); 13C-NMR
(75 MHz, CDCl3) δ 170.68, (C) 170.59 (C), 170.52 (C), 170.39 (C), 170.18 (C), 170.12 (C), 170.00 (C),
169.86 (C), 169.75 (C), 169.69 (C), 169.61 (C), 169.51 (C), 169.39 (C), 168.97 (C), 144.13 (C), 136.14 (C),
130.09 (CH), 126.52 (C), 123.61 (CH), 120.99 (C), 116.67 (CH), 95.90 (CH), 95.75 (CH), 81.76 (CH), 81.43
(CH), 76.15 (CH), 75.98 (CH), 75.76 (CH), 75.13 (CH), 74.17 (CH), 73.72 (CH), 72.67 (CH), 71.71 (CH),
70.81 (CH), 70.36 (CH), 70.06 (CH), 69.38 (CH), 69.02 (CH), 68.59 (CH), 67.89 (CH), 68.19 (CH), 67.78
(CH), 67.56 (CH), 63.50 (CH2), 62.46 (CH2), 61.66 (CH2), 61.42 (CH2), 20.84 (2CH3), 20.81 (CH3), 20.77
(CH3), 20.56 (9CH3), 20.17 (CH3); HR-MS (ESI positive, m/z): found 1436.3730 ([M + Na]+), calc. for
C61H75NO35NaS (M + Na): 1436.3738.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-oxo-1-(((2R,3S,4R,5S,6S)-3,4,5-triacetoxy-6-(acetoxymethyl)
tetrahydro-2H-pyran-2-yl)-1,2-dihydroquinolin-3-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3j:
Following procedure C, 3-iodo N-α-glycosylquinolinone α-2e (0.083 mmol, 50 mg) and β-thioglucose
1a (0.2077 mmol, 76 mg) were stirred at room temperature for 3 h. After purification of the crude
reaction by HPLC preparative (conditions: H2O + 0.1% AF/ACN gradient from 40 to 100% in 15 min),
the product 3j was isolated as a pale yellow solid (26 mg, yield 35%); m.p.: 224–225 ◦C; Rf = 0.35
(EtOAc/heptan: 7/3); [α]19

D + 4.44 (c, 1.0 in CHCl3); IR (neat): 1755, 1641, 1367, 1259, 1031, 913, 799,
748 cm−1; 1H-NMR (400 MHz, Acetone-d6) δ 7.87–7.77 (m, 2H), 7.54 (d, J = 7.8 Hz, 1H), 7.44 (t,
J = 8.07 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 5.9 Hz, 1H), 5.84 (t, J = 6.12 Hz,1H), 5.33–5.22
(m, 3H), 5.08 (t, J = 7.3 Hz, 1H), 5.01 (dd, J = 18.4, 9.4 Hz, 2H), 4.57–4.52 (m, 1H), 4.34 (dd, J = 12.5,
5.8 Hz, 1H), 4.18–4.05 (m, 4H), 1.97 (s, 2H), 1.93–1.88 (m, 13H), 1.86–1.82 (m, 9H); 13C-NMR (101 MHz,
Acetone-d6) δ 170.71 (C), 170.70 (C), 170.29 (C), 170.19 (C), 170.03 (C), 170.01 (C), 169.96 (C), 169.92 (C),
161.31 (C), 138.86 (C), 136.24 (CH), 130.31 (CH), 129.88 (C), 128.96 (CH), 124.01 (CH), 122.29 (C), 117.77
(CH),82.25 (CH), 80.36 (CH), 76.37 (CH), 74.67 (CH), 74.37 (CH), 70.52 (CH), 70.41, 69.38, 68.58, 63.26
(CH2), 62.23 (CH2), 20.83 (CH3), 20.79 (CH3), 20.70 (CH3), 20.64 (CH3), 20.62 (CH3), 20.60 (CH3), 20.53
(CH3), 20.30 (CH3); HR-MS (ESI positive, m/z): found 860.2042 ([M + Na]+), calc. for C37H43NO19NaS
(M + Na): 860.2048.

1-((2R,3R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-3-(((2S,3R,4S,5S,6R)-3,4,5-
trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)thio)quinolin-2(1H)-one 4a: Following procedure
D, a mixture of 3b (20 mg, 1.0 equiv.) and K2CO3 (2 mg, 0.5 equiv.) in methanol (2 mL) was stirred
under argon at room temperature for 1 h. The crude mixture was then filtered through celite, washed
with 10 mL of methanol, and filtered again. The filtrate was concentrated under reduced pressure at
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25. The product 4a was isolated as a white solid (12 mg, yield 98%); m.p.: 187–197.8 ◦C; Rf = 0.52
(EtOAc/MeOH: 9/1); [α]19

D − 63.15 (c, 1.0 in CHCl3); IR (neat): 1277, 1281, 798, 766, 749 cm−1;
1H-NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 8.6 Hz, 1H), 7.87 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.45 (t,
J = 8.0 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 6.31 (d, J = 9.7 Hz, 1H), 4.75 (d, J = 9.6 Hz, 1H), 4.04 (t, J = 9 Hz;
2H), 3.74 (d, J = 10.6 Hz, 3H), 3.24–3.13 (m, 15H); 13C-NMR (101 MHz, DMSO-d6) δ 160.08 (C), 135.24
(C), 133.12 (CH), 130.37 (C), 128.51 (CH), 128.23 (CH), 122.82 (CH), 121.52 (C), 117.63 (CH), 84.15 (CH),
84.02 (CH), 81.38 (CH), 80.89 (CH), 78.52 (CH), 78.18 (CH), 72.78 (CH), 70.22 (CH), 69.82 (CH), 68.91
(CH), 61.20 (CH2), 61.08 (CH2); HR-MS (ESI positive, m/z): found 524.1205 ([M + Na]+), calc. for
C21H27NO11NaS (M + Na): 524.1203.

4. Conclusions

In summary, we have successfully developed an efficient method to synthesize various bis
β-N,S-glycosyl quinolin-2-ones via the palladium-catalyzed coupling of α- or β-mono-, di-, and
poly-thiosugar derivatives with α- or β-3-iodo-N-glycosylquinolin-2-ones. Efforts are now in progress
to synthesize a large library of analogues through this strategy to study their biological activity.
We expect this simple and general methodology to be of broad utility for the synthesis and development
of new medicinal agents.

Supplementary Materials: The supplementary materials are available online. Spectra for all synthesized
compounds are available online.
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