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Abstract: Ethylene glycol (EG)-based lubricant was prepared with dissolved organosolv lignin from
birch wood (BL) and softwood (SL) biomass. The effects of different lignin types on the rheological,
thermal, and tribological properties of the lignin/EG lubricants were comprehensively investigated
by various characterization techniques. Dissolving organosolv lignin in EG results in outstanding
lubricating properties. Specifically, the wear volume of the disc by EG-44BL is only 8.9% of that
lubricated by pure EG. The enhanced anti-wear property of the EG/lignin system could be attributed
to the formation of a robust lubrication film and the strong adhesion of the lubricant on the contacting
metal surface due to the presence of a dense hydrogen bonding (H-bonding) network. The lubricating
performance of EG-BL outperforms EG-SL, which could be attributed to the denser H-bonding sites
in BL and its broader molecular weight distribution. The disc wear loss of EG-44BL is only 45.7% of
that lubricated by EG-44SL. Overall, H-bonding is the major contributor to the different tribological
properties of BL and SL in EG-based lubricants.
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1. Introduction

Lignin, a cross-linked polymer with phenylpropanoic monomers, is the second most abundant
biopolymer in nature [1]. It holds a great potential to be converted to high value-added phenolic
platform chemicals taking advantage of its abundant phenolic structure [2]. Currently, 70 million tons
of lignin are produced annually worldwide, yet only 5% is effectively converted to valuable chemicals,
while the remaining 95% is primarily burnt to recover energy in the pulp and paper industry [3,4].
Effective depolymerization of lignin is a great challenge that needs to be overcome in order to utilize
lignin as a high value-added renewable resource available in massive quantities [5].

In addition, the structure and chemical composition of lignin vary in different plant species, or
while using different extraction processes and subsequent treatments, thus increasing the complexity of
lignin processing and decreasing its applicability in industrial processes [6,7]. In general, the following
methods have been used to extract lignin from lignocellulosic feedstock: an enzymatic process, the
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Klason method, the Kraft process, the organosolv process, and through ionic liquid (IL) selective
pretreatments [8–10]. The Kraft lignin process uses sodium sulfide in an alkaline aqueous solution as
a reaction medium to cleave the ester bonds between hemicellulose and lignin macromolecules [7].
The Klason method uses strong mineral acids (such as sulfuric acid) to remove the carbohydrate portion
from lignocellulosic biomass, leaving lignin as an insoluble residue with a high lignin yield [11,12].
These two methods produce a large amount of wastewater during the isolation process and cause
irreversible reactions that severely change the structure of the isolated lignin. In contrast, the organosolv
process uses organic solvents to extract lignin from a biomass feedstock under mild conditions, which
has a light impact on the environment [13].

According to the literature to date, lignin could be isolated from a wide range of plant biomass
resources including but not limited to wood, grass, and bamboo [14–16]. The structures and
physicochemical properties of lignin are related to plant taxonomy. For example, softwood lignin
contains more coniferyl alcohol monolignol, whereas hardwood lignin features a mixture of coniferyl
alcohol and sinapyl alcohol monolignol, and grass lignin presents a mixture of all three aromatic units
(p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol), as shown in Figure 1 [17]. Bai et al. [18]
investigated the effect of different biomass species on the catalytic pyrolysis of lignin and found that
herbaceous biomass lignin has the highest potential for pyrolytic conversion due to its highly branched
polymer structure enriched in tricin, ferulate, and coumarate groups.
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Lubricants have been essential to human activity, with their purpose gradually shifting from
“mobility” in ancient eras to “durability” and “energy efficiency” in modern times [19]. Considering the
working principles of lubricants, the majority of lubricants rely on two factors: one is the adhesion of
lubricants on a friction surface, and the other is the mechanical strength of a lubrication film [20,21].
Enhanced surface adhesion could be achieved by introducing hydrogen bonding (H-bonding),
polar groups, and negative charges into the lubricant additive [22,23]. For example, the abundant
carboxylic acid groups in a gelatin molecular structure are able to form a strong bond with hydrophilic
surfaces [24]. An H-bonding network of phosphoric acid and water molecules adsorbed on sapphire
and ruby surfaces could lead to an ultra-low friction coefficient [25]. Lubricants consisting of alcohols
show a friction-reducing effect because an alcohol undergoes H-bonding with the oxide-rich metal
surface [26]. Strengthening the interactions between the lubricant base and an additive through
internal H-bonding seems to be another effective approach to improve the overall lubrication
performance [27,28]. For example, the dispersion of reduced graphene oxide (rGO) in poly(ethylene
glycol) 200 was improved via the H-bonding between the hydroxyl groups of rGO and the oxygen
atoms of PEG200 molecules, thereby reducing the friction coefficient [29–31].

Recently, lignin was demonstrated as an effective lubricant additive in ionic liquids [20], base
oil [27,32], and cutting fluids (metalworking fluids) [33] to reduce the friction coefficient and wear loss
of metal/metal contacts due to the presence of effective H-bonding between lignin and the lubricant
base. The H-bonding strength between lignin and the lubricant base could be modulated by the
versatile molecular structures of lignin extracted from different plant species. However, to the best
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of our knowledge, the effect of lignin type on its efficiency as a lubricant additive has never been
studied. In this work, ethylene glycol (EG) is selected as a base oil. Organosolv lignins isolated from
birch (hardwood, BL) and spruce (softwood, SL) are used as additives to promote the lubricating
efficiency of EG. The thermal, rheological, and tribological properties of the prepared EG-BL and
EG-SL lubricants are systematically studied. The H-bonding between different lignin and EG and the
effect of lignin molecular weight distribution on the lubricating performance of these new lubricants
are investigated.

2. Results and Discussion

The average molecular weight of lignin is an important performance index when lignin is used as
a lubricant additive. Table 1 shows the average molecular weight and polydispersity index (PDI) of
organosolv lignin extracted from birch and spruce wood. SL has a larger Mw and Mn than that of BL.
In addition, the PDI of BL is larger than that of SL, which indicates that BL has a broader molecular
weight distribution.

Table 1. Average molecular weight of lignin extracted from birch (BL) and spruce biomass (SL).
Reprinted with permission from [17]. Copyright (2016) American Chemical Society.

BL SL

Mw (Da) 1855 2226
Mn (Da) 587 846

PDI 3.2 2.6

Lignin mainly consists of three different cinnamyl alcohol monomers, i.e., p-coumaryl alcohol,
coniferyl alcohol, and sinapyl alcohol [8,34]. The proportions of each monomer differ depending on
the basis of lignin plant sources. SL in this work mainly consists of coniferyl alcohol units, whereas BL
consists of both coniferyl and sinapyl alcohols units [17]. Concerning the molecular structure, there is
one additional methoxy group in the sinapyl alcohol monomer as compared to the coniferyl alcohol
monomer, which suggests that BL has more active sites to form H-bonding than SL.

The IR spectra in Figure 2a–c were used to characterize the lignin-EG interactions after
microwave processing. EG in Figure 2a shows major absorption bands at 3200–3500, 2935/2877,
and 1083/1032 cm−1, representing the O–H, C–H, and C–O stretching bands [35]. This shift in the
OH wavenumber is an indicator of the change in intermolecular interactions [36,37]. It can be seen
from Figure 2(a1–c1) that the O–H peak of the EG/lignin lubricant shifts to a higher wavenumber
as compared with pure EG, which implies a weakened H-bonding after the addition of lignin.
Lignin molecules are rich in proton donating groups (−OH) and proton accepting groups (−O−
group), as seen in Figure 1. These groups will definitely interfere and break down the well-patterned
H-bonding network in pure EG, thus decreasing the H-bonding density in the EG/lignin system [27].
The O–H peaks in EG-29BL and EG-29SL appeared at the same peak position, indicating that IR could
not differentiate the interaction mode between different types of lignin and EG.

The thermal stabilities of EG-based lubricants were further characterized. Figure 2d presents
the derivative thermogravimetric (DTG) curves of EG-based lubricants. The addition of lignin in EG
shifts the main degradation peak to a lower temperature. As observed in the IR results, the addition of
lignin decreases the H-bonding density in the EG/lignin system, and this leads to a lower thermal
degradation temperature. In addition, the thermal decomposition temperature of EG-BL is higher than
that of EG-SL, indicating a stronger BL-EG interaction than that of SL-EG.

Since viscosity is closely related to the tribological properties of lubricants, it was measured
and is summarized in Figure 3. Generally, the viscosity increases after dissolving lignin in EG and
continuously increases with the increasing mass fraction of lignin. It is observed that the viscosity of
EG-BL is larger than that of EG-SL at a lower lignin loading of less than 38%; this trend reverses at
44 and 50%. Such a difference in viscosity is determined by the thickening effect of lignin itself and
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the H-bonding interaction of EG/lignin. Enhanced H-bonding in the system is helpful to increase the
viscosity. When the lignin loading is lower than 38%, the viscosity of EG-BL is higher than that of
EG-SL, which could be attributed to a stronger H-bonding between BL and EG. The thickening effect
of the polymer itself is more obvious with the increasing polymer concentration [38,39]. At 44% and
50%, the thickening effect becomes the dominating factor governing the viscosity. The viscosity of
EG-BL is lower than that of EG-SL at 44% or 50% due to the higher molecular weight of SL.

Molecules 2018, 23, x  4 of 10 

 

of the polymer itself is more obvious with the increasing polymer concentration [38,39]. At 44% and 
50%, the thickening effect becomes the dominating factor governing the viscosity. The viscosity of 
EG-BL is lower than that of EG-SL at 44% or 50% due to the higher molecular weight of SL.  

 
Figure 2. IR spectra of (a) ethylene glycol (EG); (b) EG-29BL; and (c) EG-29SL. Derivative 
thermogravimetric (DTG) curves of EG and EG/lignin under N2 atmosphere (d). (a1–c1) represent 
the enlarged IR spectra within the range of 3100–3500 cm−1; (d1) represents the enlarged DTG curve 
within the range of 100–250 °C. 

 
Figure 3. Viscosity of EG-based lubricants. 

Figure 4 shows the friction coefficient evolution with the presence of EG and EG/lignin 
lubricants under a pressure of 2.5 GPa. A relatively higher friction coefficient is observed by using 
pure EG as a lubricant. The addition of lignin to EG definitely helps to reduce the friction coefficient. 
However, it seems that the friction coefficient becomes unstable, as evidenced by the fluctuation 
during the friction process, even when the lignin loading goes up to 29 wt%. When increasing the 
lignin loading to 38 wt%, the friction coefficient can be successfully stabilized at 0.068 and 0.048, as 
shown in Figure 4g,h. A further lignin loading increase to 50 wt% leads to an increase of the friction 
coefficient. Taking the average friction coefficient of three friction tests as a measure, the friction 
coefficient can be reduced by 6.6–66.4% with the addition of 17–50 wt% SL or BL compared to pure 
EG (0.143). It is important to select a lubricant of appropriate viscosity to achieve optimum 
lubrication [40]. At a low viscosity range, the addition of lignin increases the viscosity and thus 
improves the lubrication. The enhanced viscosity could increase the thickness of lubricating films, 
effectively prevent direct metal/metal contact, and thus reduce the friction coefficient [41]. The 
further enhanced viscosity with a larger lignin faction would lead to high internal friction force and 
accumulate a large amount of friction heat, leading to a disturbed friction coefficient [21]. The 
lowest friction coefficient at 38% lignin loading could be attributed to the balance between the 
friction heat and viscosity. The average friction coefficient relationship between EG-SL and EG-BL 
varies at different lignin loadings. The average friction coefficient of EG-SL is larger than that of 
EG-BL at the majority of lignin loadings except 38%. At a low viscosity range, the larger viscosity of 
EG-17/29BL effectively prevents the metal/metal contact and leads to a lower friction coefficient as 
compared with EG-17/29SL. Meanwhile, at a high viscosity range, the enhanced viscosities of 

Figure 2. IR spectra of (a) ethylene glycol (EG); (b) EG-29BL; and (c) EG-29SL. Derivative
thermogravimetric (DTG) curves of EG and EG/lignin under N2 atmosphere (d). (a1–c1) represent
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Figure 4 shows the friction coefficient evolution with the presence of EG and EG/lignin lubricants
under a pressure of 2.5 GPa. A relatively higher friction coefficient is observed by using pure EG as
a lubricant. The addition of lignin to EG definitely helps to reduce the friction coefficient. However,
it seems that the friction coefficient becomes unstable, as evidenced by the fluctuation during the
friction process, even when the lignin loading goes up to 29 wt%. When increasing the lignin loading to
38 wt%, the friction coefficient can be successfully stabilized at 0.068 and 0.048, as shown in Figure 4g,h.
A further lignin loading increase to 50 wt% leads to an increase of the friction coefficient. Taking the
average friction coefficient of three friction tests as a measure, the friction coefficient can be reduced
by 6.6–66.4% with the addition of 17–50 wt% SL or BL compared to pure EG (0.143). It is important to
select a lubricant of appropriate viscosity to achieve optimum lubrication [40]. At a low viscosity range,
the addition of lignin increases the viscosity and thus improves the lubrication. The enhanced viscosity
could increase the thickness of lubricating films, effectively prevent direct metal/metal contact, and thus
reduce the friction coefficient [41]. The further enhanced viscosity with a larger lignin faction would
lead to high internal friction force and accumulate a large amount of friction heat, leading to a disturbed
friction coefficient [21]. The lowest friction coefficient at 38% lignin loading could be attributed to the
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balance between the friction heat and viscosity. The average friction coefficient relationship between
EG-SL and EG-BL varies at different lignin loadings. The average friction coefficient of EG-SL is larger
than that of EG-BL at the majority of lignin loadings except 38%. At a low viscosity range, the larger
viscosity of EG-17/29BL effectively prevents the metal/metal contact and leads to a lower friction
coefficient as compared with EG-17/29SL. Meanwhile, at a high viscosity range, the enhanced viscosities
of EG-38BL, EG-44SL, and EG-50SL could induce a higher internal friction force and thus lead to an
increased friction coefficient as compared with EG-38SL and EG-44/50BL, respectively.
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1 h, temperature: 25 ◦C. (a): EG; (b): EG-17BL; (c): EG-17SL; (d): EG-29BL; (e): EG-29SL; (f): EG-38BL;
(g): EG-38SL; (h): EG-44BL; (i): EG-44SL; (j): EG-50BL, (k): EG-50SL. The value in the figure is the
average friction coefficient of three friction tests.

Figure 5 shows the wear volume loss of the discs and wear diameter of the ball lubricated by
various EG-based lubricants. The disc wear volume loss lubricated by EG/lignin is apparently lower
than that lubricated by pure EG, which indicates the positive contribution of organosolv lignin in
promoting the anti-wear properties of the lubricant. The disc wear volume loss decreases continuously
with increasing the lignin loading, reaches the minimum value at 44 wt%, and goes up afterwards.
Specifically, the wear volume of the disc by EG-44BL and EG-44SL is only 8.9% and 19.5% of pure EG.
Moreover, the disc wear loss of EG-BL is lower than that of EG-SL at each lignin loading. For example,
the disc wear loss of EG-44BL is only 45.7% of that lubricated by EG-44SL.
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The ball wear diameter is another important indicator of anti-wear properties. With a reduced
disc wear volume achieved by adding 17 and 29 wt% lignin in EG, an enlarged ball wear diameter
was surprisingly observed, see Figure 5b. The anti-wear properties are synergistically affected by the
adhesion of lubricants on the friction surface and the mechanical strength of the lubrication film [42,43].
At low lignin loadings (17% and 29%), protecting films cannot be formed, which leads to an increased
ball wear diameter. EG-38 SL/BL has a lower ball wear diameter than that of pure EG. The ball
wear diameter continuously decreases in EG-44SL/BL and goes up afterwards. The ball diameter
of EG-44BL and EG-44SL is only 53.1% and 58.3% of pure EG. It is similar to the disc wear volume,
in that the ball wear diameter lubricated by EG-BL is lower than that of EG-SL. With an increase of
lignin loading, the lubricating film can be strengthened to reduce the wear rate of metal/metal contact.
With further increasing the lignin loading to 50 wt%, the large viscosity makes the lubricant gradually
lose its good lubrication properties and thus increases the wear rate [41,44]. The optimal loading for
the lowest wear volume was found at 44%.

Figure 6 shows the three-dimensional (3D) surface profiles of the wear tracks on disc and ball
after a friction test using different lubricants. The disc wear track with pure EG is obviously deeper
and larger than that lubricated by EG/lignin lubricants. From the first to sixth columns at the same
row in Figure 6, the smallest wear volume and ball diameter were obtained at 44% lignin loading.
Comparing the 3D images from first/second or third/fourth rows of Figure 6, the EG-BL lubricants
show relatively smaller and shallower wear tracks than the EG-SL lubricants, which further confirms
the superior anti-wear properties of EG-BL. The better anti-wear properties of EG-BL over EG-SL
are most likely attributed to the denser H-bonding sites in BL and its broader molecular weight
distribution. Concerning the molecular structure, BL has more functional group sites to form stronger
H-bonding with EG, increasing the strength of the lubrication film. The broader molecular weight
distribution of BL would promote lignin adhesion on the metal surface, where the higher molecular
weight lignin constructs a strong network to provide the mechanical strength of lubricating films,
while lower molecular weight lignin fills in the free space on unoccupied surface to provide surface
lubrication [45,46]. Therefore, BL with a broader molecular weight distribution shows a better adhesion
on metal surfaces and exhibits excellent anti-wear properties.
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Figure 6. Three-dimensional (3D) disc and ball wear pictures while lubricating by lignin/EG lubricants.
Load: 2.5 GPa, testing duration: 1 h, temperature: 25 ◦C. Disc wear images: (a): EG; (b): EG-17BL;
(c): EG-29BL; (d): EG-38BL; (e): EG-44BL; (f): EG-50BL; (g): EG-17SL; (h): EG-29SL; (i): EG-38SL;
(j): EG-44SL; (k): EG-50SL. Ball wear images: (a′): EG; (b′): EG-17BL; (c′): EG-29BL; (d′): EG-38BL;
(e′): EG-44BL; (f′): EG-50BL; (g′): EG-17SL; (h′): EG-29SL; (i′): EG-38SL; (j′): EG-44SL; (k′): EG-50SL.
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3. Experimental Section

3.1. Materials

Ethylene glycol (anhydrous, 99.8%) was purchased from Sigma Aldrich (Saint Louis, MO, USA).
Spruce and birch lignins were prepared by the organosolv pretreatment method from Norway spruce
(Picea abies) and silver birch (Betula pendula) chips. The detailed preparation method is described in our
previous publication [17]. All chemicals and materials were used as received without further treatment.

3.2. Preparation of Lubricants

Spruce organosolv lignin of different weight fractions (17, 29, 38, 44, and 50 wt%) was added to
EG at room temperature and then heated at 140 ◦C in a 150W microwave processor (Discover SP, CEM,
Matthews, NC, USA) with magnetic stirring for 10 min. After the microwave processing, homogeneous
solutions were formed and denoted as EG-17SL, EG-29SL, EG-38SL EG-44SL, and EG-50SL. The same
procedure was applied to dissolve birch organosolv lignin in EG and the prepared mixtures were
named EG-17BL, EG-29BL, EG-38BL EG-44BL, and EG-50BL, respectively.

3.3. Characterization

The thermal stability of pure EG and their mixtures with spruce or birch lignin was determined
by thermogravimetric analysis (TGA, TA instrument Q500) in N2 atmosphere from 20 to 600 ◦C with a
heating rate of 10 ◦C/min. Fourier transform infrared-attenuated total reflection (FT-IR-ATR) spectra
were recorded with a Thermo Scientific Nicolet 380 series spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA). The lubricant viscosity was reported within a shear rate range of 1~100 s−1 using
a Bohlin CVO 100 rheometer (Malvern Instruments, Malvern, UK) at 25 ◦C. A cone-on-plate geometry
was used with a 1◦ cone angle and 20-mm cone diameter. The lower plate had a diameter of 60 mm.

An Optimol SRV-III oscillating friction and wear tester was used to evaluate the tribological
properties of the prepared lubricants based on ASTM D 6425 protocol. During the test, the upper steel
ball (52,100 bearing steel, diameter: 10 mm, surface roughness (Ra): 20 nm) slides under reciprocating
motion against a stationary steel disc (100CR6 ESU-hardened, Ø 24 mm × 7.9 mm, surface roughness
(Ra): 120 nm). The disc was supplied by Optimol Instruments Prüftechnik GmbH, Germany. The ball
was provided by SKF, Göteborg, Sweden. Before each test, the device and sample were cleaned with
acetone and ethanol, followed by a uniform application of 0.5 mL lubricant on the steel disc using
a glass rod. All tests were conducted under a load of 150 N (2.5 GPa Maximum Hertzian pressure)
at 25 ◦C, a sliding frequency of 50 Hz, and an amplitude of 1.0 mm. The friction coefficient curves
were recorded automatically with a data acquisition system linked to the SRV-III tester. After the tests,
the wear volumes of the lower discs and wear diameters of the higher balls were determined using
an optical profiling system (Zygo 7300). Three duplicate friction and wear tests were carried out to
minimize the experimental error.

4. Conclusions

Organosolv lignin dissolution was dissolved in EG up to 50 wt%. The addition of organosolv
lignin in EG results in outstanding lubricating properties. The enhanced anti-wear property of the
EG/lignin system could be attributed to its excellent adhesion ability on the metal surface and superior
lubrication film strength. Specifically, the wear volume of the disc lubricated by EG-44BL is only 8.9%
of that lubricated by pure EG. The viscosity difference between EG-BL and EG-SL at different lignin
loadings depends on the balance between the thickening effect of lignin itself and the H-bonding
between lignin and EG. The lubrication property of EG-BL exceeds that of EG-SL, which could be
attributed to the denser H-bonding sites in the molecular structure of BL as well as its broader molecular
weight distribution. This work offers a new avenue of utilizing bio-products from different sources in
advanced tribological lubrication systems.
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