

Supplementary Materials

Investigation of an ¹⁸F-labelled Imidazopyridotriazine for Molecular Imaging of Cyclic Nucleotide Phosphodiesterase 2A

Susann Schröder ^{1,*}, Barbara Wenzel ¹, Winnie Deuther-Conrad ¹, Rodrigo Teodoro ¹, Mathias Kranz ¹, Mathias Scheunemann ¹, Ute Egerland ², Norbert Höfgen ², Detlef Briel ³, Jörg Steinbach ¹ and Peter Brust ¹

¹ Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, Leipzig 04318, Germany; E-Mails: <u>b.wenzel@hzdr.de</u>; <u>w.deuther-conrad@hzdr.de</u>; <u>r.teodoro@hzdr.de</u>; <u>m.kranz@hzdr.de</u>; <u>m.scheunemann@hzdr.de</u>; j.steinbach@hzdr.de; p.brust@hzdr.de

- ² BioCrea GmbH, Meissner Str. 191, Radebeul 01445, Germany;
 E-Mails: <u>ute.egerland@outlook.de</u>; <u>norbert.hoefgen@dynabind.com</u>
- ³ Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Faculty of Medicine, Leipzig University, Brüderstraße 34, Leipzig 04109, Germany;
 E-Mail: briel@uni-leipzig.de
- * Author to whom correspondence should be addressed; E-Mail: <u>s.schroeder@hzdr.de</u>; Tel.: +49-341-234-179-4631.

Table of Contents

General Information; NMR data of compounds TA1 (incl. HR-MS) and TA1a	S3
Images of NMR spectra	
Figure S1. ¹ H-NMR spectrum of TA1 (300 MHz, DMSO-d ₆)	S4
Figure S2. ¹³ C-NMR spectrum of TA1 (75 MHz, DMSO- <i>d</i> ₆)	S4
Figure S3. ¹⁹ F-NMR spectrum of TA1 (282 MHz, DMSO-d ₆)	S 4
Figure S4. COSY-NMR spectrum of TA1 (DMSO- <i>d</i> ₆)	S5
Figure S5. HSQC-NMR spectrum of TA1 (DMSO-d6)	S5
Figure S6. HMBC-NMR spectrum of TA1 (DMSO- <i>d</i> ₆)	S 6
Figure S7. ¹ H-NMR spectrum of TA1a (300 MHz, DMSO-d ₆)	S 7
Figure S8. ¹ H-NMR spectrum of TA1b (400 MHz, CDCl ₃)	S 8
Figure S9. ¹³ C-APT-NMR spectrum of TA1b (75 MHz, CDCl ₃)	S 8
Figure S10. ¹⁹ F-NMR spectrum of TA1b (377 MHz, CDCl ₃)	S8
Figure S11. ¹ H-NMR spectrum of TA5 (400 MHz, DMSO- <i>d</i> ₆)	S9
Figure S12. ¹³ C-APT-NMR spectrum of TA5 (75 MHz, DMSO- <i>d</i> ₆)	S 9
Figure S13. ¹⁹ F-NMR spectrum of TA5 (282 MHz, DMSO- <i>d</i> ₆)	S9
Figure S14. COSY-NMR spectrum of TA5 (DMSO- <i>d</i> ₆)	S10
Figure S15. HSQC-NMR spectrum of TA5 (DMSO- <i>d</i> ₆)	S10
Figure S16. HMBC-NMR spectrum of TA5 (DMSO-d6)	S11
Figure S17. ¹ H-NMR spectrum of TA5a (400 MHz, DMSO-d ₆)	S12
Figure S18. ¹³ C-APT-NMR spectrum of TA5a (75 MHz, DMSO-d ₆)	S12
Figure S19. ¹⁹ F-NMR spectrum of TA5a (282 MHz, DMSO-d ₆)	S12
Figure S20. COSY-NMR spectrum of TA5a (DMSO- <i>d</i> ₆)	S13
Figure S21. HSQC-NMR spectrum of TA5a (DMSO-d6)	S13
Figure S22. HMBC-NMR spectrum of TA5a (DMSO-d ₆)	S14

General Information

NMR spectra (¹H, ¹³C, ¹⁹F) were recorded on Mercury 300/Mercury 400 (Varian, Palo Alto, CA, USA) or Fourier 300/Avance DRX 400 Bruker (Billerica, MA, USA) instruments. The hydrogenated residue of deuteriated solvents and/or tetramethylsilane (TMS) were used as internal standards for ¹H-NMR (CDCl₃, δ_H = 7.26; DMSO-*d*₆, δ_H = 2.50) and ¹³C-NMR (CDCl₃, δ_C = 77.2; DMSO-*d*₆, δ_C = 39.5). The chemical shifts (δ) are reported in ppm (s, singlet; d, doublet; t, triplet; q, quartet; p, pentett (quintet); h, hexett (sextet); m, multiplet) and the related coupling constants (*J*) are reported in Hz. 1D and 2D NMR spectra were processed using MestReNova software (version 12.0.0-20080, rel. 2017-09-26 002, © MestreLab Res. S.L.). High resolution mass spectra (ESI +/–) were recorded on an Impact IITM instrument (Bruker Daltonics).

Compounds TA1 and TA1a

The syntheses of the lead compound **TA1** and the regioselective 5'-O-debutylation of **TA1** in the presence of boron tribromide to obtain the 1-phenol **TA1a** are shown in the scheme below as reported in our previous paper [1].

Reagents and conditions: (a) 3 eq TEA, DMAP (10 mol%), CHCl₃, 0 °C to RT, overnight; (b) Pd(C)/H₂, EtOH, RT, overnight; (c) 1.5 eq NaNO₂, H₂O/CH₃COOH, \leq 5 °C, 30 min; (d) 1.5 eq N-bromosuccinimide (NBS), CH₂Cl₂, \leq 5 °C to RT, overnight; (e) 1 eq 5-butoxy-2-fluorophenyl boronic acid, [(Ph₃)P]₄Pd(0) (5 mol%), 3 eq K₂CO₃, 1,4-dioxane/H₂O, 90 °C, 5 h; (f) 3.05 eq BBr₃ (1 M in CH₂Cl₂), CH₂Cl₂, \leq 5 °C, 2 h.

9-(5-Butoxy-2-fluorophenyl)-2-methoxy-7-methylimidazo[5,1-c]pyrido[2,3-e][1,2,4]triazine (TA1)

NMR data of compound **TA1**: ¹H-NMR (300 MHz, DMSO-*d*₆): $\delta_{H} = 0.90$ (t, J = 7.4, 3H, O(CH₂)₃C<u>H</u>₃); 1.32–1.50 (m, 2H, O(CH₂)₂C<u>H</u>₃); 1.61–1.74 (m, 2H, OCH₂C<u>H</u>₂CH₃CH₃); 2.79 (s, 3H, 7C-C<u>H</u>₃); 3.46 (s, 3H, 2-OC<u>H</u>₃); 3.98 (t, J = 6.4, 2H, OC<u>H</u>₂(CH₂)₂CH₃); 7.10 (d, J = 8.8, 1H_{Ar}, 3-H); 7.11 (ddd, overlap, J = 9.1, 4.3, 3.1, 1H_{Ar}, 4'-H); 7.22 (dd, J = 5.7, 3.1, 1H_{Ar}, 6'-H); 7.29 (t-like, J = 9.2, 1H_{Ar}, 3'-H); 8.64 (d, J = 8.8, 1H_{Ar}, 4-H). ¹³C-NMR (75 MHz, DMSO-*d*₆): $\delta_{C} = 12.3$ (s, 1C_{prim}, 7-C-<u>C</u>H₃); 13.6 (s, 1C_{prim}, O(CH₂)₃<u>C</u>H₃); 18.7 (s, 1C_{sec}, O(CH₂)₂<u>C</u>H₂CH₃); 30.7 (s, 1C_{sec}, OCH₂<u>C</u>H₂CH₂CH₂CH₃), 54.2 (s, 1C_{prim}, 2-O<u>C</u>H₃); 68.0 (s, 1C_{sec}, O<u>C</u>H₂(CH₂)₂CH₃); 112.1 (s, 1C_{ArH}, 3-C); 115.9 (d, J = 23.2, 1C_{ArH}, 3'-C); 117.3 (d, J = 8.3, 1C_{ArH}, 4'-C); 117.5 (d, J = 1.9, 1C_{ArH}, 6'-C); 120.2 (d, J = 16.3, 1C_{Ar}, 1'-C); 127.8 (s, 1C_{Ar}, 4a-C); 131.6 (s, 1C_{Ar}, 9-C); 133.5 (s, 1C_{Ar}, 10a-C); 136.6 (s, 1C_{Ar}, 7-C); 138.9 (s, 1C_{Ar}, 6a-C); 140.6 (s, 1C_{ArH}, 4-C); 154.2 (d, J = 1.9, 1C_{Ar}, 5'-C); 154.8 (d, overlap, J = 240.2, 1C_{Ar}, 2'-C); 163.8 (s, 1C_{Ar}, 2-C). ¹⁹F-NMR (282 MHz, DMSO-*d*₆) $\delta_{F} = -121.98$ (ddd, J = 9.5, 5.6, 4.3, 1F_{Ar}, 2'-F). HR-MS (ESI) *m*/*z*: calcd. for [C₂₀H₂₁FN₅O₂]⁺ = 382.1673; found = 382.1671 [M+H]⁺.

4-Fluoro-3-(2-methoxy-7-methylimidazo[5,1-c]pyrido[2,3-e][1,2,4]triazin-9-yl)phenol (TA1a)

NMR data of compound **TA1a**: ¹H-NMR (300 MHz, DMSO-*d*₆) $\delta_{H} = 2.82$ (s, 3H, 7'-C<u>H</u>₃); 3.52 (s, 3H, 2'-OC<u>H</u>₃); 6.93 (ddd, *J* = 8.9, 4.1, 3.1, 1H_{Ar}, 6-H); 7.05 (dd, *J* = 5.8, 3.0, 1H_{Ar}, 2-H); 7.16 (d, *J* = 8.8, 1H_{Ar}, 3'-H); 7.20 (t, *J* = 9.2, 1H_{Ar}, 5-H); 8.70 (d, *J* = 8.8, 1H_{Ar}, 4'-H); 9.66 (s, 1H, 1-O<u>H</u>).

Reference

[1] Schröder, S.; Wenzel, B.; Deuther-Conrad, W.; Teodoro, R.; Egerland, U.; Kranz, M.; Scheunemann, M.; Höfgen, N.; Steinbach, J.; Brust, P. Synthesis, ¹⁸F-radiolabelling and biological characterization of novel fluoroalkylated triazine derivatives for *in vivo* imaging of phosphodiesterase 2A in brain via positron emission tomography. *Molecules* **2015**, *20*, 9591-9615.

Figure S3. ¹⁹F-NMR spectrum of TA1 in DMSO-d₆.

Figure S6. HMBC-NMR spectrum (top) and expansion (bottom) of TA1 in DMSO-d6 (incl. assignment).

Molecules 2018, 23, 556

--- 9.65

1.00

10.0 9.5

10.5

1.01 -

8.0

7.5

9.0 8.5

TA_1a (1H NMR)

HC

12.0 11.5 11.0

TA 1a

NHN;

7.0

5.0

4.5

6.9

4.0

2.97-**∓**

2.0

1.5

1.0 ۱ 0.5

3.0 2.5

3.07-£

1 3.5

7.1

5.5

7.2

6.5 6.0 f1 (ppm)

2.10 1.03년 1.07년

7.0

600 -500 400

300 -200

-100 -0

-100

Molecules 2018, 23, 556

Figure S13. ¹⁹F-NMR spectrum of TA5 in DMSO-d₆.

H₃C b4

TA5 [cont.]

Figure S15. HSQC-NMR spectrum of TA5 in DMSO-d6 (incl. assignment).

Figure S16. HMBC-NMR spectrum (top) and expansion (bottom) of TA5 in DMSO-d6 (incl. assignment).

Figure S21. HSQC-NMR spectrum of TA5a in DMSO-d6 (incl. assignment).

Figure S22. HMBC-NMR spectrum (top) and expansion (bottom) of TA5a in DMSO-d6 (incl. assignment).