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Abstract: More understanding of the risk-benefit effect of the glycoalkaloid tomatine is required to
be able to estimate the role it might play in our diet. In this work, we focused on effects towards
intestinal epithelial cells based on a Caco-2 model in order to analyze the influence on the cell
monolayer integrity and on the expression levels of genes involved in cholesterol/sterol biosynthesis
(LDLR), lipid metabolism (NR2F2), glucose and amino acid uptake (SGLT1, PAT1), cell cycle (PCNA,
CDKN1A), apoptosis (CASP-3, BMF, KLF6), tight junctions (CLDN4, OCLN2) and cytokine-mediated
signaling (IL-8, IL1β, TSLP, TNF-α). Furthermore, since the bioactivity of the compound might vary
in the presence of a food matrix and following digestion, the influence of both pure tomatine and
in vitro digested tomatine with and without tomato fruit matrix was studied. The obtained results
suggested that concentrations <20 µg/mL of tomatine, either undigested or in vitro digested, do not
compromise the viability of Caco-2 cells and stimulate cytokine expression. This effect of tomatine,
in vitro digested tomatine or in vitro digested tomatine with tomato matrix differs slightly, probably
due to variations of bioactivity or bioavailability of the tomatine. The results lead to the hypothesis
that tomatine acts as hormetic compound that can induce beneficial or risk toxic effects whether used
in low or high dose.
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1. Introduction

Glycoalkaloids are steroidal secondary metabolites present in plants of the Solanum genus,
including potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum L.), which play a role
in plant resistance against fungi, bacteria, virus and insects [1,2].

Tomatine is a mixture of two glycoalkaloids called α-tomatine and dehydrotomatine generally
found in all parts of tomato plants (Figure 1). During the maturation stages, tomatine is degraded in
the fruit: immature green tomatoes can contain up to 500 mg/kg of fresh weight (FW), while red ripe
tomatoes up to 5 mg/kg (FW) [3]. More in detail, glycoalkaloid content, whose biosynthesis involves
gene cluster coding for glycosyltransferases, dehydrogenase and reductase, is inversely proportional
to the weight and the diameter of the fruit, and it is not correlated to the position of the fruit on the
stem. Moreover, the amount of glycoalkaloid in the fruits, as well as in the other parts of tomato
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plants, is highly variable and depends on cultivar and growing conditions [4]. In several tomato
biotypes, which show high content in glycoalkaloids, a mutation in GAME1 gene involved in the
degradation of tomatine during the maturation stages was identified [5,6]. Tomato fruits with low
glycoalkaloids content were commonly preferred as tomatine has been considered potentially toxic
based on the known toxicity of potato glycoalkaloids in humans [7]. However, little is known about
the real safety profile, the bioactivity, the availability, the metabolism, and the pharmacokinetics of
tomatine. α-Tomatine and dehydrotomatine have both been shown to be competitive inhibitors of
bovine and human acetylcholinesterase, although less effective than potato glycoalkaloids [8]. Besides
it is shown that these compounds have the ability to bind cholesterol and other 3β-hydroxysterols
such as cholestanol and lanosterol, consequently damaging cell membrane integrity [9]. In contrast
to potato glycoalkaloids, no toxic effects in humans have been reported for tomato alkaloids in the
literature [10,11]. Recent research on tomatine has dealt with the pharmacological and nutritional
roles that the tomato glycoalkaloids may play in the human diet. Interestingly, tomatine seems to
exhibit anticancer, chemopreventive, anticholesterol, anti-inflammatory, antipyretic, antifungal and
antibacterial properties [8,9]. In vitro studies showed that tomatine interferes with active transport by
increasing the permeability of human mucosal epithelial cell membranes and altering the membrane
potential [11,12]. Furthermore, some studies, using aggregate formulations containing α-tomatine,
supported the immune-potentiating properties of tomato glycoalkaloid [13–15]. Moreover, tomatine
has been shown to inhibit growth in a number of human cancer cell lines [16–18]. An in vivo study
of the glycoalkaloids effects on rats showed that dietary α-tomatine binds cholesterol, resulting in
an [19,20]. In addition, tomatidine inhibits COX-2 expression involved in inflammatory processes [21].

The main aim of this work was to gain insight on the effects of tomatine on the human intestinal
enterocyte cell line Caco-2 in order to develop a model to analyze the dose-dependent risk-benefit
effects towards these cells that are of major importance to maintain homeostasis in the intestine.
Furthermore, since the bioavailability and bioactivity of the compounds might vary in the presence of
food matrix and following the food digestion, we studied the influence of the pure tomatine but we
also considered in vitro digested tomatine with and without tomato fruit matrix.
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2. Results and Discussion

2.1. HPLC Analysis Confirmed the Presence of Tomatine after In Vitro Digestion

To the best of our knowledge, glycoalkaloids are considered toxic secondary metabolites and the
catabolism of these compounds by humans is not well elucidated. In order to understand whether
tomato glycoalkaloid (α-tomatine and dehydrotomatine) content could be altered after ingestion,
in vitro digestion assays were carried out. Thus, pure tomatine standard (A), tomato fruits spiked
with pure tomatine standard (T) and tomato fruits (Tc) were exposed to different abiotic stresses
mimicking the gastric and intestinal environments, such as acidic conditions, exposure to enzymes
(pepsin and pancreatin) and the presence of bile salts. Results indicated that both α-tomatine and
dehydrotomatine were clearly detectable in all samples after in vitro digestion, except in tomato fruits
(Tc) where both glycoalkaloids were not observable. The percentages of α-tomatine found in in vitro
digested tomatine spiked to tomatoes (T) and in vitro digested pure tomatine (A) were comparable
(28.9 ± 10.9 and 26.5 ± 7.5, respectively). Interestingly, the percentage of dehydrotomatine observed
in the samples of in vitro digested tomatine spiked into tomatoes (T) (53.5 ± 18.1) was higher than
that detected in the samples of in vitro digested pure tomatine (A) (26.0 ± 6.2) (data not shown).
These findings suggested the hypothesis that α-tomatine and dehydrotomatine might be affected in
different ways in the samples where tomato fruits are added (in vitro digestion with tomato (T)) respect
to samples were tomato fruits were not added (in vitro digested pure tomatine and tomatine standard),
probably due to compounds in tomato fruits which could interfere with and hinder the digestion of
glycoalkaloids [22,23]. Supposedly, as polysaccharides have been shown to have a protective effect,
we can hypothesize that pectins present in tomato fruits can create a mesh that could interfere with the
availability of tomatine and, at the same time, could protect the tomatine from abiotic stresses during
the gastrointestinal tract transit [24,25].

2.2. Caco-2 Monolayer Integrity is Influenced by Tomatine

Pure tomatine (P), in vitro digested tomatine with tomato matrix (T) and in vitro digested tomatine
without tomato matrix (A) were incubated with Caco-2 cells in order to evaluate the intestinal epithelial
electrical resistance (TEER), which is a measure of the flow of charge and reflects the paracellular
permeability of the cell monolayer. Reducing TEER value could indicate a widening of tight junctions
and a consequent increase in the paracellular transport of molecules and ions, but could also be caused
by cell death.

Firstly, the influence of 12 concentrations of pure tomatine (P) (0.2–200 µg/mL corresponding
approximately to 0.1–100 mg/kg (FW) of tomato), were tested on Caco-2 cells. Figure 2 shows the
results for the exposure to 0.2, 2, 20 and 60 µg/mL tomatine. The effect of tomatine (P) occurs within
the first hour of exposure with significant reduction of TEER values, ranging from 21% to 74%,
in a concentration-dependent manner. Subsequently, an increase in TEER after 24 h of exposure at
concentration up to 20 µg/mL of pure tomatine was observed. Conversely, concentrations >20 µg/mL
significantly reduced TEER values to below 35% and apparently beyond the point of recovery.
The results indicated that Caco-2 monolayer integrity is temporally reduced by low concentrations
and permanently by high concentrations of pure tomatine (P).

On the basis of the above-mentioned results, four concentrations were chosen, i.e., 0.2 and
2 µg/mL (which did not decrease the TEER value below 74% over 24 h of exposure), 20 µg/mL
(showing an effect on TEER that can still be recovered during a 24 h exposure), and 60 µg/mL (slightly
higher than the limit potentially affecting the integrity of the cell monolayer), in order to study the effect
of in vitro digestion and/or the presence of the tomato matrix on TEER lowering effect of tomatine.
Overall, in vitro digested tomatine, both without (A) and with tomato red fruits (T), counteracted
the TEER reduction as obtained using pure tomatine (P) (Figures 3 and 4). This effect was especially
corroborated by a milder effect using the high concentration of 60 µg/mL.



Molecules 2018, 23, 644 4 of 13
Molecules 2018, 23, x  4 of 13 

 

 

Figure 2. Effects of pure tomatine (P) on Caco-2 TEER values expressed as % relative to the control 
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significant differences (p < 0.05) in adhesion as assessed by one-way ANOVA test. 
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and two technical repetitions. Different superscript letters indicate statistically significant differences 
(p < 0.05) in adhesion as assessed by one-way ANOVA test. 

 
Figure 4. Effects of in vitro digested tomatine spiked to tomato matrix (T) on Caco-2 TEER values 
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different biological replications and two technical repetitions. Different superscript letters indicate 
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This counteracting effect of in vitro digestion might be due to the influence on tomatine stability
due to pH changes, pepsinase and pancrease digestion, and bile salts [26]. Besides that, tomato fruits
might interfere with the bioavailability of tomatine during the in vitro digestion [22] resulting in a
lower impact on cell integrity.

2.3. Gene Expression Levels are Influenced by Tomatine

Based on literature for other glycoalkaloids [27], it was hypothesized that the biological functions
of the intestinal cells could be changed due to exposure to tomatine. That is why it was decided
to study the effects of tomatine on biological pathways using specific gene expression markers:
cholesterol/sterol biosynthesis (LDLR), lipid metabolism (NR2F2), glucose and amino acid uptake
(SGLT1, PAT1), cell cycle (PCNA, CDKN1A), apoptosis (CASP-3, BMF, KLF6), tight junctions (CLDN4,
OCLN2) and cytokine-mediated signaling (IL-8, IL1β, TSLP, TNF-α). The expression was determined
by qPCR and the gene expression levels are shown in the Figure 5.
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tomatine, in vitro digested tomatine spiked to tomato matrix and in vitro digested tomatine treatments.
All values are in comparison with the values of the control without tomatine (Pc).

Firstly, we investigated whether the treatments induced more general toxic effects, which often
include effects towards cell cycle and induction of apoptosis. Regarding this aspect, the cyclin-
dependent kinase inhibitor 1A (CDKN1A) was not changed by the treatments (P, T, and A) within 1 h
of exposure, while the transcription level of PCNA gene was increased. Based on observed effect of
tomatine towards Caco-2 cells monolayer integrity, it could be expected that expression of claudin-4
(CLDN4) and occludin-2 (OCLN2) genes, coding for the tight junction (TJ) proteins which play a
crucial role in the maintaining of the intestinal barrier integrity [28], would be effected. CLDN4
expression was reduced significantly in a concentration-dependent manner over all treatments of (P)
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after 4 h, and therefore correlated to TEER decrease. Conversely, using the in vitro digested tomatine
(A) and tomatine with tomato matrix (T), expression analysis shows an up-regulation of CLDN4 at
concentrations of 60 µg/mL after 4 h of exposure. This up-regulation of CLDN4 for intestinal cells
with low TEER values have been observed before and probably can be seen as an attempt of the cells to
restore the integrity of the tissue [29,30]. With respect to OCLN2 gene, the expression of transcriptional
level was reduced significantly for almost all concentrations of (P), (A) and (T) treatments. Occludin
proteins have been linked to the regulations of intermembrane and paracellular diffusion of small
molecules [31]. One of the possible mechanisms to explain membrane disruption by glycoalkaloids
involves the complexation with membrane cholesterol [8]. To study effect on the cholesterol LDLR
and NR2F2 genes, that are involved in cholesterol and lipid biosynthesis, were selected as these
genes showed a change in expression when Caco-2 cells were exposed to potato glycoalkaloids [27].
In our study, LDLR gene expression was reduced over all tomatine treatments, not in line with what
have been found for potatoes glycoalkaloids. Instead NR2F2 gene was not subjected to significant
changes respect to the control, with the exceptions of higher concentrations (20 and 60 µg/mL) for
long exposure with (P) and (A) which resulted in a down regulations of expression. Down-regulation
of NRF2 was also observed in Caco-2 upon exposure to potato glycoalkaloids [27]. Our data indicate
that tomato glycoalkaloids cause less disturbance of the cellular cholesterol homeostasis than potato
glycoalkaloids. We suggest as possible explanation of the NR2F2 gene increment with the treatments
(T), an effect due to the presence of tomato fruits and not because of the tomatine, as we did not have
the same increase either with pure tomatine (P) or with in vitro digested tomatine (A).

Transport of nutrients is an important function of intestinal cell. To study effect of tomatine on this
function SGLT1, a sugar transporter, and PAT1, an amino acid transporter, were analysed. Exposure of
the P, A, and T samples resulted in a reduced expression. Pure tomatine (P) influenced the genes more
than the in vitro digested tomatine (A) and in vitro digested tomatine spiked to tomato (T); also in this
case the different influence could be due to the digestion of the glycoalkaloid and/or the presence of
tomato substrate.

The intestinal epithelium also acts as an integral component of the mucosal immune system
producing different types of cytokines capable of initiating, sustaining and modulating the
inflammatory response against injury, microbial invasions and other agonists [32,33] and this function
can be influenced by dietary factors [34]. Our gene expression analysis demonstrated an influence
of tomato glycoalkaloid (undigested and digested) on cytokines-mediated signaling. In particular,
thymic stromal lymphopoietin (TSLP) gene expression was down regulated in all cases with no marked
differences between pure tomatine (P), in vitro digested tomatine (A) and in vitro digested tomatine
spiked to tomatoes (T). The expression of TSLP gene has been found induced in inflammatory bowel
diseases ulcerative colitis (UC), Crohn’s disease (CD), during allergic inflammatory processes [18,35,36]
and modulations or restoration of physiological amounts of TSLP have been proposed as therapeutic
treatment [37]. The fact that tomatine could modulate the TSLP gene expression suggests a possible
application of tomato as immunomodulating food, as also have been found for glucocorticoids [38].
Interestingly, the aglycon component of tomatine is chemically similar to the glucocorticoidal structure
of steroidal hormones precursors. The expression of gene intereukin1-1β (IL-1β), a potent molecule
of the innate immune system able to enhance and maintain the pro-inflammatory response [39],
was induced by tomatine after 4 h exposure and even more induced when combined with digest
(A) or tomato (T). It was also evident that intereukin1-8 (IL-8) transcription, a gene involved in
pro-inflammatory immune response, showed to be reduced for all treatments (P, A and T) compared
to media control after one hour of incubation. However, a significant up regulation of transcription
levels occur after 4 h of exposure to 20 and 60 µg/mL of in vitro digested tomatine (A) and in vitro
digested tomatine spiked to tomato (T). Tumor necrosis factor-α (TNF-α) is a gene involved in the
amplification of inflammatory response by activating neutrophils, mononuclear phagocytes, and other
cell types such as eosinophils [40–42]. The expression of TNF-α was up-regulated by pure tomatine
(P), in vitro digested tomatine spiked to tomato (T) and in vitro digested tomatine (A) after 1 h and 4 h
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of exposure. These results on regulation of tomatine of immune related genes are in line with other
studies that identified tomatine to have anti-inflammatory effects in rats [14,43] and to be a highly
effective immunostimulator used as vaccine adjuvant in mice [14,15,44].

3. Materials and Methods

3.1. Cell Culture

Human colon cell line Caco-2, obtained from the American Type Culture Collection (ATCC)
(Rockville, MD, USA), were grown on ThinCert translucent transwells (31.2 mm2, 0.4 µm pores, 1 × 108

pores cm−1, Greiner Bio-one (Greiner Bio-one, Alphen aan den Rijn, The Netherlands). Cells were
seeded at a density of 1.3 × 106 cells mL−1 and grown for 21 days at 5% CO2, 37 ◦C, using Dubelco’s
modified Eagle’s medium (DMEM; Gibco-Invitrogen, Bleiswijk, The Netherlands) supplemented with
heat-inactivated (45 min, 56 ◦C) and 10% v/v fetal bovine serum (FBS; Hyclone erBio, Etten-Leur,
The Netherlands). 21 days culturing of Caco-2 cells were chosen as these resemble the small intestinal
enterocytes which are the first intestinal cells encountering food [43–48]. Medium was replaced three
times per week. Cells were used at passage numbers from 25 to 42.

3.2. Materials-Chemical

A commercially available tomatine standard (a 2:1 mixture of α-tomatine and dehydrotomatine)
was purchased from Santa Cruz Biotechnology, Dallas, TX, USA. 100 µg/µL tomatine stock was
prepared solving standard in filtered dimethyl sulfoxide (DMSO). Eleven concentrations of pure
tomatine standard (P) 0.2, 2, 5, 10, 15, 20, 40, 60, 80, 100 and 200 µg/mL, were prepared diluting the
DMSO-tomatine stock with DMEM medium, adjusting the amount of DMSO per each concentration
sample to expose the intestinal cells to similar experimental conditions. However, DMSO final
concentrations were always less than 0.3% that is considered a tolerant concentration by cells [49].
Control cells were treated with DMEM + DMSO without tomatine (Pc) (Table 1).

Table 1. Samples used in this work.

Sample Name Description

P DMSO-pure tomatine standard
Pc DMESO
A in vitro digested pure tomatine standard
Ac in vitro digested buffers
T in vitro digested tomato red fruit spiked with pure tomatine standard
Tc in vitro digested tomato red fruits

3.3. In Vitro Digestion

We prepared in vitro digestion of pure tomatine standard (A), tomato red fruits spiked with pure
tomatine standard (T), in vitro digestion control without tomatine (Ac), and in vitro digested tomato
red fruits control without tomatine (Tc) (Table 1). Red cherry tomatoes were purchased from a local
supermarket. The in vitro digestion was adapted from previously described procedures [50]. Briefly,
15 gr of fresh tomatoes were homogenized in saline solution (NaCl 8.5 g/L). Subsequently, 20 gr of
saline solution, or 20 gr of homogenized tomato were spiked with 0.2, 2, 20 or 60 µg/mL tomatine
and set at pH 2, supplemented with porcine pepsin and incubated for 30 min at 37 ◦C. Successively,
porcine pancreatin, sodium taurocholate and sodium glycodeoxycholate were added, pH was set at
6.5, the headspace was flushed with nitrogen and the samples were incubated for 30 min at 37 ◦C.
After incubation time, pH was set at 7.5, the weight adjusted to 30 gr with saline solution and the
samples centrifuged for 30 min at 3000× g at 4 ◦C. The supernatant was transferred to a new tube,
flushed with nitrogen and stored at −80 ◦C. In vitro digested samples were filtered (0.2 µm) and
diluted 1:3 with DMEM + 10% FBS before use.
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3.4. HPLC Analysis

The final concentration of tomatine after in vitro digestion was determined by HPLC based on
the chromatographic method described by [51], with slight modification. Briefly, in vitro digested
samples were centrifuged at 10,000× g for 2 min. The supernatant was collected and concentrated by
freezer-dry. The residue was suspended in 80:20 solution of methanol and 20 mM KH2PO4 (pH 3.0)
and used for HPLC. HPLC analyses were performed using W6000 Waters System (Waters Corporation,
Milford, MA, USA) with UV detector (Waters 2487) set at 208 nm, on an Inertsil ODS-2 column
(250 mm × 4.6 mm i.d.; 5 µM particle diameter) (Hichrom, Theale, UK). The mobile phases were
acetonitrile (A) and 20 mM KH2PO4 (B) pH 3.0 (elution program: 20%, 20%, 30%, 40%, 100%, 100%,
20%, 20% acetonitrile at times 0, 4, 15, 30, 31, 36, 37, 40 min), flow rate 1 mL/min. Analysis of each
sample was performed in triplicate and the concentration of α-tomatine and dehydrotomatine were
determined by comparing integrated chromatographic peak area from samples to peak area of known
amount of tomatine standard.

The amount of tomatine detected in the samples was compared to the known amount of tomatine
added before the in vitro digestion procedures. Recovery of tomatine was calculated as follows:
(concentration of detected glycoalkloid after in vitro digestion)/(concentration of added glycoalkaloids
before in vitro digestion) × 100.

3.5. Transepithelial Electrical Resistance (TEER) Assay

Transepithelial electrical resistance (TEER) was assayed using a MilliCell-ERS-meter (Millipore,
Molsheim, France). TEER was measured before and after 1, 2, 3, 4 and 24 h of exposure of Caco-2 cells
to each sample (P, Pc, A, Ac, T and Tc). Inserts with Caco-2 cells showing TEER values < 800 Ω·cm2

before starting the experiments were excluded. All measurements were carried out at 37 ◦C in order
to reduce the influence of temperature changes on cells and, then, on TEER values. Three biological
replicates were used.

3.6. RNA Extraction and Retro-Transcription

RNA extraction and retro-transcription were performed as described by [52]. In brief, TriZol
reagent (Invitrogen) was used to extract RNA from Caco-2 cells. Moreover, DNaseI (Sigma-Aldrich,
St. Louis, MO, USA), RNeasy (Qiagen, Venlo, The Netherlands) and iScript (BioRad, Veenendaal,
The Netherlands) kits were used to clean-up and retro-transcribe RNA. The quality of RNA samples
was verified by electrophoresis on 1.2% agarose gels, and RNA concentrations were calculated
spectrophotometrically (ND-1000, NanoDrop Technology, Wilmington, DE, USA).

3.7. qPCR Analysis

Primers for qPCR were chosen from those available in PrimerBank http://pga.mgh.harvard.edu/
primerbank/ [53] for all genes except GAPDH and OCLN-2. GAPDH and OCLN-2 primer sequences
were used as described by Vreeburg et al. [54] (Table 2).

Primers were purchased from Biolegio (Nijmegen, The Netherlands) and validated to optimize
the qPCR conditions. qPCR was performed on C1000 Thermal Cycler (BioRad, Hercules, CA, USA).

5 µL of cDNA were added to 15 µL of a qPCR mix containing IQ™ SYBR Green Supermix (BioRad),
and 100 or 400 nM of each primer. In each run, a negative control was included. Thermal cycling
conditions were designed as follows: initial denaturation at 95 ◦C for 90 s, followed by 40 cycles
at 95 ◦C for 10 s, 58 ◦C for 10 s, 72 ◦C for 15 s, and finally elongation temperature of 72 ◦C for 2
min. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was chosen as housekeeping gene [49].
The data were analyzed calculating the relative gene expression as 2−∆∆C

T [55]. We used DMEM +
DMSO control without tomatine (Pc) as internal control for all sample in order to compare the relative
gene expressions. qPCRs were performed twice for each sample of cDNA.

http://pga.mgh.harvard.edu/primerbank/
http://pga.mgh.harvard.edu/primerbank/
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Table 2. Sequences of primers used for qPCR.

Gene Name Primer Name Primer Sequences 5′-3′ Amplicon Lenght (bp) Gene ID

Caspase 3 Caspase3 Fw:GAGTGCTCGCAGCTCATACCT
81 NM_004346.3Rev.:CCTCACGGCCTGGGATTT

Claudin 4 F_CLDN4
Fw:TTGTCACCTCGCAGACCATC

92 NM_001305.3Rev:CAGCGAGTCGTACACCTTG

Interleukin 8 F_IL8
Fw:CTGATTTCTGCAGCTCTGTG

98 NM_000584.2Rev:GGGTGGAAAGGTTTGGAGTATG

Interleukin 1 beta F_IL1B
Fw:GTGGCAATGAGGATGACTTGTTC

124 GI:27894305Rev:TAGTGGTGGTCGGAGATTCGTA

Glyceraldehyde-3-phosphate dehydrogenase F_GAPDH
Fw:TGCACCACCAACTGCTTAGC

87 NM_02046Rev:GGCATGGACTGTGGTCATGAG

Tumor Necrosis Factor alpha F_TNFa
Fw:CTGCTGCACTTTGGAGTGAT

93 NM_000594Rev:AGATGATCTGACTGCCTGGG

Thymic stromal lymphopoietin F_TSLP
Fw:TCGGCCACATTGCCTTAC

127 AY037115.1, GI:14594701Rev:ATAGCCTGGGCACCAGATAG

Sodium Glucose Transporter 1 F_SGLT1
Fw:GTGCAAGTCGAGGGACCATT

114 AL109659Rev:GGCCGATGAACAAGCCACT

Proton-couple aminoacid Transporter F_PAT1
Fw:ACCTACGCACTCCAGTTCTAC

91 NM_078483Rev:GGTCCACCACTAACTCACAGT

Low density lipoprotein receptor F_LDLR
Fw:CGACAGATGCGAAAGAAACGA

142 NM_000527Rev:CCCGGATTTGCAGGTGACA

Proliferating cell nuclear antigen F_PCNA
Fw:CCTGCTGGGATATTAGCTCCA

109 NM_002592Rev:CAGCGGTAGGTGTCGAAGC

Bcl-2 modifying factor F_BMF
Fw:TTTATGGCAATGCTGGCTATCG

115 NM_033503Rev:GCAATCTGTACCTCTGCTTGATG

Kluppel-like factor 6 F_KLF6
Fw:TTCTCCCACGGCCAAGTTTAC

139 NM_001160124Rev:CACGCAACCCCACAGTTGA

Nuclear receptor subfamily 2, group F, F_NR2F2
Fw:TCATGGGTATCGAGAACATTTGC

151 NM_001145156Rev:TTCAACACAAACAGCTCGCTC

Occludin 2 F_OCLN2
Fw:CCCATCTGACTATGTGGAAAGA

77 NM_002538Rev:AAAACCGCTTGTCATTCACTTTG

Cyclin-dependent kinase inhibitor 1A F_CDKN1A
Fw:TGTCCGTCAGAACCCATGC

139 NM_078467Rev:AAAGTCGAAGTTCCATCGCTC
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3.8. Statistical Analysis

The results were expressed as mean ± standard deviation (S.D.) of two technical repetitions.
All experiments were performed in three independent biological replicates. Data were analyzed by
One-way analysis of variance (ANOVA) comparing each treatment with control. p value < 0.05 was
considered as statistically significant. For the gene expression analysis, we considered fold change
criterion >1.5. All statistical analysis were performed using the GeneMaths XT software (version 2.12,
Applied-Maths, Austin, TX, USA).

4. Conclusions

This work shows that high concentrations of tomatine can affect intestinal function as shown
by exposing Caco-2 cells to different tomatine samples. In vitro digestion and tomato matrix
only minimally modulate the effects induced by tomatine, probably due to a reduced stability or
bioavailability. Concentrations of tomatine <20 µg/mL, both undigested and in vitro digested, might
be considered safe for Caco-2 monolayers although it is difficult to extrapolate this to an in vivo
situation as also cell line background and growing conditions influence the sensitivity to exposures.
These supposed safe concentrations did not induce cell death or damage the monolayer integrity.
Based on the gene expression analysis, we found that tomatine did not induce cell death or alter
the cell cycle and no misregulation of tight junction-related genes, cholesterol/sterol biosynthesis,
lipid metabolism, glucose and amino acid uptake was observed. However, we found that tomatine
affects cytokine-mediated signaling genes, suggesting that tomatine might have immunomodulatory
properties. To conclude, we suggest that tomatine could act as a hormetic compound that can induce
beneficial or toxic effects whether used in low or high dose. Further research is needed to investigate
the full safety profile of tomatine and tomatine-containing products and their potential beneficial
immune supportive activity.
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