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Abstract: Any type of breast cancer not expressing genes of the estrogen receptor (ER), progesterone
receptor (PR), or human epidermal growth factor receptor 2 (HER2) is referred to as triple-negative
breast cancer (TNBC). Accordingly, TNBCs do not respond to hormonal therapies or medicines
targeting the ER, PR, or HER2. Systemic chemotherapy is therefore the only treatment option
available today and prognoses remain poor. We report the discovery and characterization of
N-(naphtho[1,2-b]furan-5-yl)benzenesulfonamides as selective inhibitors of TNBCs. These inhibitors
were identified by virtual screening and inhibited different TNBC cell lines with IC50 values of
2–3 µM. The compounds did not inhibit normal (i.e. MCF-7 and MCF-10A) cells in vitro, indicating
their selectivity against TNBC cells. Considering the selectivity of these inhibitors for TNBC,
these compounds and analogs can serve as a promising starting point for further research on effective
TNBC inhibitors.

Keywords: triple-negative breast cancer; three-dimensional similarity search; virtual screening;
selective inhibitors

1. Introduction

Breast cancer is the most common malignancy and second leading cause of cancer death among
women in the United States [1]. As in most countries, breast cancer is the most common cancer in
Chinese women today. Cases in China account for 12.2% of all newly diagnosed breast cancers and for
9.6% of all deaths from breast cancer worldwide [2]. Based on DNA microarray expression profiling,
breast cancers can be classified into six different subtypes [3–8]: luminal A, luminal B, human epidermal
growth factor receptor-2 (HER2)-overexpressing, normal breast tissue-like, basal-like, and claudin-low
breast cancers. These subtypes respond differently to therapy and are associated with different
outcomes, with the shortest survival times seen in patients with basal-like and HER2-overexpressing
subtypes [4,5,9].

Triple-negative breast cancer (TNBC) is an aggressive clinical phenotype characterized by the lack
of expression (or minimal expression) of the estrogen receptor (ER) and progesterone receptor (PR)
as well as the absence of the human epidermal growth factor receptor-2 (HER2). TNBCs comprise a
heterogeneous subgroup of tumors, including but not limited to those classified by expression profiling
as basal-like and claudin-low subtypes. TNBCs account for about 15% of all breast cancers [7–10].
Unlike patients suffering from ER/PR-positive or HER2-overexpressing cancers, treatment options
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for patients with TNBC are currently limited to systemic cytotoxic chemotherapy [11]. The overall
survival rates of TNBC patients are lower than those of patients suffering from other phenotypes of
breast cancer (in both early and advanced stages) [12,13]. These facts highlight the urgent need for
effective medicines for the treatment of TNBCs.

Currently, compounds targeting the vascular endothelial growth factor (VEGF), poly (ADP-ribose)
polymerase (PARP), HSP90, and aurora kinase are under investigation in clinical trials as
therapeutics for metastatic TNBCs [14]. Herein, we report the computer-guided discovery of
N-(naphtho[1,2-b]furan-5-yl)benzenesulfonamides as effective and selective inhibitors of TNBCs.
These compounds serve as starting points for the development of effective drugs.

2. Results and Discussion

2.1. Three-Dimensional Similarity Search and Bioassays

Estrogens are known to stimulate cell proliferation and increase the risk of the development of
several different types of cancers, in particular breast and uterus cancers [15]. In order to identify novel
inhibitors of breast cancers, we employed similarity-based computational approaches to search the
SPECS compound library (http://www.specs.net/, accessed by May 2014) for candidate compounds.
17β-estradiol and IC-163 (Figure 1), a potential agent for breast cancer identified by Beijing Shenogen
Biomedical Co. [16], were chosen as query molecules for 3D similarity search (Figure 2).
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Figure 1. Chemical structure of IC-163.

In total, approximately 200 k compounds were screened with ROCS, an alignment-based virtual
screening engine quantifying the similarity of pairs of molecules based on their molecular shapes
and chemical features [17,18]. The most interesting compounds (selected by visual inspection) were
re-ranked with EON (version 2.2.0, OpenEye Scientific Software Inc., Santa Fe, NM, USA) to evaluate
compound similarity with regard to electrostatics. EON quantifies the similarity between pairs of
molecules based on their electrostatic potential maps. Comparison with EON resulted in rank-ordered
list of 435 candidate molecules, which was further reduced by clustering with ECFP_6 and
FCFP_6 fingerprints. In total, 32 candidate compounds (Figure S1) were selected by visual inspection
(taking into account calculated aqueous solubility) and purchased from SPECS for experimental evaluation.
Twenty-five of the selected compounds originate from 17β-Estradiol as query and seven from IC-163.

http://www.specs.net/
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Figure 2. Scheme for three-dimensional virtual screening.

The inhibition rates of these 32 compounds were measured on the TNBC cell lines MDA-MB-231
and SUM-159, as well as the non-TNBC breast cancer cell line MCF-7 (Figure S2). The most interesting
compounds identified among those 32 candidates were B09 and C10. Compound B09, identified by
similarity search using 17β-estradiol as query, inhibited MCF-7 cells with IC50 = 1.45 µM and had
almost no growth-inhibitory effect on MDA-MB-231 and SUM-159. 17β-Estradiol is an endogenous
molecule directly interacting with the estrogen receptor. This may explain why B09 only inhibited
MCF-7 cells. B09 is structurally related to 17β-estradiol not only with respect to its 3D shape but
also its 2D structure (Figure 3). On the contrary, C10 showed good inhibition of TNBC cell lines
(IC50 = 2.32 µM for MDA-MB-231; IC50 = 3.45 µM for SUM-159) but low inhibition of MCF-7 cells
(IC50 = 20 µM; Table 1). Its chemical structure is similar to that of IC-163 with respect to the 3D
molecular shape and electrostatic properties (ShapeTanimoto coefficient = 0.817; EON_ShapeTanimoto
coefficient = 0.784, where values of 1 denote compounds with identical properties) but not with respect
to the 2D structure (Figure 3).

Table 1. Activities of B09 and C10 measured on different cell lines.

Compound
IC50 (µM)

MDA-MB-231 SUM-159 MCF-7

B09 ~20 >40 1.45
C10 2.32 3.45 20
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Figure 3. (A) Structures of 17β-estradiol, B09, IC-163 and C10; (B) Structure alignment of B09 with
17β-estradiol and of C10 with IC-163.
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2.2. Hit Follow-up and Expansion

2D similarity search based on ECFP_6 and FCFP_6 was conducted to identify further purchasable
analogs of C10 for experimental evaluation. A total of 12 analogs of C10 were purchased from SPECS
and tested on MDA-MB-231 and SUM-159 cell lines. The measured inhibition rates are reported
in Figure S3. All compounds were initially tested only with two TNBC cell lines for cell viability at
5 µg/mL. Following this test, the inhibitory activity of any compounds with inhibition rates above
30% at 5 µg/mL (eight compounds) were tested on four TNBC cell lines and one non-TNBC cell line
MCF-7 (Table 2). All eight compounds inhibited MDA-MB-231 and MDA-MB-453 cells with IC50

values lower than 10 µM. Most compounds inhibited SUM-159 and BT-20 cells with IC50 values greater
than 10 µM; seven of these compounds inhibited MCF-7 cells with IC50 values greater than 40 µM.
Among them, Compounds 2-5 and 2-8 exhibited the strongest inhibitory effect on all tested TNBC cell
lines and had no inhibitory effect on MCF-7.

Table 2. Activities of eight analogs of C10 measured on different cell lines.

Compound
IC50 (µM)

MDA-MB-231 MDA-MB-453 SUM-159 BT-20 MCF-7

Tamoxifen 2.03 3.64 13.48 8.54 9.08
IC-163 >40 >40 >40 >40 >40

C10 5.34 2.30 11.13 10.63 9.38
2-1 4.36 3.19 30.76 13.34 13.97
2-3 7.99 8.59 >40 >40 >40
2-5 3.12 2.95 2.91 >40 >40
2-6 4.97 3.36 19.21 25.02 >40
2-7 3.95 3.65 >40 >40 >40
2-8 2.96 3.09 2.50 10.10 >40
2-9 6.22 4.61 18.06 >40 >40
2-11 6.92 5.72 >40 >40 >40

All these compounds are based on a N-(naphthalen-1-yl)benzenesulfonamide scaffold (Figure 4),
with different decorations in para position of the benzenesulfonamide and/or the substituent at
the naphthalene ring. Compounds C10, 2-1, 2-3, 2-6, and 2-7 are known inhibitors of myeloid
cell leukemia 1 (Mcl-1) [19]. Compound 2-11 is an antimalarial heme detoxification protein (HDP)
inhibitor [20], and 2-9 is an antitumor agent with inhibition of signal transducer and activator of
transcription 3 (STAT3) [21,22]. We did not identify literature on the bioactivity of 2-5 and 2-8. In terms
of molecular structure, 2-5 and 2-8 clearly differ from other compounds of that series. They are
decorated with a naphtho[1,2-b]furan in para position of the benzenesulfonamide. Compound 2-5 is a
methyl carboxylate, while 2-8 is an ethyl carboxylate. Due to structural novelty and good bioactivity,
2-5 and 2-8 were selected for another iteration of hit expansion based on 2D similarity search.
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Figure 4. Structures of 12 compounds resulting from a similarity search based for C10.

A total of 40 analogs of 2-5 and 2-8 were purchased from SPECS and tested on MDA-MB-231,
SUM-159, and MCF-7 cells (Figure S4). Twenty-four of these analogs did not exhibit activity (any
compounds with an inhibition rate above 50% were considered to be active). One compound (3-12)
inhibited all three of the cell lines, while 3-9, 3-17, 3-18, 3-20, and 3-37 only had an effect on two
TNBC cell lines. Eleven compounds inhibited one TNBC cell line. Compounds with substitutions
in para position of the benzenesulfonamide tended to be more active (Tables 3 and 4). All tested
compounds with R3 = methyl and R1 = ethoxy were active against TNBC, regardless of the length of R2.
Compounds with a large substituent in R2 tended to be less active on SUM-159 cells. Compounds with
R1 = ethyl were more active on MDA-MB-231 with R2 = methoxy than R2 = ethoxy. Compounds with
a methoxy substituent in R2 were inactive on SUM-159. Replacement of the methyl moiety at R3 by a
phenyl ring (e.g., 3-11 to 3-22) or other groups (e.g., 2-8 to 3-28) did not result in substantial changes
in activity against the three cell lines, indicating that the substituent at the R3 position is likely less
relevant for TNBC inhibition. Compounds with an isopropyl or chlorine substituent in R1 showed
low activity on MDA-MB-231 and no activity on SUM-159 cells. When (1) R3 was methyl, (2) R2 was
methoxy or ethoxy and (3) R1 was methyl, ethyl, methoxy, ethoxy, or fluorine, almost all compounds
of this combination had different levels of inhibitory activities on both TNBC cell lines.
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Table 3. Inhibition rates of analogs of 2-5 and 2-8 identified by 2D similarity search (Part 1).
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Compound R1 R2 R3
Inhibition%

MDA-MB-231 SUM-159 MCF-7

3-17 -OCH2CH3 -CH3 -CH3 68.567 60.956 40.549
3-8 -CH2CH3 -OH -CH3 −1.131 0.221 −6.706
3-32 -CH(CH3)2 -OH -CH3 24.718 −0.964 −7.568
3-1 -Cl -OH -CH3 31.450 −0.754 −12.178
3-9 -OCH2CH3 -OCH3 -CH3 63.008 60.778 24.251
3-37 -OCH2CH3 -OCH2CH3 -CH3 59.687 66.789 42.503
3-23 -OCH2CH3 -OCH2CH2OCH3 -CH3 62.014 49.127 14.707
3-20 -CH2CH3 -OCH3 -CH3 53.486 65.439 31.221
3-11 -CH2CH3 -OCH2CH3 -CH3 41.115 0.175 13.005
3-22 -CH2CH3 -OCH2CH3 -Ph 53.616 −0.556 2.238
3-4 -CH(CH3)2 -OCH3 -CH3 37.770 −0.319 14.222
3-31 -CH(CH3)2 -OCH2CH3 -CH3 32.074 −1.330 2.952
3-30 -H -OCH3 -CH3 50.872 0.862 29.311
3-14 -CH3 -OCH3 -CH3 62.843 48.214 10.194
2-5 -OCH3 -OCH3 -CH3 31.005 56.793 -
3-10 -F -OCH3 -CH3 64.477 35.466 34.480
3-33 -Cl -OCH3 -CH3 32.822 −0.507 2.819
3-29 -Br -OCH3 -CH3 45.039 1.3243 14.480
3-34 -COOH -OCH3 -CH3 10.991 −0.042 2.848
3-26 -H -OCH2Ph -CH3 51.036 1.581 25.556
3-36 -CH3 -OCH2CH3 -CH3 16.752 −0.123 −4.385
2-8 -OCH3 -OCH2CH3 -CH3 62.936 61.771 -
3-3 -OCH3 -OCH2CH2CH2CH3 -CH3 51.145 42.064 29.745
3-25 -OCH3 -OCH2CH2CH2CH2CH3 -CH3 39.505 61.902 48.321
3-28 -OCH3 -OCH2CH3 -CH2CH2CH3 61.911 46.000 33.448
3-12 -OCH3 -OCH3 -C(CH3)3 71.378 90.386 76.319
3-39 -F -OCH(CH3)2 -CH3 42.330 −0.193 4.948
3-13 -COOH -OCH2CH3 -CH3 19.635 −0.635 5.137
3-40 -COOH -OCH2CH3 -CH2CH2CH3 12.487 0.000 2.525

Compounds with more than one substituent or a fused ring system in the position of the phenyl
ring of the benzenesulfonamide tended to have poor bioactivity (Table 4). The compounds available
from SPECS and tested within the scope of this study only cover two or three methyl groups at different
position of the benzene; other substituent groups like two or three methoxy groups were not measured.
In addition, a compound including a tetracycline moiety (3-21) exhibited a low inhibitory activity on
TNBC cells (Table S1).
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Ten compounds with good inhibition rates on both TNBC cell lines were selected for the 

measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous 

solubility of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result 

in improved water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by 

refluxing it for two days under alkaline condition in the presence of an aqueous solution with 

potassium hydroxide and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH. 

Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5). 

Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the 

ester compound (2-5). Its IC50 values were greater than 20 μM for both cell lines. 

 

Scheme 1. Hydrolysis route of Compound 2-5 to Compound 2-5-COOH. 

Table 5. IC50 for compounds measured on two TNBC cell lines. 

Compound 
IC50 (μM) 

MDA-MB-231 SUM-159 

2-5 3.12 2.91 

2-8 2.96 2.50 

-OCH3 45.584 0.037 18.546

3-38

Molecules 2018, 23, 678 7 of 12 

 

3-15 

 

-OCH3 45.584 0.037 18.546 

3-38 

 

-OCH3 50.558 1.346 14.827 

3-24 

 

-OCH3 46.563 0.233 34.910 

3-16 

 

-OCH2CH3 48.171 0.732 43.439 

3-35 

 

-OCH2CH3 33.853 0.352 24.499 

3-2 

 

-OCH2CH3 24.255 −0.884 17.700 

3-19 

 

-OH 19.306 0.380 16.340 

3-18 

 

-OCH3 59.421 51.425 33.244 

Ten compounds with good inhibition rates on both TNBC cell lines were selected for the 

measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous 

solubility of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result 

in improved water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by 

refluxing it for two days under alkaline condition in the presence of an aqueous solution with 

potassium hydroxide and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH. 

Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5). 

Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the 

ester compound (2-5). Its IC50 values were greater than 20 μM for both cell lines. 

 

Scheme 1. Hydrolysis route of Compound 2-5 to Compound 2-5-COOH. 

Table 5. IC50 for compounds measured on two TNBC cell lines. 

Compound 
IC50 (μM) 

MDA-MB-231 SUM-159 

2-5 3.12 2.91 

2-8 2.96 2.50 

-OCH3 50.558 1.346 14.827

3-24

Molecules 2018, 23, 678 7 of 12 

 

3-15 

 

-OCH3 45.584 0.037 18.546 

3-38 

 

-OCH3 50.558 1.346 14.827 

3-24 

 

-OCH3 46.563 0.233 34.910 

3-16 

 

-OCH2CH3 48.171 0.732 43.439 

3-35 

 

-OCH2CH3 33.853 0.352 24.499 

3-2 

 

-OCH2CH3 24.255 −0.884 17.700 

3-19 

 

-OH 19.306 0.380 16.340 

3-18 

 

-OCH3 59.421 51.425 33.244 

Ten compounds with good inhibition rates on both TNBC cell lines were selected for the 

measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous 

solubility of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result 

in improved water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by 

refluxing it for two days under alkaline condition in the presence of an aqueous solution with 

potassium hydroxide and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH. 

Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5). 

Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the 

ester compound (2-5). Its IC50 values were greater than 20 μM for both cell lines. 

 

Scheme 1. Hydrolysis route of Compound 2-5 to Compound 2-5-COOH. 

Table 5. IC50 for compounds measured on two TNBC cell lines. 

Compound 
IC50 (μM) 

MDA-MB-231 SUM-159 

2-5 3.12 2.91 

2-8 2.96 2.50 

-OCH3 46.563 0.233 34.910

3-16

Molecules 2018, 23, 678 7 of 12 

 

3-15 

 

-OCH3 45.584 0.037 18.546 

3-38 

 

-OCH3 50.558 1.346 14.827 

3-24 

 

-OCH3 46.563 0.233 34.910 

3-16 

 

-OCH2CH3 48.171 0.732 43.439 

3-35 

 

-OCH2CH3 33.853 0.352 24.499 

3-2 

 

-OCH2CH3 24.255 −0.884 17.700 

3-19 

 

-OH 19.306 0.380 16.340 

3-18 

 

-OCH3 59.421 51.425 33.244 

Ten compounds with good inhibition rates on both TNBC cell lines were selected for the 

measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous 

solubility of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result 

in improved water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by 

refluxing it for two days under alkaline condition in the presence of an aqueous solution with 

potassium hydroxide and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH. 

Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5). 

Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the 

ester compound (2-5). Its IC50 values were greater than 20 μM for both cell lines. 

 

Scheme 1. Hydrolysis route of Compound 2-5 to Compound 2-5-COOH. 

Table 5. IC50 for compounds measured on two TNBC cell lines. 

Compound 
IC50 (μM) 

MDA-MB-231 SUM-159 

2-5 3.12 2.91 

2-8 2.96 2.50 

-OCH2CH3 48.171 0.732 43.439

3-35

Molecules 2018, 23, 678 7 of 12 

 

3-15 

 

-OCH3 45.584 0.037 18.546 

3-38 

 

-OCH3 50.558 1.346 14.827 

3-24 

 

-OCH3 46.563 0.233 34.910 

3-16 

 

-OCH2CH3 48.171 0.732 43.439 

3-35 

 

-OCH2CH3 33.853 0.352 24.499 

3-2 

 

-OCH2CH3 24.255 −0.884 17.700 

3-19 

 

-OH 19.306 0.380 16.340 

3-18 

 

-OCH3 59.421 51.425 33.244 

Ten compounds with good inhibition rates on both TNBC cell lines were selected for the 

measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous 

solubility of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result 

in improved water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by 

refluxing it for two days under alkaline condition in the presence of an aqueous solution with 

potassium hydroxide and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH. 

Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5). 

Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the 

ester compound (2-5). Its IC50 values were greater than 20 μM for both cell lines. 

 

Scheme 1. Hydrolysis route of Compound 2-5 to Compound 2-5-COOH. 

Table 5. IC50 for compounds measured on two TNBC cell lines. 

Compound 
IC50 (μM) 

MDA-MB-231 SUM-159 

2-5 3.12 2.91 

2-8 2.96 2.50 

-OCH2CH3 33.853 0.352 24.499

3-2

Molecules 2018, 23, 678 7 of 12 

 

3-15 

 

-OCH3 45.584 0.037 18.546 

3-38 

 

-OCH3 50.558 1.346 14.827 

3-24 

 

-OCH3 46.563 0.233 34.910 

3-16 

 

-OCH2CH3 48.171 0.732 43.439 

3-35 

 

-OCH2CH3 33.853 0.352 24.499 

3-2 

 

-OCH2CH3 24.255 −0.884 17.700 

3-19 

 

-OH 19.306 0.380 16.340 

3-18 

 

-OCH3 59.421 51.425 33.244 

Ten compounds with good inhibition rates on both TNBC cell lines were selected for the 

measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous 

solubility of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result 

in improved water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by 

refluxing it for two days under alkaline condition in the presence of an aqueous solution with 

potassium hydroxide and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH. 

Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5). 

Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the 

ester compound (2-5). Its IC50 values were greater than 20 μM for both cell lines. 

 

Scheme 1. Hydrolysis route of Compound 2-5 to Compound 2-5-COOH. 

Table 5. IC50 for compounds measured on two TNBC cell lines. 

Compound 
IC50 (μM) 

MDA-MB-231 SUM-159 

2-5 3.12 2.91 

2-8 2.96 2.50 

-OCH2CH3 24.255 −0.884 17.700

3-19

Molecules 2018, 23, 678 7 of 12 

 

3-15 

 

-OCH3 45.584 0.037 18.546 

3-38 

 

-OCH3 50.558 1.346 14.827 

3-24 

 

-OCH3 46.563 0.233 34.910 

3-16 

 

-OCH2CH3 48.171 0.732 43.439 

3-35 

 

-OCH2CH3 33.853 0.352 24.499 

3-2 

 

-OCH2CH3 24.255 −0.884 17.700 

3-19 

 

-OH 19.306 0.380 16.340 

3-18 

 

-OCH3 59.421 51.425 33.244 

Ten compounds with good inhibition rates on both TNBC cell lines were selected for the 

measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous 

solubility of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result 

in improved water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by 

refluxing it for two days under alkaline condition in the presence of an aqueous solution with 

potassium hydroxide and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH. 

Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5). 

Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the 

ester compound (2-5). Its IC50 values were greater than 20 μM for both cell lines. 

 

Scheme 1. Hydrolysis route of Compound 2-5 to Compound 2-5-COOH. 

Table 5. IC50 for compounds measured on two TNBC cell lines. 

Compound 
IC50 (μM) 

MDA-MB-231 SUM-159 

2-5 3.12 2.91 

2-8 2.96 2.50 

-OH 19.306 0.380 16.340

3-18

Molecules 2018, 23, 678 7 of 12 

 

3-15 

 

-OCH3 45.584 0.037 18.546 

3-38 

 

-OCH3 50.558 1.346 14.827 

3-24 

 

-OCH3 46.563 0.233 34.910 

3-16 

 

-OCH2CH3 48.171 0.732 43.439 

3-35 

 

-OCH2CH3 33.853 0.352 24.499 

3-2 

 

-OCH2CH3 24.255 −0.884 17.700 

3-19 

 

-OH 19.306 0.380 16.340 

3-18 

 

-OCH3 59.421 51.425 33.244 

Ten compounds with good inhibition rates on both TNBC cell lines were selected for the 

measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous 

solubility of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result 

in improved water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by 

refluxing it for two days under alkaline condition in the presence of an aqueous solution with 

potassium hydroxide and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH. 

Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5). 

Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the 

ester compound (2-5). Its IC50 values were greater than 20 μM for both cell lines. 

 

Scheme 1. Hydrolysis route of Compound 2-5 to Compound 2-5-COOH. 

Table 5. IC50 for compounds measured on two TNBC cell lines. 

Compound 
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-OCH3 59.421 51.425 33.244

Ten compounds with good inhibition rates on both TNBC cell lines were selected for the
measurement of IC50 values on MDA-MB-231 and SUM-159 cell lines. However, the aqueous solubility
of these compounds is poor. Hydrolysis of the ester in the R2 position is expected to result in improved
water solubility while maintaining biological activity. Therefore, we hydrolyzed 2-5 by refluxing it for
two days under alkaline condition in the presence of an aqueous solution with potassium hydroxide
and tetrahydrofuran (Scheme 1) to obtain 2-5-COOH.
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Most of the tested compounds inhibited both TNBC cell lines with similar strength (Table 5).
Compound 2-5-COOH had an approximately 10-fold reduced inhibitory activity compared to the
ester compound (2-5). Its IC50 values were greater than 20 µM for both cell lines.
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Table 5. IC50 for compounds measured on two TNBC cell lines.

Compound
IC50 (µM)

MDA-MB-231 SUM-159

2-5 3.12 2.91
2-8 2.96 2.50
3-3 3.25 8.66
3-9 2.68 2.66

3-12 11.91 11.53
3-17 1.77 1.94
3-18 5.20 24.15
3-20 10.04 16.97
3-28 >40 14.41
3-37 5.49 4.09

2-5-COOH ~24 24.25

Seven of the most potent compounds were chosen for evaluation of their bioactivity in further
cell lines. In addition to three TNBC cell lines (MDA-MB-231, MDA-MB-436, and SUM-159) and
the breast cancer cell line MCF-7, we employed the normal mammary epithelial cell line MCF-10A,
which was used for testing the compounds for their effects on normal breast cells (Table 6). The results
show that most of the compounds exhibited a weak inhibition of MCF-10A cells. Compound 3-17,
the most potent TNBC inhibitor identified in this study, also had the strongest inhibition on MCF-10A
(IC50 = 0.66 µM). Thus, 3-17 may be less promising for the treatment of TNBC.

From a molecular structure point of view, the main differences of these compounds are the
substituents of the phenyl ring of the benzenesulfonamide (2-5, 2-8, 3-3, and 3-12 are methoxy; 3-9, 3-17,
and 3-37 are ethoxy), and/or naphtho[1,2-b]furan (Figure 5). Six compounds are esters, and Compound
3-17 is a ketone. Calculations suggest that 3-3 and 3-12 are less soluble in water, probably because of
their longer carbon alkyl substituents (Table 6).
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Table 6. IC50 of compounds measured on different cell lines and calculated molecular properties.

Compound
IC50 (µM) Calculated Molecular Properties

MDA-MB-231 MDA-MB-436 SUM-159 MCF-7 MCF-10A Molecular_Weight AlogP ADMET_Solubility_level

Tamoxifen 2.03 10.02 13.48 9.08 >40 371.5 6.319 1
2-5 3.12 1.99 2.91 >40 >40 425.5 3.514 2
2-8 2.96 2.80 2.50 >40 >40 439.5 3.863 2
3-3 3.25 3.36 8.66 ND a >40 467.5 4.842 1
3-9 2.68 2.08 2.66 ND >40 439.5 3.863 2

3-12 11.91 7.13 11.53 ND >40 467.5 5.063 1
3-17 1.77 ~0.01 1.94 ND 0.66 423.5 3.747 2
3-37 5.49 1.41 4.09 ND > 40 453.5 4.211 2

ND a: not determined.
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Figure 5. Structures of compounds in Table 6.

3. Materials and Methods

3.1. Overall Protocol

3D screening methods taking into account the molecular shape and electrostatic maps of molecules
were employed to identify compounds of interest in the SPECS compound library. Compounds were
selected for purchase and experimental testing in cell-based assays taking into account their calculated
aqueous solubility and structural diversity (assessed by a cluster analysis). An iterative 2D similarity
search was conducted to follow up on active compounds and identify (further) derivatives for
testing (Figure 6).
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Figure 6. Workflow of virtual screening and bioassays.

3.2. Three-Dimensional Similarity Search

The SPECS compound library (http://www.specs.net/, accessed May 2014) was prepared with a
workflow developed with Pipeline Pilot v7.5 (PP 7.5, Accelrys Software, Inc., San Diego, CA, USA.),
in which minor salt components were removed and the chemical structures standardized. The prepared
database was filtered with “Blockbuster” filter of FILTER (version 2.2.1, OpenEye Scientific Software, Inc.,
Santa Fe, NM, USA) to remove molecules with undesired physicochemical properties with respect to
molecular weight, number of heavy atoms, and aqueous solubility. Next, the databases were processed
with OMEGA [23] (version 2.4.5, OpenEye Scientific Software, Inc., Santa Fe, NM, USA) to generate up
to 500 conformations for each molecule.

ROCS [17,24] (version 3.2.0, OpenEye Scientific Software Inc., Santa Fe, NM, USA) was employed
for 3D shape comparison. The lowest energy conformers of 17β-estradiol and IC-163 generated with
OMEGA served as input for screening with ROCS. EON was employed to re-rank the top-ranked
molecules obtained with ROCS based on the similarity of electrostatic properties.

3.3. Water Solubility Prediction and Structure Cluster Analysis

Water solubility at 25 ◦C was calculated with the ADMET solubility prediction module of
Discovery Studio 2.5 (Accelrys Software, Inc., San Diego, CA, USA). We removed molecules with
ADMET solubility level in 0 (extremely low) and 1 (very low) to ensure that the chosen compounds
have acceptable solubility. The remaining compounds were clustered based on ECFP_6 and FCFP_6
fingerprints to assist the selection of compounds for experimental testing.

3.4. Two-Dimensional Similarity Search

The most promising compounds, C10, 2-5, and 2-8, served as templates for 2D similarity search
based on ECFP_6 or FCFP_6 fingerprints.

3.5. Cell Viability Assays

Four human TNBC cell lines (MDA-MB-231, MDA-MB-453, SUM-159, and BT-20), a non-TNBC
breast cancer cell line (MCF-7) and a normal mammary epithelial cell line (MCF-10A) were cultured
with DMEM (phenol free) supplemented with 2.5% CS-FBS and 1% L-Glu. 1.2 × 103 of cells were
seeded into 384-well microplates and maintained for 24 h in an incubator at 37 ◦C in a 5% CO2,
saturated humidified atmosphere. Different compounds were added into cells with 9 concentrations

http://www.specs.net/
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from 0.156 to 40 µM for 72 h. Tamoxifen was the positive control. Then CCK-8 solution was added
into cells and incubated for another 4 h. Absorbance was measured with a Microplate Reader at
450/600 nm. The IC50 values of the compounds on TNBC cell lines were derived using GraphPad
Prism 5.0 (GraphPad Software, Inc., La Jolla, CA, USA).

4. Conclusions

3D and 2D similarity searches led to the identification of
N-(naphtho[1,2-b]furan-5-yl)benzenesulfonamides as novel inhibitors of TNBCs. The most
potent compounds (2-5 and 2-8) obtained IC50 values of 2–3 µM on different TNBC cell lines and
showed no inhibitory activity on normal (i.e. MCF-7 and MCF-10A) cells in vitro, indicating their
selectivity against TNBC cells. These compounds and derivatives thereof could serve as starting points
for further research and development of selective TNBC inhibitors.

Supplementary Materials: The following are available online. Figure S1: Structures of 32 compounds from
3D similarity search; Figure S2: Inhibition rates of 32 compounds at 10 µM from 3D similarity search;
Figure S3: Inhibition rates of 12 compounds at 5 µg/mL from C10 2D similarity search; Figure S4: Inhibition rates
of 40 compounds at 5 µg/mL from Compounds 2-5 and 2-8 2D similarity search; Table S1: Inhibition rates of
analogs of 2-5 and 2-8 identified by 2D similarity search (Part 3).
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ER estrogen receptor
PR progesterone receptor
HER2 human epidermal growth factor receptor 2
VEGF the vascular epidermal growth factor
3D three-dimensional
ROCS Rapid Overlay of Chemical Structures
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ECFP_6 extended connectivity fingerprints of maximum diameter 6
FCFP_6 function class fingerprints of maximum diameter 6
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