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Abstract: In this manuscript, we combined a search in the Cambridge Structural Database (CSD)
and ab initio calculations (RI-MP2/def2-TZVPD level of theory) to analyze the ability of trisulphide
and triselenide moieties to establish chalcogen ‘like-like’ interactions. A preliminary CSD inspection
revealed two predominant structural patterns, depending on the anti or syn conformation adopted by
the substituents of the S3/Se3 bridge, leading to bifurcated or double chalcogen bonding interactions,
respectively. In order to analyze these two relevant structural motifs we have used a series of S and
Se derivatives Ch3X2 (Ch = S and Se and X = H, F, CN, and CF3) which act as both electron donor
(using the lone pairs) and acceptor (using the σ-holes) entities. Besides, we have carried out “atoms
in molecules” (AIM) and natural bonding orbital (NBO) analyses to further describe and characterize
the chalcogen bonding interactions described herein. As far as we know, chalcogen···chalcogen
interactions involving trichalconides (S3/Se3) have not been previously described in literature a may
be of great importance in the preparation and characterization of new solids based on this subclass of
σ-hole bonding.

Keywords: chalcogen bonding interactions; CSD search; RI-MP2 calculations; AIM and NBO analyses

1. Introduction

The conjunction of a great deal of noncovalent forces is considered of great importance for the
advance and progress in the field of Supramolecular chemistry [1,2]. A depth comprehension of them
is vital for chemists working in this discipline, since many chemical and biological processes are
governed by an intricate combination of noncovalent interactions, settling the basis of highly specific
recognition processes. For instance, interactions between hosts and guests cover the formation of novel
supramolecular assemblies presenting high affinities even in highly competitive media [3–6]. For this
reason, a proper description and understanding of noncovalent interactions between molecules is key
for success in this field of research. One of the classical and well-known supramolecular forces present
in many chemical and biological environments is hydrogen bonding [7]. In a parallel way, halogen
bonding [8] is a noncovalent force that shares strength and directionality features with the hydrogen
bonding interaction. Consequently, a series of studies using the Cambridge Structural Database (CSD)
were carried out to shed light into the impact of this interaction in solid state chemistry [9]. It is also
widely recognized that σ-holes can also appear in positive electrostatic potential regions of covalently
bond atoms of groups III to VIII [10–13]. In addition, several theoretical studies have been devoted
to study their physical nature [14–18], concluding that it is basically explained by the interaction
of an electron rich entity (electron donor) with a σ-hole (electron acceptor), in a parallel way to
hydrogen and halogen bonding interactions [19,20]. More in particular, chalcogen bonding interactions
involving elements from group VI have been widely analyzed in a series of both experimental and
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theoretical studies [21–27]. Interestingly, diallyl trisulphide (DATS) [28], also known as Allitridin,
is an organosulfur compound responsible for many health benefits of garlic. These include anti-cancer
effects, since DATS has been shown to be involved in the apoptosis of cancer cells and a decrease in
cancer cell proliferation [29,30], platelet aggregation, blood pressure reduction, decreases in cholesterol
levels, and increases in levels of reactive oxygen species (ROS) [31,32]. Finally, DATS is considered
a promising tool in the treatment of cardiac arrhythmias through its ability to regulate the human
hERG (ether-à-go-go-related gene) channel, which is a pore-forming subunit of potassium channels
responsible for the creation of delayed rectifier potassium ion currents in many cells, including cardiac
myocytes [33].

In this regard, owing to the potential dual behavior of trisulphides (and also triselenides) as both
chalcogen bond donor and acceptor moieties, we performed an initial inspection in the CSD [34] and
found many X-ray structures where chalcogen ‘like-like’ interactions dominated their supramolecular
architecture. More in detail, we identified two predominant structural patterns, which depend on the
anti or syn conformation adopted by the substituents of the S3/Se3 moiety (see Figure 1). Consequently,
we designed a theoretical study in order to analyze the energetic and stability properties of these two
structural motifs. For this purpose, we used Ch3X2 (Ch = S and Se and X = H, F, CN, and CF3) moieties
as both electron and σ-hole donors. In addition, we have performed “atoms in molecules” (AIM) and
natural bonding orbital (NBO) analyses to further characterize the interactions described herein. As far
as our knowledge extends, chalcogen bonding interactions involving trisulphide and triselenide
moieties have not been previously reported in literature and may represent and interesting topic for
those chemists working in the field of chalcogen chemistry, more in particular, in the preparation of
organosulfur and organoselenide derivatives.
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Figure 1. Compounds 1–16 and complexes 17 to 32 studied in this work.

2. Results and Discussion

2.1. Cambridge Structural Database Search

We have firstly explored the CSD (version 5.38, updated February 2017) to find evidence of the
ability of trisulphide and triselenide compounds to establish chalcogen ‘like-like’ interactions. For the
search, we have retrieved all trisulphide and triselenide compounds from CSD with the unique
restriction that the three chalcogen atoms in the molecule are divalent (bonded to two atoms). We have
found 123 trisulphide compounds and 36 triselenide compounds. Among these, in 10 trisulphide and
8 triselenide structures the crystal packing is governed by chalcogen bonding interactions that follow
the two recognition patterns shown in Figure 2. First, in case of the anti conformation (UBADIN [35]
and SADYIF [36] structures), the crystal packing is formed by 1D infinite columns disposed in an
‘arrow-like’ fashion, which is stabilized by the formation of bifurcated chalcogen ‘like-like’ interactions
involving a central S/Se atom of one molecule acting as chalcogen bond donor and the lone pairs of the
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two vicinal S/Se atoms present in the other unit as electron donor moieties. In addition, in UBADIN
the aromatic substituents interact by means of ancillary π–π stacking interactions (highlighted in red
in Figure 2). On the other hand, in SACMIT [37] and DAHDOF [38] structures, the substituents of the
S3/Se3 moiety are oriented in syn conformation, leading to the establishment of double chalcogen
bonds, thus conferring a completely different solid state architecture dominated by the formation of
‘zig-zag’ self-assembled dimers. More in detail, each moiety acts as both electron donor and acceptor
entity by using the lone pairs of the central S/Se atom and one of the σ-holes present in a vicinal S/Se
atom. In order to analyze the energetic and geometrical parameters of both structural patters we have
performed a theoretical study using the compounds shown in Figure 1 (see above).
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Figure 2. (Left) Structural patterns observed for anti (top) and syn (bottom) substituted S3/Se3

compounds. (Right) Partial views of the X-ray structure of some anti (top) and syn (bottom) trisulphide
and triselenide compounds exhibiting chalcogen ‘like-like’ interactions. The Cambridge Structural
Database (CSD) codes are indicated. Distances in Å.

2.2. Preliminary MEP Analysis

We have firstly computed the molecular electrostatic potential (MEP) mapped onto the van
der Waals surface for compounds 1 to 16 (Figures 3 and 4). Among the anti compounds 1 to 8 two
positive electrostatic potential regions are found on the extension of both the X−Se (X = H, F, CN,
and CF3) and S−S bonds, named σ-holes. The presence of these regions ensures an attractive interaction
with electron rich entities from an electrostatic point of view. In addition, the MEP values become
more positive as the electron-acceptor ability of the substituent does (H < F < CF3 < CN), as it is
commonly known for other σ-hole interactions [10]. Furthermore, the MEP values are more positive
for compounds involving Se (5 to 8) than for those involving S (1 to 4), thus initially expecting
larger interaction energy values for complexes involving the former from an electrostatic perspective.
Moreover, for compounds 1 to 3 and 5 to 7 a negative electrostatic potential region appears at the
rear part of the molecule due to the presence of the lone pairs belonging to the two vicinal S/Se
atoms, making these molecules suitable for acting also as electron donor entities. It is also worthy
to mention that in case of compounds 4 and 8, the MEP value over this region is positive, however
it becomes negative over the π-cloud of the CN group. From the inspection of these results, it is
expected that complexes involving 3 and 7 present the most favorable interaction energy values
from an electrostatic perspective since they showed the most positive σ-hole MEP values as well as
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moderately negative MEP value over the CN π-system. Moreover, for complexes involving F and CF3

substituted compounds (2, 4, 6, and 8) a similar strength upon complexation is expected owing to their
respective σ-hole and lone pair MEP values. Finally, compounds 1 and 5 present on the one hand the
most negative lone pair MEP values and on the other hand the less positive σ-hole MEP values.
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Among the syn compounds (9 to 16) the σ-hole MEP values of the two vicinal S/Se atoms are
positive in all cases following the behavior H < CF3 < F < CN, similar to that observed for compounds
1 to 8. In addition, the σ-hole MEP values for the Se derivatives (13 to 16) are more positive than the
ones obtained for S compounds 9 to 12, in agreement to that obtained for the anti set. In case of the
central S/Se atom, the MEP value is negative in case of compounds 9 and 13, however, it becomes
positive when attaching a strong electron-acceptor substituent (compounds 10 to 12 and 14 to 16), thus
expecting weaker binding energy values from an electrostatic perspective (especially in complexes
involving compounds 11, 15, and 16). From the inspection of the results, complexes involving 9 and 12
are expected to present stronger interaction energy values than their F, CN, and CF3 analogous, owing
to their respective σ-hole and lone pair MEP values. Finally, for the rest of the compounds (10 to 12



Molecules 2018, 23, 699 5 of 11

and 14 to 16) other energy components, such as dispersion and induction terms are meant to play a
key role in the stabilization of their respective complexes.
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2.3. Energetic and Geometric Results

Table 1 gathers the interaction energies and equilibrium distances of the optimized complexes 17
to 32 (see Figures 1 and 5) computed at the RI-MP2/def2-TZVPD level of theory. From the analysis
of the results, several points are worthy to discuss. First, in all cases negative and moderately
strong interaction energy values were obtained, ranging from −7.1 to −2.1 kcal/mol. Second, anti
complexes involving Se (21–24) obtained larger interaction energy values than those involving S
(17–20), as expected from the MEP analysis discussed above. In case of syn complexes, the same
energetic behavior is observed, obtaining larger binding energy values for Se complexes 29 to 32
compared to their S analogous (25 to 28). Third, syn complexes (25 to 32) achieved larger interaction
energy values than those presenting the anti conformation (17 to 24), since double chalcogen bonding
interactions instead of bifurcated ones are established in the former.

For complexes involving anti conformation (17 to 24) the two σ-holes of the central S/Se atom are
pointing towards the lone pairs of the vicinal S/Se atoms present in the other unit, thus establishing
bifurcated chalcogen bonding interactions, in agreement with the X-ray structures shown above.
However, in complexes 19 and 23 the σ-holes of the S/Se atom are pointing to the π−system of the
CN group, which showed a negative MEP value (see Figure 4). Precisely, these complexes achieved
the largest interaction energy values of their respective sets (–4.6 and –5.5 kcal/mol, respectively),
followed by complexes 20 and 24 where the CF3 group acts as substituent (−3.7 and −4.9 kcal/mol,
respectively). Finally, complexes 17, 18, 21, and 22 involving H and F obtained slightly similar
interaction energy values (i.e., −2.1 and−2.3 kcal/mol for complexes 17 and 18, respectively), contrary
to the MEP analysis discussed above, likely due to a compensating effect between the σ-hole and lone
pair MEP values.
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Among the syn complexes considered (25 to 32) a different behavior is observed depending on
the chalcogen atom used. For S complexes (25 to 28), complex 28 involving CF3 group achieved the
most favorable interaction energy value (−4.4 kcal/mol). This result is somewhat unexpected, since
compound 4 involving CF3 does not present the most positive σ-hole values, however, it may be
compensated with a less positive lone pair MEP value than compounds 10 and 11 involving F and
CN groups. In addition, among complexes 25 and 26 involving H and F, almost identical binding
energy values were obtained (−3.7 and −3.6 kcal/mol, respectively), which may also be due to a
compensating effect between the more positive σ-hole MEP value observed in compound 10 and the
more negative lone pair MEP value obtained for 9. Finally, complex 27 involving CN obtained the
poorest interaction energy value (−3.0 kcal/mol), since it presents the most positive lone pair and
σ-hole MEP values of the series. For Se complexes (29 to 32) complex 30 involving F obtained the largest
interaction energy value of the study (−7.1 kcal/mol). This issue will be further described in the NBO
analysis (see Table 2). In addition, complexes 29 and 32 involving H and CF3 groups obtained similar
interaction energy values (−5.0 and −5.8, respectively). Finally, complex 31 involving CN obtained the
poorest interaction energy value of the set (−4.3 kcal/mol), similarly to S series (complex 27).

Table 1. Interaction energies with basis set superposition error (BSSE) correction (∆EBSSE in kcal/mol),
equilibrium distances (R, Å), value of the density at the bond critical point (CP) (102 x $, a.u.) and
number of imaginary frequencies (Nimag) for complexes 17–32 at the RI-MP2/def2-TZVPD level
of theory.

Complex ∆EBSSE R 102 x $ Nimag

17 −2.1 3.546 0.82 0
18 −2.3 3.518 0.84 0
19 −4.6 3.577 0.73 0
20 −3.7 3.354 0.77 0
21 −3.7 3.419 1.38 0
22 −3.0 3.479 1.25 0
23 −5.5 3.441 0.83 0
24 −4.9 3.342 1.34 0
25 −3.7 3.546 0.74 0
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Table 1. Cont.

Complex ∆EBSSE R 102 x $ Nimag

26 −3.6 3.278 1.17 1
27 −3.0 3.482 0.88 1
28 −4.4 3.452 0.83 0
29 −5.0 3.601 0.93 1
30 −7.1 2.996 2.76 0
31 −4.3 3.521 1.20 1
32 −5.8 3.457 1.08 1

2.4. “Atom in Molecules” and Natural Bond Order Analyses

We have used the Bader’s theory of “atoms in molecules” [39] (AIM) to characterize the
noncovalent interactions present in complexes 17–32. A bond critical point (CP) and a bond path
connecting two atoms is an explicit indication of interaction. The AIM distribution of critical points and
bond paths computed for all complexes is shown in Figure 6. As noted, in case of the anti complexes
17 and 21 the bifurcated chalcogen bonding interaction is characterized by the presence of two
symmetrically distributed bond CP and a bond paths connecting the σ-holes of the central S/Se atom
with the lone pairs of the two vicinal chalcogen atoms present in the other molecule. The interaction is
further described by the presence of a ring CP as a consequence of the formation of a supramolecular
ring. On the other hand, for syn complexes 25, 27, and 32 the double chalcogen bonding interactions are
characterized by the presence of two bond CPs and bond paths connecting the central and vicinal S/Se
atoms of both moieties. In addition, two ring CPs are formed due to the presence of two supramolecular
rings. It is also worth mentioning that, in complex 32, two bond CPs connect the fluorine atoms of
the two CF3 groups present in each moiety, thus characterizing intramolecular F···F contacts. Finally,
the value of the Laplacian at the bond critical points in all cases is positive, as it is commonly found in
closed shell interactions.

In order to study if orbital contributions are important to explain the chalcogen bond
complexes described above, we have performed NBO calculations focusing our attention on
the second order perturbation analysis, due to its usefulness in the analysis of donor–acceptor
interactions [40]. The results for some representative complexes are summarized in Table 2 and
some points are worthy to remark. First, for anti complexes 17 to 24 the main orbital contribution
comes from the interaction between the lone pairs (LP) of the S/Se atoms and an antibonding (BD*) S–S
orbital with the exception of complexes 19 and 23 where it comes from the donation of bonding (BD)
C–N orbital to an BD* S–S orbital. In addition, for these complexes an additional orbital contribution
from the lone pairs (LP) of the S/Se atom to an BD* S–S orbital is also observed. On the other hand,
in case of syn complexes 25 to 32, the main orbital contribution is attributed to the interaction between
the lone pairs (LP) of the S/Se atoms and an BD* S/Se–X (X = H, F and C) orbital. Particularly,
complex 30 involving F presents the largest orbital contribution of the study, in agreement with the
binding energy value obtained (see above). It can also be noted that the orbital contributions for the
Se complexes (21 to 24 and 29 to 32) are larger in magnitude than for S involving complexes (17 to 20
and 25 to 28), in line with the interaction energy values discussed above. However, a clear behavior
cannot be established when comparing the magnitude of the orbital contributions between anti and
syn complexes. Finally, it is also worth pointing out that the magnitude of the orbital contributions
ranges from moderate (~30% for complex 20 and 26, ~20% for complexes 19 and 29) to strong (~50%
for complex 17 and ~80% for complexes 30 and 31) compared to the total interaction energy, remarking
the importance of orbital interactions in the global stabilization of the complexes studied herein.
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3. Theoretical Methods

The geometries of the complexes studied herein have been fully optimized at the
RI-MP2/def2-TZVPD level of theory. The RI-MP2 has been validated as an efficient and reliable
method for the treatment of chalcogen bonding interactions among others [41]. The calculations have
been performed by using the program TURBOMOLE version 7.0 (TURBOMOLE GmbH, Karlsruhe,
Germany) [42]. The C2 and Ci symmetry point group have been used in the optimization of the
complexes. The interaction energies were calculated with correction for the basis set superposition
error (BSSE) by using the Boys–Bernardi counterpoise technique [43]. Frequency calculations were
performed at the RI-MP2/def2-TZVPD level of theory. The NBO analysis has been carried out at the
HF/def2-TZVP level of theory. Bader’s “atoms in molecules” theory has been used to study the interactions
discussed herein by means of the AIMAll calculation package [44]. The calculations for the wavefunction
and NBO analyses have been performed by means of the Gaussian 09 calculation package [45].

Table 2. Donor and acceptor natural bond orbital (NBO) interactions with indication of the second-order
interaction energy E(2) (kcal/mol) for complexes 17–32.

Complex Donor a Acceptor E(2)

17 LP S BD* S–S 1.12

18 LP S BD* S–S 1.08

19
BD C–N BD* S–S 0.84

LP Se BD* S–S 0.22

20 LP S BD* S–S 0.94

21 LP Se BD* Se–Se 3.62

22 LP Se BD* Se–Se 2.70
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Table 2. Cont.

Complex Donor a Acceptor E(2)

23
BD C–N BD* Se–Se 1.44

LP Se BD* Se–Se 0.60

24 LP Se BD* Se–Se 3.46

25 LP S BD* S–H 0.36

26 LP S BD* S–F 1.08

27 LP S BD* S–C 0.54

28 LP S BD* S–C 0.36

29 LP Se BD* Se–H 0.78

30 LP Se BD* Se–F 5.40

31 LP Se BD* Se–C 1.44

32 LP Se BD* Se–C 1.28
a LP, BD, and BD* stand for lone pair, bonding, and anti-bonding orbital, respectively.

4. Conclusions

In this manuscript, we have theoretically analyzed (RI-MP2/def2-TZVPD) the chalcogen ‘like-like’
interactions established between trisulphide and triselenide compounds. A preliminary inspection of
the CSD database revealed two predominant structural motifs, where the substituents of the S3/Se3

bridge were disposed in either anti or syn conformation. Consequently, we designed a computational
study in order to analyze the energetic and geometrical parameters of these two relevant crystal
patterns. More in detail, we have used Ch3X2 (Ch = S and Se, X = H, F, CN, and CF3) derivatives,
which act as both σ-hole and lone pair donors. In addition, we have also performed AIM and NBO
analyses to further characterize the interactions described above. In this regard, orbital interactions
involving the lone pairs and σ-holes of both S/Se moieties range from a moderate to a strong source
of stability of the complexes studied. To the best of our knowledge, chalcogen bonding interactions
involving S3/Se3 compounds have not been previously reported and may be important to understand
the crystal packing phenomena of this family of compounds as well as in the preparation of novel
chalcogenide derivatives.

Supplementary Materials: The following are available online, cartesian coordinates of the complexes and results
from the CSD search.
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