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Abstract: Melatonin, a basic secretory pineal gland product, is a nontoxic, multifunctional molecule.
It has antioxidant and anti-apoptotic activities and protects tissues from injury. The objective of
the present study was to determine the molecular mechanism of melatonin anti-apoptotic effect
on gastric injury in a rat burn model. We hypothesized that melatonin gastric protection may be
related to the activation of transcription erythroid 2-related factor 2 (Nrf2). Using a 30% total body
surface area (TBSA) rat burn model, melatonin (10 mg/kg, i.p.) was injected immediately and
12 h after thermal skin injury. Via light immunohistochemistry, we determined the tissue level of
4-hydroxy-2-nonenal (4-HNE) as a marker of lipid peroxidation, Bcl-2 and Bax as apoptosis-related
proteins, and Nrf2. Results are presented as medians (interquartile range (IQR)). Thermal trauma in
burned animals, compared with the controls, increased the expression of pro-apoptotic Bax protein
(1.37 (0.94–1.47)), decreased anti-apoptotic Bcl-2 protein (1.16 (1.06–1.23), p < 0.001) in epithelial cells,
and elevated Bax/Bcl-2 ratios (p < 0.05). Tissue 4-HNE and Nrf2 levels were increased following
severe burns (1.55 (0.98–1.61) and 1.16 (1.01–1.25), p < 0.05, respectively). Melatonin significantly
decreased 4-HNE (0.87 (0.74–0.96), p < 0.01) and upregulated Nrf2 (1.55 (1.52–1.65), p < 0.001) levels.
It also augmented Bax (1.68 (1.5–1.8), p < 0.001) and Bcl-2 expressions (1.96 (1.89–2.01), p < 0.0001),
but reduced Bax/Bcl-2 ratios (p < 0.05). Our results suggest that experimental thermal trauma
induces oxidative gastric mucosal injury. Melatonin manifests a gastroprotective effect through Nrf2
activation, lipid peroxidation attenuation, and Bax/Bcl-2 ratio modification as well.
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1. Introduction

Severe thermal trauma induces stomach damage and dysfunction. Pathogenesis of gastric mucosal
injury is complex and has not yet been completely clarified. Local skin insult leads to generalized
response—inflammation and oxidative stress [1,2]. Ischemia and reperfusion of the abdominal organs
leads to neutrophil infiltration, overproduction of both reactive oxygen species (ROS) and reactive
nitrogen species (RNS), and increased cytokines secretion. ROS/RNS and lipid peroxidation is an
important mechanism for distant organ injury in burns. The 4-hydroxy-2-nonenal (4-HNE), one of the
major lipid peroxidation products, is one of the toxic markers of mucosa injuring by ROS. There is
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increased 4-HNE level in oxidative gastric injury induced by ischemia reperfusion (I/R), ethanol, water
immersion restraint stress, and non-steroidal anti-inflammatory drugs (NSAIDs) [3,4]. The 4-HNE
induces apoptosis in a variety of cells [5,6]. There is, however, no evidence of its role in gastric mucosal
apoptosis pathogenesis after thermal trauma.

Apoptosis (programmed cell death) is a genetically determined energy-dependent process and
homeostatic mechanism, which maintains cell populations in tissues. Mechanisms of apoptosis are
complex and involve a consistent cascade of processes and molecular interactions. There are two
main apoptotic pathways: the extrinsic, or “death receptor,” pathway and the intrinsic mitochondrial
pathway [7]. Death receptors are members of the tumor necrosis factor (TNF) receptor gene superfamily.
The intrinsic pathway is usually activated under stress conditions, including DNA damage and
oxidative stress. The regulators of this pathway are the Bcl-2 family proteins; anti-apoptotic (such as
Bcl-2 and Bcl-xl) and pro-apoptotic (such as Bax, Bak, and Bad) [8]. The cell response (survival or
death) to apoptopic stimulus depends on the balance between pro-apoptotic and anti-apoptotic Bcl-2
proteins [9].

The 4-HNE, as electrophile, can act as a signal molecule and increases transcriptional activity of
nuclear factors such as NF-κB, Nrf2, and AP.

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important cytoprotective transcription
factor [10]. It is known that Nrf2 plays a key role in the antioxidant protection of the organism and in
the redox signaling pathways. Under conditions of oxidative stress and increased lipid peroxidation
(4-HNE), Nrf2 rapidly translocates into the nucleus [11]. The Nrf2 target genes encode detoxification
enzymes and cytoprotective proteins associated with antioxidant defense and apoptosis [12].

Melatonin (N-acetyl-5-methoxytryptamine) is the primary neurohormone secreted in the pineal
gland. It has pronounced pleiotropic biological activities, e.g. endocrine, autocrine, and paracrine [13].
The antioxidation is one of its main peripheral functions [14]. Melatonin reduces lipid peroxidation
and modulates balance between pro-apoptotic and anti-apoptotic Bcl-2 proteins, depending on cell
type (damaged cell or neoplastic cell) [15,16]. Moreover, melatonin also has a potent protective effect
on gastric mucosal injury induced by NSAIDs, stress, and I/R [17,18]. It regulates mitochondrial
homeostasis [19]. Melatonin modulates the expression of Bcl-2 family proteins and restricts the
burn-induced liver damage [20].

The aim of the current study was to investigate the protective effect of melatonin, a potent
antioxidant with pleiotropic activity, in burn-induced gastric mucosal injury by measuring a marker of
lipid oxidative damage (4-HNE) and expression of apoptosis-related proteins Bcl-2 and Bax in rats.
We hypothesize that the molecular mechanisms of antiapoptotic effects of melatonin are mediated by
transcription factor Nrf2 activation.

2. Results

2.1. The Effect of Melatonin on 4-HNE Expression in Gastric Mucosa

Immunohistochemistry showed 4-HNE cytoplasmic expression in epithelial cells in the control
group. It was mainly observed in 1/3 of the basal region of the gastric glands where reaction intensity
appeared to be weak to moderate. The cytoplasmic content was 1.17 (1.1–1.33) (Figure 1A). In the
burned group, the 4-HNE-positive cells were also detected in the basal portion of gastric glands
showing weak to moderate reaction intensity, while the epithelial cells from the upper portion of
gastric glands remain negative (Figure 1B). The cytoplasmic expression was 1.55 (0.98–1.61) and
increased by 32% when compared to the control group. In the burned and melatonin-treated group,
4-HNE cytoplasmic expression was strongly reduced to 0.87 (0.74–0.96), p < 0.01 (Figure 1C).

2.2. The Melatonin Effect on Bax Protein Expression in Gastric Mucosa

The results of immunohistochemistry in the control group showed positive Bax expression in the
cytoplasm of epithelial cells with predominance in basal portion of gastric glands (0.94 (0.71–1.25))
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(Figure 2A). The burned group showed stronger expression of Bax (1.37 (0.94–1.47)) and it was higher by
46% compared to the control group (Figure 2B). In the burned melatonin-treated group, cytoplasmic Bax
protein expression was detected in most epithelial cells in the gastric mucosa (Figure 2C). The reaction
intensity was stronger (1.68 (1.5–1.8)) and significantly higher compared to both burned and control
groups (23%, p < 0.001 and 79%, p < 0.05, respectively).

2.3. The Melatonin Effect on Bcl-2 Protein Expression in Gastric Mucosa

Bcl-2 cytoplasmic expression observed predominantly in the basal parts of the gastric glands in the
control group (Figure 3A). The content was 1.51 (1.36–1.69). In contrast, the Bcl-2 expression was more
diffuse in the burned group. Furthermore, it was detected in both the nucleus and the cytoplasm of
gastric epithelial cells. The reaction intensity was 1.16 (1.06–1.23) and statistically significantly lower by
23% (p < 0.001) compared to the control group (Figure 3B). In the melatonin-treated group, cytoplasmic
Bcl-2 protein expression was detected in almost all the cells of the gastric mucosa (Figure 3B). Its reaction
intensity was 1.96 (1.89–2.01). The Bcl-2 response was higher compared to both groups (69% vs. burned
group (p < 0.0001); 30% vs. control group (p < 0.0001)).

Figure 1. Melatonin effect on 4-HNE expression. Immunohistochemical 4-HNE detection in gastric
mucosa. Controls (A); burned rats (B); burned melatonin-treated rats (C). The antigen site appears as
a brown color. Representative images. Original magnification, 400×. Score index of 4-HNE positive
immunostained cells (D). Results are given as box plot, with median, 25th- and 75th-percentile values,
and min and max values. †† p < 0.01 vs. burned, non-treated group; •••• p < 0.0001 vs. control group.
Controls (C); burned rats (B); burned melatonin-treated rats (B + M).
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Figure 2. Melatonin effect on Bax protein expression. Immunohistochemical detection of Bax in gastric
mucosa. Controls (A); burned rats (B); burned melatonin-treated rats (C). The antigen site appears
as a brown color. Representative images. Original magnification, 400×. Score index of Bax positive
immunostained cells (D). Results are given as box plot, with median, 25th- and 75th-percentile values,
and min and max values. ††† p < 0.001 vs. burned, non-treated group; • p < 0.05 vs. control group.
Controls (C); burned rats (B); burned melatonin-treated rats (B + M).

2.4. Changes in Bax/Bcl-2 Ratio in Gastric Mucosa Following Burn Trauma

The Bax/Bcl-2 index was statistically significantly increased by 51% (p < 0.05) in the burned
group compared to the control one. After melatonin treatment, the Bax/Bcl-2 index was statistically
significantly reduced by 19% (p < 0.05) when compared to the burn group with a tendency to approach
that of the control one (Figure 4).

2.5. The Melatonin Effect on Nrf2 Expression in Gastric Mucosa

Immunohistochemical analysis showed transcription factor Nrf2 expression in both the cytoplasm
and the nuclei of epithelial cells in the control group. The reaction intensity was weak with the
cytoplasmic content of 0.97 (0.89–1.12) (Figure 5A). In contrast, the burned group was presented
with predominantly cytoplasmic Nrf2 expression. The intensity of the reaction ranged from weak to
moderate (1.16 (1.01–1.25)) and was significantly higher by 20% (p < 0.05) as compared to the control
group (Figure 5B). After melatonin treatment, Nrf2 was detected in almost all gastric mucosal cells.
The expression was predominantly moderate (1.55 (1.52–1.65)) and significantly higher compared to
both groups (34% vs. burned group (p < 0.001); 60% vs. control one (p < 0.001)) (Figure 5C).
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Figure 3. Melatonin effect on Bcl-2 expression. Immunohistochemical detection of Bcl-2 in gastric
mucosa. Controls (A); burned rats (B); burned melatonin-treated rats (C). The antigen site appears
as a brown color. Representative images. Original magnification, 400×. Score index of Bcl-2 positive
immunostained cells (D). Results are given as box plot, with median, 25th- and 75th-percentile values,
and min and max values. *** p < 0.001 vs. control group; †††† p < 0.0001 vs. burned, non-treated group;
•••• p < 0.0001 vs. control group. Controls (C); burned rats (B); burned melatonin-treated rats (B + M).

Figure 4. Melatonin effect on the Bax/Bcl-2 ratio (intensity index) in gastric mucosa. Results are given
as means ±SEM. * p < 0.05 vs. control group; † p < 0.05 vs. burned, non-treated group. Controls (C);
burned rats (B); burned melatonin-treated rats (B + M).
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Figure 5. Melatonin effect on Nrf2 protein expression. Immunohistochemical Nrf2 detection in gastric
mucosa. Controls (A); burned rats (B); burned rats, treated with melatonin (C). The antigen site appears
as a brown color. Representative images. Original magnification, 400×. Score index of Bax positive
immunostained cells (D). Results are given as box plot, with median, 25th- and 75th-percentile values,
and min and max values. * p < 0.05 vs. control group; ††† p < 0.001 vs. burned, non-treated group;
••• p < 0.001 vs. control group. Controls (C); burned rats (B); burned melatonin-treated rats (B + M).

3. Discussion

Thermal trauma induces stress-related gastric injury [21,22]. The burned group showed higher
4-HNE levels and pro-apoptotic protein Bax levels, and significantly higher Nrf2 levels and Bax/Bcl-2
ratios in gastric tissue, but significantly lower anti-apoptotic protein Bcl-2 levels.

This injury is a strong inducer of oxidative stress. The excessive ROS production might overwhelm
antioxidant defense system and generate high toxic lipid peroxides such as 4-HNE, which is considered
the most significant lipid peroxidation product. Its high or very high levels lead to cell death [23,24].

Mitochondria are particularly sensitive to the harmful effect of lipid peroxides. The 4-HNE rapidly
reacts with thiols and amino groups and modifies glutathione, mitochondrial coupling proteins, and
antioxidant proteins, which induces cell death. The 4-HNE also increases both transcriptional and
translational Bax expressions and stimulates protein translocation from cytosol to mitochondria.
The latter increases mitochondrial outer membrane permeabilization, leads to cytochrome-C release
into the cytosol, and triggers caspase activation [7,24,25].

The 4-HNE detoxification to less reactive chemical species minimizes its toxic effects on
cells. Glutathione-S-transferase, aldo-keto reductases, alcohol dehydrogenases, and aldehyde
dehydrogenase catalyze the three major detoxification pathways [26].
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In the current study, we observed an increase in Bax protein levels and a significant decrease in
Bcl-2 protein levels in the gastric mucosa of the burned group when compared to the control group.
These results correspond to changes reported by other authors, who detect elevated Bax protein levels
and decreased Bcl-2 protein expression after burns [27–30].

Cell fate, apoptosis, or survival depends on the balance between Bax and Bcl-2 proteins [9].
The imbalance between pro- and anti-apoptotic proteins, mediating apoptosis, has been found in
several models of gastric injury induced by NSAIDs, ethanol, stress, and other factors [31–33].

Our results showed an elevated Bax/Bcl-2 ratio, predominantly for Bcl-2 reduction in burn group
than in the control one. These changes can be associated to 4-HNE effects—the modification of essential
cellular proteins, decreases in glutathione levels, and the alteration of cellular redox homeostasis [34].

Furthermore, pro-apoptotic Bax protein can be induced through the activation of death receptors,
which are members of the TNF receptor gene superfamily. The ligands and corresponding death
receptors include FasL/FasR, TNF-α/TNFR1, and induce Fas-associated death domain (FADD), which
in turn activates caspase-8 and effector caspase-3. H. Li et al. identified that the pro-apoptotic Bcl-2
family member Bid is a linking element between the extrinsic and intrinsic pathways [35].

We have previously reported that thermal trauma increases the TNF-α levels in plasma [36].
We supposed then that TNF-α induced epithelial apoptosis via intermembrane death receptors in
the experimental model. Likewise, the increased hepatocytes apoptosis was associated with an
imbalance between pro-inflammatory/anti-inflammatory cytokines in burns [20]. Data suggested
that TNF-α induced apoptosis of enterochromaffin-like cells by activating NF kappa B and generating
NO [37,38]. In addition, immunohistochemically, we found increased iNOS expression in the epithelial
cell cytoplasm in burned rats [39].

The low 4-HNE levels enhance cellular antioxidant capacity and exert adaptive response because
4-HNE acts as a signal molecule and regulates several transcription factors such as Nrf2 and NF-κB
such that the cells can survive [24].

The transcription factor Nrf2 plays an important role in the regulation of apoptosis. Our results
showed a slightly increased expression of Nrf2, mainly in the epithelial cell cytoplasm in animals with
burns versus controls.

Nrf2 is a key factor in antioxidant protection and preservation of cell homeostasis. It is located in
the cytoplasm and is suppressed under a basal condition through Keap1 repressor protein. Under stress
(oxidative, electrophilic) and endogenous chemicals (NO, 4-HNE), Keap1-Cul3 ligase function is
impaired and Nrf2 degradation is declined. Nrf2 accumulates in the cytoplasm and translocates
into the cell nucleus. The heterodimer Nrf2- small Maf protein binds to an antioxidant response
element, which is a promoter region of many genes [11,40]. Nrf2 activates genes that encode phase II
detoxifying enzymes and antioxidant enzymes such as glutathione S-transferases and heme oxygenase
and mediates the regulation of redox balance and antioxidant defense in cell.

Niture and Jaiswal report that Nrf2 releases Bcl-xL in mitochondria, increases in Bcl-xL
heterodimerization with Bax in mitochondria, and reduces cellular apoptosis. It mediates elevation of
the anti-apoptotic protein Bcl-2 [12], upregulates Bcl-2/Bax expression, and decreases expression and
activity of caspases 3 and 9 [41].

On the other hand, the anti-apoptotic Nrf2 effect may be associated with increasing
expression of glutathione-S-transferase, aldoketo reductases, alcohol dehydrogenases, and aldehyde
dehydrogenase [11]. Significant amounts of these enzymes are found in mitochondria.
They detoxificate 4-HNE to less reactive chemical species and decrease its pro-apoptotic action [26].

In our model, the melatonin-treated group, compared to the burned group significantly reduced
4-HNE levels and significantly increases Bcl-2 protein expression. There was a similar increase in the
pro-apoptotic Bax protein. Moreover, melatonin significantly decreased the Bax/Bcl-2 index through
the elevation of the Bcl-2 level, and further enhanced Nrf2 expression.

We think the protective action of melatonin is associated with the increase in Bcl-2 protein
expression, despite the amplified increased expression of the pro-apoptotic Bax protein. Our results
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indicate that the Bax/Bcl-2 index reflects the state of gastric epithelial cells, apoptosis or survival, more
accurately than the Bcl-2 protein increases in the burned group alone do. In support of this fact, we
have previously reported the absence of vascular congestion, inflammatory infiltration, and apparent
necrotic changes after melatonin treatment [42]. According to another study, melatonin decreases the
Bax/Bcl-2 index and cell apoptosis in indomethacin-induced gastric mucosal injury [43].

The exact mechanisms of the gastroprotective effect of melatonin have been discussed.
The beneficial effect of melatonin is associated with decreased Bax protein expression and increased
expression of the Bcl-2 protein [43] as well as with a downregulated Bax/Bcl-2 ratio. Other authors
proposed that the anti-apoptotic action of melatonin may by responsible at least in part for its
antioxidant effect by increasing Nrf2 expression [44].

Melatonin, a functionally pleiotropic molecule, is also known as a powerful antioxidant.
Due to its amphiphilic properties, this hormone freely passes into the cytosol and reaches all
subcellular structures [45]. Melatonin and its metabolites (AFMK and AMK) also directly scavenge
ROS/RNS [46,47]. It enhances the glutathione synthesis and the maintenance of glutathione
homeostasis, which is important for the inhibition of oxidative stress and protective action of
the latter on mitochondria and other subcellular structures [48,49]. Melatonin may interact with
the lipid bilayer and stabilize the internal mitochondrial membrane; it may also inhibit both the
permeability of mitochondrial pores and the release of Ca2+ and cytochrome C [50]. In addition, it
improves energy production in mitochondria and restricts cellular damage and even cell death [49,51].
Moreover, newer studies show the ability of melatonin to induce a strong re-localization of Bcl-2,
suggesting that Bax activation may in fact be antagonized by Bcl-2 at the mitochondrial level.
Melatonin allows mitochondrial translocation of the pro-apoptotic protein Bax, but it impairs
its activation/dimerization [15]. Based on this, we speculate that this is the mechanism of Bax
neutralization by melatonin in our experimental model.

In addition, melatonin reduces the membrane cytotoxic activity of TNF-α [52] and overproduction
of NO/iNOS/ONOO- as well as diminishes their deleterious effects on mitochondria [53]. Our data
support these claims [39].

The information available about melatonin’s effect on the redox sensing transcription factor Nrf2
as a regulator of antioxidant enzymes, antioxidants, and antioxidant protection of the stomach is
limited. Presumably, melatonin as electrophile increases Nrf2 expression via Nrf2/Keap1 dissociation
and Nrf2 translocation to the nucleus. There are many processes in which melatonin is a key player
in the complex defense network of the cell. The molecular mechanisms and effects of melatonin on
gastric mucosal injury after experimental thermal trauma have thus been illustrated (Figure 6).

Figure 6. A schematic representation of molecular mechanisms and effects of melatonin in burn trauma.
The experimental evidence indicates that exogenous melatonin exhibits a gastroprotective effect.
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4. Materials and Methods

4.1. Animals

The experimental procedure was approved by the Home Office for Care and Use of Laboratory
Animals of Medical University of Varna and performed with a strong consideration for ethics of
animal (90000088/2008) experimentation according to the International Guiding Principles for Animal
Research approved in Bulgaria.

Age-matched male Wistar rats weighing between 220 and 250 g, fasted for 12 h, were allowed
free access to water before injury. Animals were housed in a 20 ◦C and offered rat chow and water ad
libitum. They were kept in dark/light cycles (DL = 12:12 h) in individual wire-bottomed cages. Thus,
lights were turned off at 8:00 p.m. and turned on at 8:00 a.m. to achieve a satisfactory photoperiod.

4.2. Thermal Injury and Melatonin Treatment

For the experimental procedure, 21 animals were randomly divided in three groups (n = 7 in each
group) as followed: the control (C), i.e., the non-burned, non-treated group, the vehicle-treated burned
group (B), and the melatonin-treated burned group (B + M). After light ether inhalation, general
anesthesia was performed using thiopental (30 mg/kg i.p.). In order to accomplish a third degree
burn over 30% of the total body surface area (TBSA), hot boiling water (90 ◦C) was applied on the
back of the animals during a period of 10 s. For those rats that were subjected to burn injury, 4 mL of
physiological saline were applied intraperitoneally (i.p.) for immediate resuscitation following burn
injury. No animals died within the first 24 h of post-burn period.

Either melatonin (N-acetyl-5-methoxytriptamine, Merck, Darmstadt, Germany) at a dose of
l0 mg/kg body weight (b.w.) dissolved in vehicle or vehicle (2% ethyl alcohol diluted in physiological
saline to constitute 5 mL/kg i.p.) was administered, respectively. Melatonin and vehicle were applied
immediately i.p. after burns in the morning between 8:00 and 9:00 a.m. and 12 h after thermal skin
injury. All animals were given buprenorphine (0.3 mg/kg i.p. b.w.) twice daily for pain control
post-burn. They were re-anesthetized with thiopental and sacrificed 24 h after burns as the stomach
was sampled.

4.3. Paraffin Processing of Tissue

Tissue specimens of gastric oxyntic mucosa were fixed in 10% buffered formalin (pH 7.2),
dehydrated in an ascending series of ethyl alcohol (70–100%), and embedded in paraffin wax.
Tissue sections with thicknesses of 5 µm were stained with hematoxylin and eosin (H&E) and examined
using a light microscope (Olympus BH-2, Tokyo, Japan). Histopathological changes were evaluated at
a magnification of 400× (a high power field).

4.4. Immunohistochemistry

The deparaffinized and dehydrated sections were treated with 1% hydrogen peroxide for
peroxidase activity inhibition for 5 min. Then, they were rinsed in 0.1 M phosphate buffered saline
(PBS) (pH 7.4) and treated with normal goat serum for 20 min. Subsequently, the sections were
incubated with primary antibody for 24 h at room temperature. The following antibodies were
used: 4-HNE (Abcam, Cambridge, UK) at a dilution of 1:200 and Bcl-2 (N-19), Bax (C-20), and Nrf2
(C-20) (Santa Cruz, CA, USA) at a dilution of 1:50. Finally, peroxidase activity was estimated by the
diaminobenzydine-tetrachloride H2O2 method. Negative controls were incubated with non-immune
sera instead of primary antibody.

A morphometric method was used to assess quantitatively the contents of 4-HNE, Bax, Bcl-2,
and Nrf2. The content was determined as strong, score 3, moderate, score 2, weak, score 1, and
lacking, score 0, on the basis of the occurrence of immunodeposits (Tzaneva, 2001) [54]. The 4-HNE,
Bax, Bcl-2, and Nrf2 concentrations of the epithelial cells were defined as the content of each cell
multiplied by their scoring factors, which was divided by the total number of cells ((content x scoring
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factor)/total number of cells). Morphometric investigation was performed on 50 cells from each
sample. Three blinded observers counted immuno-positive cells and the data were pooled.

4.5. Statistical Analysis

GraphPad Prism 6.0 was used for statistical analysis. Data were presented as median and
interquartile range (IQR) (25th–75th percentile) and mean ±SEM. The statistical significance of
difference was evaluated with the Mann–Whitney U test and a Student’s unpaired t-test. A P-value
less than 0.05 was considered to indicate statistical significance.

5. Conclusions

Thermal trauma induces gastric mucosal oxidative injury. Melatonin limits lipid peroxidation
and 4-HNE accumulation, and ameliorates burn-induced gastric mucosal injury and apoptosis.
We found that melatonin gastroprotection is accomplished via activation of the transcription factor Nrf2,
modulation of Bcl-2 family protein the expression and reduction of Bax/Bcl-2 ratios in experimental
thermal trauma. This is the first report to show that melatonin activates the Nrf2/signaling pathway
and activation of apoptotic network in gastric mucosa after experimental burn injury.

Further studies on the activation of Nrf2 and the regulation of Bcl-2 family proteins are needed to
clarify the gastroprotective effect of melatonin in experimental burns.
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