## Supporting Information

## Long-Time Relaxation of Stress-Induced Birefringence of Microcrystalline Alkali Halide Crystals

Hiroki Ueno ${ }^{1}$, Ryoga Arakane ${ }^{2}$, Yoshihisa Matsumoto ${ }^{2}$, Tomoki Tsumura ${ }^{1}$, Akihito Kitazaki ${ }^{1}$, Toru Takahashi ${ }^{1}$, Shotaro Hirao ${ }^{1}$, Yasushi Ohga ${ }^{1}$ and Takunori Harada ${ }^{1, *}$<br>${ }^{1}$ Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, Dannoharu, 700, Oita city 870-1192, Japan; v16e4005@oita-u.ac.jp (H.U.); ttsumura@oitau.ac.jp (T.T.); v17f1001@oita-u.ac.jp (A.K.); ttakaha@oita-u.ac.jp (T.T.); hirao-shoutarou@oita-u.ac.jp (S.H.); yohga@oita-u.ac.jp (Y.O.)<br>${ }^{2}$ Department of Mechanical Engineering, National Institute of Technology, Oita College, Maki, 1666, Oita city 870-0152, Japan; ryouga110714@gmail.com (R.A.); matumoto@oita-ct.ac.jp (Y.M.)<br>* Correspondence: tharada@oita-u.ac.jp; Tel.: +81-(0)97-554-7622

## Theoretical analysis

Optical system


Figure S1. Block diagram of the Comprehensive Chiroptical Spectrophotometer (CCS: J-700CPL): L: light source, Mono: first and second monochromators, DP: depolarizer, P: Polarizers, S: sample, PEM: photoelastic modulator, PM: Photomultiplier.

The light intensity at the detector (PM) can be calculated from the matrix product of $\mathbf{D} \cdot \mathbf{P}_{(\mathbf{9 0})} \cdot \mathbf{M}_{(45}$, ${ }_{\text {б) }} \cdot \mathbf{S}_{(\boldsymbol{\theta})} \cdot \mathbf{P}_{(45)} \cdot \mathbf{M o} \cdot \mathbf{I}_{\mathbf{0}}$. Here, $\mathbf{D}, \mathbf{P}_{(\mathbf{9 0})}, \mathbf{S}_{(\boldsymbol{\theta})}, \mathbf{M}_{(45, \delta)}, \mathbf{P}_{(45)}, \mathbf{M o}$ are the Mueller matrix expressions for detector, analyzer, sample, photoelastic modulator (PEM), polarizer and monochromator, respectively. Using the Mueller matrix calculation of $\mathbf{M}_{(\mathbf{4 5}, \boldsymbol{\delta})} \cdot \mathbf{P}_{(\mathbf{4 5 )}} \cdot \mathbf{M o} \cdot \mathbf{I}_{\mathbf{0}}$, the Stokes vector (1000) of the emerging light from the modulator can be expressed as

$$
\mathbf{M}_{(45, \delta)} \cdot \mathbf{S}_{(\theta)} \cdot \mathbf{P}_{(45)} \cdot \mathbf{I}_{\mathbf{0}}=
$$

$\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ \mathbf{0} & 1 & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \cos (\delta+\alpha) & -\sin (\delta+\alpha) \\ \mathbf{0} & \mathbf{0} & -\sin (\delta+\alpha) & \cos (\delta+\alpha)\end{array}\right) \cdot\left(\begin{array}{cccc}M_{00} & M_{01} & M_{02} & M_{03} \\ M_{10} & M_{11} & M_{12} & M_{13} \\ M_{20} & M_{21} & M_{22} & M_{23} \\ M_{30} & M_{31} & M_{32} & M_{33}\end{array}\right) \cdot \mathbf{1} / 2\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ \mathbf{1} & 1 & 0 & 0 \\ \mathbf{0} & \mathbf{0} & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & 0\end{array}\right)$. $\left(\begin{array}{l}\mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0}\end{array}\right)=$
$\mathbf{1 / 2}\left(\begin{array}{c}M_{00}+M_{01} \\ M_{10}+M_{11} \\ \left(M_{20}+M_{21}\right) \cos (\delta+\alpha)-\left(M_{30}+M_{31}\right) \sin (\delta+\alpha) \\ \left(M_{20}+M_{21}\right) \sin (\delta+\alpha)+\left(M_{30}+M_{31}\right) \cos (\delta+\alpha)\end{array}\right)=\mathbf{1} / \mathbf{2}\left(\begin{array}{c}T_{0} \\ T_{1} \\ T_{2} \\ T_{3}\end{array}\right)$

Where, $M_{\mathrm{ij}}$ is variable value peculiar to sample, $\alpha$ is the residual static birefringence, and $\delta$ is the periodic phase difference between the $x$ and $y$ axes of the PEM operating at frequency $\omega_{\mathrm{m}} / 2 \pi$ and is adjusted so as to act as a quarter-wave plate at an arbitrary wavelength

$$
\begin{equation*}
\delta=\delta^{0}{ }_{\mathrm{m}} \sin \omega_{\mathrm{m}} \mathrm{t} \tag{S2}
\end{equation*}
$$

Here, $\delta^{0}{ }_{\mathrm{m}}$ is the peak modulator retardation. We can expand $\cos \delta$ and $\sin \delta$ in a Fourier series

$$
\begin{align*}
& \sin \left(\delta^{0}{ }_{\mathrm{m}} \sin \omega_{\mathrm{m}} \mathrm{t}\right)=2 J_{1}\left(\delta_{\mathrm{m}}^{0}\right) \sin \omega_{\mathrm{m}} \mathrm{t}+2 J_{3}\left(\delta_{\mathrm{m}}^{0}\right) \sin 3 \omega_{\mathrm{m}} \mathrm{t}+\ldots  \tag{S3}\\
& \cos \left(\delta_{\mathrm{m}}^{0} \sin \omega_{\mathrm{m}} \mathrm{t}\right)=J_{0}\left(\delta_{\mathrm{m}}^{0}\right)+2 J_{2}\left(\delta^{0}{ }_{\mathrm{m}}\right) \cos 2 \omega_{\mathrm{m}} \mathrm{t}+\ldots \ldots \tag{S4}
\end{align*}
$$

and

$$
\begin{align*}
& \cos (\delta+\alpha)=2 J_{2}\left(\delta_{\mathrm{m}}^{0}\right) \cos 2 \omega_{\mathrm{m}} \mathrm{t} \cdot \cos \alpha-2 J_{1}\left(\delta_{\mathrm{m}}^{0}\right) \sin \omega_{\mathrm{m}} \mathrm{t} \cdot \sin \alpha+J_{0}\left(\delta_{\mathrm{m}}^{0}\right) \cos \alpha . .  \tag{S5}\\
& \sin (\delta+\alpha)=2 J_{1}\left(\delta^{0}{ }_{\mathrm{m}}\right) \sin \omega_{\mathrm{m}} \mathrm{t} \cdot \cos \alpha+2 J_{2}\left(\delta_{\mathrm{m}}^{0}\right) \cos 2 \omega_{\mathrm{m}} \mathrm{t} \cdot \sin \alpha+J_{0}\left(\delta^{0}{ }_{\mathrm{m}}\right) \sin \alpha . . \tag{S6}
\end{align*}
$$

$J_{\mathrm{n}}\left(\delta_{\mathrm{m}}^{0}\right)$ are Bessel functions of $n$th order. We can get the Stokes vector of the emerging light from detector as follow:
$\mathbf{M o} \cdot \mathbf{P}_{(\mathbf{9 0 )}} \cdot \mathbf{M}_{(45, \delta)} \cdot \mathbf{S}_{(\boldsymbol{\theta})} \cdot \mathbf{P}_{(45)} \cdot \mathbf{I}_{\mathbf{0}}=$

$$
\begin{align*}
& \left(\begin{array}{ccccc}
\left(P_{x}^{2}+P_{y}^{2}\right) & \left(P_{x}^{2}-P_{y}^{2}\right) \sin 2 a & & 0 & \left(P_{x}^{2}-P_{y}^{2}\right) \cos 2 a \\
\left(P_{x}^{2}-P_{y}^{2} \sin 2 a\right. & \left(P_{x}-P_{y}\right)^{2} \cos ^{2} 2 a+2 P_{x} P_{y} \sin ^{2} 2 a & & 0 & \left(P_{x}-P_{y}\right)^{2} \cos 2 b \sin 2 a \\
0 & 0 & 2 P_{x} P_{y} & & 0 \\
\left(P_{x}^{2}-P_{y}^{2}\right) \cos 2 a & \left(P_{x}-P_{y}\right)^{2} \cos 2 a \sin 2 a & 0 & \left(P_{x}-P_{y}\right)^{2} \cos ^{2} 2 a+2 P_{x} P_{y} \sin ^{2} 2 a
\end{array}\right) \\
& \cdot 1 / 2\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right) \cdot \mathbf{1} / \mathbf{2}\left(\begin{array}{c}
T_{0} \\
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right) \\
& =\mathbf{1} / 4\left(\begin{array}{c}
\left(P_{x}^{2}+P_{y}^{2}\right)\left(T_{0}-T_{3}\right)+\left(P_{x}^{2}-P_{y}^{2}\right) \cos 2 a\left(-T_{0}+T_{3}\right) \\
\left(P_{x}^{2}-P_{y}^{2}\right) \sin 2 a\left(T_{0}-T_{3}\right)+\left(P_{x}^{2}-P_{y}^{2}\right) \cos 2 a \operatorname{sian} 2 a\left(-T_{0}+T_{3}\right) \\
0 \\
\left(P_{x}^{2}-P_{y}^{2}\right) \cos 2 a\left(T_{0}-T_{3}\right)+\left[\left(P_{x}^{2}+P_{y}^{2}\right) \cos ^{2} 2 a+2 P_{x} P_{y} \sin ^{2} 2 a\right]\left(-T_{0}+T_{3}\right)
\end{array}\right) \\
& =1 / 4\left(\begin{array}{c}
X_{0} \\
X_{1} \\
0 \\
X_{3}
\end{array}\right) \tag{S7}
\end{align*}
$$

$\mathbf{D} \cdot \mathbf{M o} \cdot \mathbf{P}_{(90)} \cdot \mathbf{M}_{(45, \delta)} \cdot \mathbf{S}_{(\theta)} \cdot \mathbf{P}_{(45)} \cdot \mathbf{I}_{\mathbf{0}}=$

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
\left(\boldsymbol{P}_{x}^{\prime 2}+\boldsymbol{P}_{y}^{\prime 2}\right) & \left(\boldsymbol{P}_{x}^{\prime 2}-\boldsymbol{P}_{y}^{\prime 2}\right) \sin 2 b & & 0 & \left(\boldsymbol{P}_{x}^{\prime 2}-\boldsymbol{P}_{y}^{\prime 2}\right) \cos 2 b \\
\left(\boldsymbol{P}_{x}^{\prime 2}-\boldsymbol{P}_{y}^{\prime 2}\right) \sin 2 b & \left(\boldsymbol{P}_{x}^{\prime}-\boldsymbol{P}_{y}^{\prime}\right)^{2} \cos ^{2} 2 b+2 P_{x}^{\prime} \boldsymbol{P}_{y}^{\prime} \sin ^{2} 2 b & & 0 & \left(\boldsymbol{P}_{x}^{\prime}-\boldsymbol{P}_{y}^{\prime}\right)^{2} \cos 2 b \sin 2 b \\
0 & 0 & 2 P_{x}^{\prime} \boldsymbol{P}_{y}^{\prime} & 0 \\
\left(\boldsymbol{P}_{x}^{\prime 2}-\boldsymbol{P}_{y}^{\prime 2}\right) \cos 2 b & \left(\boldsymbol{P}_{x}^{\prime}-\boldsymbol{P}_{y}^{\prime}\right)^{2} \cos 2 b \sin 2 b & 0 & \left(\boldsymbol{P}_{x}^{\prime}-\boldsymbol{P}_{y}^{\prime}\right)^{2} \cos ^{2} 2 b+2 P_{x}^{\prime} \boldsymbol{P}_{y}^{\prime} \sin ^{2} 2 b
\end{array}\right) . \\
& 1 / 4\left(\begin{array}{c}
X_{0} \\
X_{1} \\
0 \\
X_{3}
\end{array}\right)
\end{aligned}
$$

The intensity, $I_{\mathrm{d}}$, of the emerging light from the detector is expressed as

$$
\begin{align*}
I_{d}= & {\left[\left(P_{\mathrm{x}}^{\prime}{ }^{2}+P_{\mathrm{y}}^{\prime 2}\right)-\left(P_{\mathrm{x}}^{\prime 2}-P_{\mathrm{y}}^{\prime 2}\right) \sin 2 b\right]\left[\left(T_{0}-\left\{T_{2} \sin (\delta+\alpha)+T_{3} \cos (\delta+\alpha)\right\}\right]\right.} \\
= & {\left[\left(P_{\mathrm{x}}^{\prime 2}+P_{\mathrm{y}}^{\prime 2}\right)+\left(P_{\mathrm{x}}^{\prime 2}-P_{\mathrm{y}}^{\prime 2}\right) \sin 2 b\right]\left\{\left[\left(P_{\mathrm{x}}^{2}+P_{\mathrm{y}}^{2}\right)+\left(P_{\mathrm{x}}^{2}-P_{\mathrm{y}}^{2}\right) \sin 2 a\right]\left(\mathrm{M}_{00}+\mathrm{M}_{01}\right)\right.} \\
& -\left[\left(P_{\mathrm{x}}^{2}+P_{\mathrm{y}}^{2}\right)+\left(P_{\mathrm{x}}^{2}-P_{\mathrm{y}}^{2}\right) \sin 2 a\right]\left(\mathrm{M}_{20}+\mathrm{M}_{21}\right) \sin (\delta+\alpha) \\
& \left.-\left[\left(P_{\mathrm{x}}^{2}+P_{\mathrm{y}}^{2}\right)+\left(P_{\mathrm{x}}^{2}-P_{\mathrm{y}}^{2}\right) \sin 2 a\right]\left(\mathrm{M}_{30}+\mathrm{M}_{31}\right) \cos (\delta+\alpha)\right\} \tag{S8}
\end{align*}
$$

By using a lock-in amplifier being tuned to $\omega / 2 \pi$, we can detect the LB as 50 kHz signal, and the output signal is given as

$$
I(\omega)=\left(4 \mathrm{G}_{3} / \pi\right) \cdot\left[\left(P_{\mathrm{x}}^{\prime 2}+P_{\mathrm{y}}^{\prime 2}\right)-\left(P_{\mathrm{x}}^{\prime}{ }^{2}-P_{\mathrm{y}}^{\prime 2}\right) \sin 2 b\right]\left[\left(P_{\mathrm{x}}^{2}+P_{\mathrm{y}}^{2}\right)+\left(P_{\mathrm{x}}^{2}-P_{\mathrm{y}}^{2}\right) \sin 2 a\right]
$$

$$
\begin{equation*}
\times\left\{-\left(\mathrm{M}_{20}+\mathrm{M}_{21}\right)\left(2 J_{1}\left(\delta_{\mathrm{m}}^{0}\right) \sin \omega_{\mathrm{m}} \mathrm{t}\right)-\left(\mathrm{M}_{30}+\mathrm{M}_{31}\right)\left(2 J_{1}\left(\delta_{\mathrm{m}}^{0}\right) \sin \omega_{\mathrm{m}} \mathrm{t} \sin \alpha\right)\right\} . \tag{S9}
\end{equation*}
$$

The factors of $4 / \pi$ which have been introduced into the $\omega$ response arise from the properties of the lock-in amplifier which average the absolute magnitude of the sinusoidal signals over time. $\mathrm{G}_{3}$ is an apparatus constant related to the sensitivity of the spectrometer with the polarizer inserted. Thus, the output to a recorder, $I_{\text {out }}\left(=I(\omega) / I_{\mathrm{DC}}\right)$, is expressed as

$$
\begin{align*}
& I_{\text {out }}=\left(8 \mathrm{G}_{3} / \pi\right) \cdot P\left[-\left(\mathrm{M}_{20}+\mathrm{M}_{21}\right)-\left(\mathrm{M}_{30}+\mathrm{M}_{31}\right) \sin \alpha\right] / P \cdot\left(\mathrm{M}_{00}+\mathrm{M}_{01}\right) \\
& =\left(8 \mathrm{G}_{3} / \pi\right)\left[-\left(\mathrm{M}_{20}+\mathrm{M}_{21}\right)-\left(\mathrm{M}_{30}+\mathrm{M}_{31}\right) \sin \alpha\right] /\left(\mathrm{M}_{00}+\mathrm{M}_{01}\right) \tag{S10}
\end{align*}
$$

Here, $P, M_{00}, M_{01}, M_{20}, M_{21}, M_{30}$ and $M_{31}$ are $\left[\left(P_{x}^{\prime}{ }^{2}+P_{\mathrm{y}}^{\prime 2}\right)-\left(P_{\mathrm{x}}^{\prime 2}-P_{\mathrm{y}}^{\prime}{ }^{2}\right) \sin 2 b\right] \cdot\left[\left(P_{\mathrm{x}}^{2}+P_{\mathrm{y}}{ }^{2}\right)+\left(P_{\mathrm{x}}{ }^{2}-\right.\right.$ $\left.\left.P_{\mathrm{y}}{ }^{2}\right) \sin 2 a\right], \mathrm{e}^{-A e}\left[1+\left(\mathrm{LD}^{2}+\mathrm{LD}^{\prime 2}\right) / 2\right], \mathrm{e}^{-A e}\left[-\left(\mathrm{LD}^{\prime} \cos 2 \theta+\mathrm{LD} \sin 2 \theta\right)\right], \mathrm{e}^{-A e}\left[\mathrm{CD}+\left(\mathrm{LD}^{\prime} \mathrm{LB}-\mathrm{LDLB}^{\prime}\right) / 2\right], \mathrm{e}^{-}$ $\left.{ }^{A e}[\mathrm{LB} \cos 2 \theta-\mathrm{LB} \sin 2 \theta], \mathrm{e}^{-A e}\left[\mathrm{LD}^{\prime} \sin 2 \theta-\mathrm{LD} \cos 2 \theta\right)\right]$ and $\mathrm{e}^{-A e}\left[\mathrm{CB}+\left(\mathrm{LD}^{2}+\mathrm{LB}^{2}-\mathrm{LD}^{\prime 2}-\mathrm{LB}^{\prime 2}\right) \sin 4 \theta / 2\right.$ $\left.+\left(\mathrm{LDLD}^{\prime}+\mathrm{LBLB}^{\prime}\right) \cos 4 \theta\right]$, respectively. Where, $\theta$ is the rotation angle of the sample, $A e$ is the mean absorption, and $\mathrm{LD}^{\prime}$ and $\mathrm{LB}^{\prime}$ are $45^{\circ}$ linear dichroism and birefringence, respectively. The denominator is approximated to 1 because $1 \gg\left|\mathrm{LD}^{\prime} \cos 2 \theta+\mathrm{LD} \sin 2 \theta\right|>1 / 2\left(\mathrm{LD}^{2}+\mathrm{LD}^{\prime 2}\right)$. Thus, we can approximate Eq. (S10) as

$$
\begin{equation*}
I_{\text {out }}=\left(8 \mathrm{G}_{3} / \pi\right)\left[-\left(\mathrm{M}_{20}+\mathrm{M}_{21}\right)-\left(\mathrm{M}_{30}+\mathrm{M}_{31}\right) \sin \alpha\right] \tag{S11}
\end{equation*}
$$

Expanding $\mathrm{M}_{20}, \mathrm{M}_{21}, \mathrm{M}_{30}$ and $\mathrm{M}_{31}$, the 50 kHz signal is rewritten as

$$
\begin{align*}
& \text { Signal }_{50 \mathrm{kHz}}=\left(8 \mathrm{e}^{-A e} \mathrm{G}_{3} / \pi\right)\left[\mathrm{CD}+1 / 2\left(\mathrm{LD}^{\prime} \mathrm{LB}-\mathrm{LDLB}^{\prime}\right)-\mathrm{LB} \cos 2 \theta+\mathrm{LB}^{\prime} \sin 2 \theta\right. \\
& -\left\{\mathrm{LD}^{\prime} \cos 2 \theta-\mathrm{LD} \sin 2 \theta-\mathrm{CB}+1 / 2\left(\mathrm{LD}^{2}+\mathrm{LB}^{2}-\mathrm{LD}^{\prime 2}-\mathrm{LB}^{\prime 2}\right) \sin 4 \theta+\right. \tag{S12}
\end{align*}
$$

$\left.\left.\left(L^{\prime} D^{\prime}+\mathrm{LBLB}^{\prime}\right) \cos 4 \theta\right\} \sin \alpha\right]$

We can set $\mathrm{CD}=\mathrm{CB}=0$ for optically inactive samples having macroscopic anisotropy. Then,

$$
\begin{align*}
& \operatorname{Signal}_{50 \mathrm{kHz}}=\left(8 \mathrm{e}^{-A e} \mathrm{G}_{3} / \pi\right)\left[1 / 2\left(\mathrm{LD}^{\prime} \mathrm{LB}-\mathrm{LDLB}^{\prime}\right)-\mathrm{LB}^{\prime} \cos 2 \theta+\mathrm{LB}^{\prime} \sin 2 \theta\right. \\
& \left.-\left\{\mathrm{LD}^{\prime} \cos 2 \theta-\mathrm{LD}^{2} \sin 2 \theta+1 / 2\left(\mathrm{LD}^{2}+\mathrm{LB}^{2}-\mathrm{LD}^{\prime 2}-\mathrm{LB}^{\prime 2}\right) \sin 4 \theta+\left(\mathrm{LDLD}^{\prime}+\mathrm{LBLB}^{\prime}\right) \cos 4 \theta\right\} \sin \alpha\right] \tag{S13}
\end{align*}
$$

Here, the higher-order terms multiplied by $\sin \alpha$ can be neglected because $\sin \alpha$ is of the order of $10^{-3}$ for the PEM used in the current CCS. Thus, Eq.(S13) can be rewritten as

$$
\text { Signal }_{50 \mathrm{kHz}}=\left(8 \mathrm{e}^{-4 e} \mathrm{G}_{3} / \pi\right)\left[1 / 2\left(\mathrm{LD}^{\prime} \mathrm{LB}-\mathrm{LDLB}^{\prime}\right)-\mathrm{LB} \cos 2 \theta+\mathrm{LB} \prime \sin 2 \theta\right]------(\mathrm{S} 14)
$$

Generally, LB is substantial compared with other polarization phenomena such as LD, CD and CB. Thus, 50 kHz signal obtained with an analyzer inserted can be generally regarded as LB signal.

## Experimental results



Figure S2.
The absolute LB signals of KBr disks made from different pressure: $14 \mathrm{MPa}, 21$ $\mathrm{MPa}, 28 \mathrm{MPa}, 35 \mathrm{MPa}, 41 \mathrm{MPa}, 48 \mathrm{MPa}, 55 \mathrm{MPa}$ and 70 MPa .


Figure S3. Time-course change of reflection spectra of KBr disk ( 20 min intervals).

