

1 Supplementary Material:

Silico Discovery of Substituted In 2 а 6-Methoxy-quinalidine with Leishmanicidal Activity 3 in Leishmania infantum 4 Strahinja Stevanović1*, Andrej Perdih2*, Milan Senćanski1, Sanja Glišić1, 5 Margarida Duarte³, Anna Tomás³, Filipa V. Sena⁴, Filipe M. Sousa⁴, Manuela M. 6 7 Pereira^{4, 5} and Tom Solmajer² 8 ¹ Center of Multidisciplinary Research, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11001 Belgrade, 9 Serbia 10 ² National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia 11 ³ i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto and IBMC-Institute for Molecular and Cell 12 Biology, 4099-002 Porto, Portugal 13 ⁴ ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002 Porto, Portugal

- 14 5 Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 1099-085 Oeiras, Portugall
- ⁶ University of Lisbon, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Campo Grande,
 C8,1749-016 Lisboa, Portugal
- 17 * Correspondence: sstevanovic@vin.bg.ac.rs;
- 18 * Correspondence: andrej.perdih@ki.si; Tel.: +386-1-4760-376 19

Molecules 2018, 23, x FOR PEER REVIEW

Figure S1. Secondary Structure Alignment generated from LiNDH2, ScNDH2, SaNDH2 and PfNDH2 sequence
 alignment using PROMALS3D: a tool for multiple sequence and structure alignment. For the reference template
 -PDB ID 4g73 is used (available crystal structure of ScNDH2). In consensus secondary structure line: With
 letter "h" chain—alfa-helix is marked, and with "e" chain, beta-sheet.

Figure S2. (A) B-factor representation of S. *cerevisiae* NDH-2 (PDB ID: 4G73) focused on binding site—UQI which contains UQ, FAD and NADH as a form of ternary complex. Color code: white(high)-to-red(low) quantification of atom position certainty, traced using pymol software. (B) Isomesh displayed using pymol's CCP4—format electron density mapping. Lower electron density population is shown in the region of second—UQI binding site, thus making it difficult to deduce conformational occupancy of UQ and amino acid residues from X-ray structure.

35 shown;

Template	Confidence	% i.d.	Template Information	
			PDB header: oxidoreductase	
4G6G_B			Chain: B: PDB Molecule: rotenone-insensitive	
4G73_B	100.0	33	nadh-ubiquinone oxidoreductase,	
(same seq.)			PDBTitle: crystal structure of NDH-2 with TRT	
			Resolution: 2.5 Å	
			PDB header: oxidoreductase, membrane protein,	
4XDB_C			flavoprotein	
			Chain: C: PDB Molecule: nadh dehydrogenase-like	
	100	07	protein saouhsc_00878;	
	100	27	PDBTitle: nadh:quinone oxidoreductase (ndh-ii)	
			from staphylococcus aureus -2 holo protein	
			structure.	
			Resolution: 3.32 Å	
Note: For both tem	nplates alignme	nt coverage	e is around 80 %	

36

37 **Table S2.** Obtained pharmacophore and docking scores for twenty-three selected hit compounds.

No.	Scaffold	Pose/conformation	PharmFit	GOLD.fitness
1	PYRROLE	1	48.2	78.9353
		2	48.2	78.8489
		3	48.2	73.5001
2	CHROMEN	1	47.4	71.5822
		2	47.4	71.1047
		3	47.4	67.7467
3	benzofuro[3,2-d]pyrimidin	1	46.62	71.1031
		2	46.62	67.5164
		3	46.62	67.4288
4	THYENO[3,2-d]PYRIMIDIN	1	49.46	67.0032
		2	49.46	66.7081
		3	49.46	64.9063
5	CHROMEN	1	47.02	70.0423
		2	47.02	67.3608
		3	47.02	66.6311

Molecules **2018**, 23, x FOR PEER REVIEW

6	quinazoline	1	48.01	71.0211
	L	2	48.01	70.8991
		3	48.01	69.7889
7	INDAZOLE	1	47.28	74.1601
		2	47.28	72.2617
		3	47.28	60
8	BENZYMIDAZOLE	1	46.25	73.6621
		2	46.25	71.6988
		3	46.25	65.6762
9	O,M-METOXY	1	49.57	66.1606
		2	49.57	66.0541
		3	49.57	66.189
10	PYRROLE	1	47.41	83.8593
		2	47.41	82.4897
		3	47.41	80.6411
11	nitroisoquinoline	1	46.43	69.5886
		2	46.43	68.1004
		3	46.43	66.7446
12	TRIAZOLO[4,3-a]PYRIDIN	1	46.83	72.574
		2	46.83	70.5994
		3	46.83	60
13	THYENO[3,2-d]PYRIMIDIN	1	46.33	73.0864
		2	46.33	72.0532
		3	46.33	69.4898
14	dihydrophthalazine	1	50.63	72.2082
		2	50.63	71.9494
		3	50.63	71.0051
15	quinoline	1	47.45	79.2522
		2	47.45	77.9944
		3	47.45	77.1914
16	quinazoline	1	47.72	77.3913
		2	47.72	75.1822
		3	47.72	71.6327
17	quinoline	1	49.78	74.6217
		2	49.78	74.0581

4 of 9

		3	49.78	73.5339
18	QUINAZOLINE	1	49.8	70.3329
		2	49.8	69.9571
		3	49.8	68.429
19	nitroquinoline	1	49.45	74.248
		2	49.45	73.1649
		3	49.45	69.6986
20	naphthalene	1	46.1	73.5739
		2	46.1	72.3605
		3	46.1	60
21	benzothiazine	1	46.04	64.2407
		2	46.04	63.8897
		3	46.04	62.9287
22	aniline	1	46.53	63.8863
		2	46.53	61.1532
		3	46.53	60
23	pyrrole	1	47.52	71.4297
		2	47.52	70.6303
		3	47.52	60
REF	ubiquinone	1	50	80-84
		2	50	80-84
		3	50	80-84

Table S3. Selected commercially available compounds derived from ligand-based virtual screening campaign
 against *Li*NDH2.

5 of 9

41

42 **Figure S3.** Binding site comparison of different NDH-2s. Upper left—binding site UQI in the model *Li*NDH2

43 showing UQ molecule and important residues. Upper right-comparison of UQi between LiNDH2 and

44 ScNDH2. Lower left-comparison of UQI between LiNDH2 and SaNDH2. Lower right-comparison of UQI

45 between *Li*NDH2 and *Pf*NDH2. For clarity reasons, only the differences in amino acid between structures are

46 shown in comparisons.

49

47

50 Table S4. Docked UQ in homology structure of LiNDH2 against UQ experimental posing from template

51 structure 4G73. RMSD value refers to conformational differences in active site features, amino acid 52 environment.

Docked UQ vs reference–UQ experimental	RMSD (Å)
UQ dock 1–reference	1.9159
UQ dock 2-reference	1.9501
UQ dock 3-reference	1.2439
UQ dock 4-reference	1.7549

53

54

55

GOLD Fitness Score H1 (Ser342, Tyr25) Ho 64.1708 66.303 61.1928 65.8198 66.7914 63.7807 66.8341 63.2555 65.5948 62.5137 65.4237 60.5077 65.7175 59.7846 65.6428 58.5946

Testing Hypothesis

57

58 Figure S5. Results of testing of the docking modes of UQ without Ser324 and Tyr25

59

3D Structure-based pharmacophore model generated from docked compound **15** docked into LiNDH2 Active Site (UQ_i).

3D Ligand-based pharmacophore model 2 with screening result compound **15** aligned.

- 61 Figure S6. Proof of structure-based and ligand-based consensus in case of compound 15. Pharmacophore model
- 62 generated from active compounds predicts functional group composition as a blueprint necessary for
- 63 interaction with *Li*NDH2 structure.