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Abstract: Protein-protein interactions (PPIs) play important roles in various aspects of the structural
and functional organization of cells; thus, detecting PPIs is one of the most important issues in current
molecular biology. Although much effort has been devoted to using high-throughput techniques to
identify protein-protein interactions, the experimental methods are both time-consuming and costly.
In addition, they yield high rates of false positive and false negative results. In addition, most of
the proposed computational methods are limited in information about protein homology or the
interaction marks of the protein partners. In this paper, we report a computational method only using
the information from protein sequences. The main improvements come from novel protein sequence
representation by combing the continuous and discrete wavelet transforms and from adopting
weighted sparse representation-based classifier (WSRC). The proposed method was used to predict
PPIs from three different datasets: yeast, human and H. pylori. In addition, we employed the prediction
model trained on the PPIs dataset of yeast to predict the PPIs of six datasets of other species. To further
evaluate the performance of the prediction model, we compared WSRC with the state-of-the-art
support vector machine classifier. When predicting PPIs of yeast, humans and H. pylori dataset,
we obtained high average prediction accuracies of 97.38%, 98.92% and 93.93% respectively. In the
cross-species experiments, most of the prediction accuracies are over 94%. These promising results
show that the proposed method is indeed capable of obtaining higher performance in PPIs detection.

Keywords: protein-protein interaction; protein sequence; weighted sparse representation

1. Introduction

Participating in almost every aspect of cellular function within an organism, proteins are the
work-horses of the cellular machinery. Usually, they cooperate with each other, forming a big
interaction network rather than carrying out particular biological functions alone. The prediction of
protein-protein interactions has comes to be a hot spot in studies on proteomics. Research has shown
that proteins with similar functions are more likely to interact. With a protein of unknown function,
it is feasible to predict its function based on its binding partners. Therefore, predicting interactions of
protein pairs helps to understand the functional roles of unannotated proteins. In addition, abnormal
protein-protein interactions (PPIs) which lose their function or stabilize at an inappropriate time or
location are associated with many diseases, such as autoimmune diseases and cancer. For this reason,
predicting PPIs can provide great insight for designing drugs. It is estimated that there are as many as
650,000 different PPIs which compose the whole human protein-protein interactome and discovering
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them would be a long-term task. All these factors collectively have led to increased attention on
predicting PPIs [1].

Much effort has been devoted to developing experimental techniques for finding protein-protein
interactions, such as yeast two-hybrid (Y2H) [2,3] screens, tandem affinity purification (TAP) [4],
mass spectrometric protein complex identification (MS-PCI) [5] and other high-throughput biological
techniques for PPIs detection. As obtained from these biological experiments, protein interaction data
have been stored by a number of constructed databases, such as MINT [6], BIND [5] and DIP [7].
However, these experimental methods are tedious and cost a lot. The PPIs identified by them only
cover a little fraction of the whole PPI network. In addition, the experimental methods are usually
associated with high rates of both false positive and false negative predictions. All of these drawbacks
have stimulated research on computational methods for predicting PPIs.

Different types of protein data have been obtained by previous experimental methods, including
protein sequences, secondary structures and tertiary structures. In order to utilize this wealth of protein
data, a number of computational approaches have been proposed. Among them, it is popular to predict
PPIs based on protein structure data. For example, Agrawal et al. [8] proposed a computational tool
named the spatial-interaction-map (SIM) which utilizes the structure of unbound proteins to predict
the residues of protein-protein interactions. Qiu et al. [9] presented a novel residue characterization
model based on 3D structure with the purpose of detecting PPIs. These computational methods
based on structural data identify the interaction domain by analyzing the hydrophobicity, solvation,
protrusion and the accessibility of residues. Since the amount of newly discovered protein sequence
data is increasing exponentially, there is an increasingly larger gap between the amount of protein
structure data and that of protein sequence data. Predicting PPIs based on structural data cannot
satisfy requests of the great number of biochemists, most of whom obtain protein sequences, but no
structural data. Therefore, it is more important to develop an effective computational model based on
protein sequences [10,11].

Up until now, a number of sequence-based computational methods have been proposed. Most of
them utilize information regarding protein homology or the interaction marks of the protein partners.
In related works, Zahiri [12] proposed a method with a novel protein evolutional feature extracted
from position-specific scoring matrix (PSSM)s for predicting protein-protein interactions. However,
it is becoming be more and more difficult to use sequence homology recognition approaches to predict
PPIs due to the decreased similarity between proteins and their homologues. For this reason, it is more
practical to predict PPIs using only the information from protein sequences.

Generally, computational models for PPI predictions are composed of two parts: feature extraction
and sample classification. As the first step, feature extraction aims to represent proteins with useful
attributes and transform the samples into feature vectors of the same size as the inputs of the
sample classifier. Effective feature descriptors can play efficient roles in improving the prediction
performance of the system. In this work, we adopt a novel feature extraction method using continuous
and discrete wavelet transforms. Specifically, as wavelet transform can only deal with numerical
signals, we first transform every protein sequence into a real sequence by substituting each amino
acid character with a specific corresponding physicochemical property, and here, we choose the
hydrophobicity index for this transformation. Hydrophobicity is known to be important for protein
interaction as it is associated with protein folding and unfolding [13]. Next, we represent a protein
as a 60 × 60 continuous wavelet (CW) image with continuous wavelet transform and then utilize the
singular value decomposition (SVD) method to extract CW-SVD descriptors from the CW images.
In addition, we execute two-scale biorthogonal discrete wavelet (DW) transform on every protein’s
real sequence and then form the DW descriptors with the first five discrete cosine coefficients from the
approximation coefficients and the maximum, minimum, mean and standard deviation values from
both the detail and approximation coefficients.

Most of the proposed computational prediction models for PPIs adopt traditional classifiers
based on machine learning approaches, such as the support vector machine (SVM) [14–16] and neural
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network (NN) [17]. Although these traditional classifiers have proven powerful for classification,
they usually need much labor and time to search the optimal values of parameters for the best
performance. Recently, the sparse representation-based classifier (SRC) has been earning a reputation
for its outstanding performance in the field of signal processing, pattern recognition and computer
vision. In this work, we explored the weighted sparse representation-based classifier (WSRC), a variant
of basic SRC, for predicting protein-protein interactions. WSRC integrates both sparsity and locality
structure data into the SRC and therefore, surpasses conventional SRC.

In this work, we present a computational model for predicting protein-protein interactions only
using the information from amino acid sequences. This model combines the sparse representation-
based classifier and a novel representation method composed of CW-SVD features and DW
features. We first searched the best scale value of discrete wavelet transform applied in protein
sequences and then extracted features from protein sequences using continuous and discrete wavelet
transforms. Each protein was finally represented by an 86-dimensional feature vector, consisting of the
60-dimensional CW-SVD descriptor and the 26-dimensional DW descriptor. WSRC was adopted in
the final step. We explored the proposed method for the prediction of PPI data from three different
biological datasets: yeast, humans and H. pylori. For further evaluation of the performance, the method
based on SVM was also compared with the proposed method. In addition, we applied the proposed
method to predict protein-protein interactions of other species using the data from yeast. Specifically,
we used the whole yeast dataset as a training set and the six other species’ datasets as testing sets.

2. Results

2.1. Parameter Selection

In this work, the two corresponding parameters, σ and ε, were set to be 1.5 and 0.00005,
respectively, when using the weighted sparse representation-based classifier. Since the scale of discrete
wavelet transform is the unique parameter for the feature extraction method, the selected value of
scale would influence the efficiency of the whole feature extraction. For this reason, we explored the
proposed method with different scale values to search for the optimal value for the best performance.
We implemented a series of experiment for parameter adjustment and found that the performance
maintains a slightly decreasing trend when the scale factor is adjusted from 2 to 10. This may be rooted
in the fact that a high scale increases the computational complexity and decreases the accuracy. Finally,
we set the scale parameter for the discrete wavelet transform used in feature extraction as 2.

2.2. Assessment of Prediction Ability

For the sake of fairness, in this work, we set the same corresponding parameters of weighted
sparse representation-based classifier when predicting PPIs of the yeast and H. pylori datasets.
It is common to use five-fold cross validation to evaluate the fit of the proposed model to the
hypothetical validation. In this work, we used this cross-validation method to avoid overfitting
and to evaluate the performance stability of the proposed method. Specifically, we experimented on
one dataset over five rounds of cross-validation. The whole dataset was partitioned into five parts,
where four parts are used for training and the other part was used for testing. The prediction results
performed by the proposed method on the yeast dataset are shown in Table 1. It can be observed that
when using the proposed method to predict PPIs of the yeast dataset, we obtained promising results
with averages of accuracy, precision and sensitivity as high as 97.38%, 100.00% and 94.76%, respectively.
From Table 2, which shows the five-fold cross validation results of the H. pylori dataset, we can see
that the proposed method yielded good results with averages of accuracy, precision and sensitivity as
high as 93.93%, 96.41% and 91.20%. In addition, it should be noticed that the standard deviations of
the criteria are relatively low. In the experiment involving the yeast dataset, the standard deviations
of accuracy, precision and sensitivity were 0.31%, 0.00% and 0.68%. When predicting PPIs in the
H. pylori dataset, the standard deviations of accuracy, precision and sensitivity were 1.11%, 0.81% and
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2.15% respectively. To allow a more comprehensive assessment, the corresponding MCC (Matthews
correlation coefficient) values and AUC (the area under an ROC curve) scores of the experiments
were also computed. When predicting the PPIs of the yeast dataset, the average MCC and AUC
achieved values of 94.89% and 97.48%, with standard deviations of 0.59% and 0.26% (see Figure 1a,b).
When exploring the H. pylori dataset, the average MCC and AUC values were 88.57% and 94.20%, and
the corresponding standard deviations were 1.95% and 1.05%.

Figure 1. ROC cures yielded by five-fold cross validation: (a) ROC from proposed method result for
yeast protein-protein interactions (PPIs) dataset; (b) ROC from the proposed method result for H. pylori
PPIs dataset; (c) ROC from proposed method result for Human PPIs dataset; (d) comparison of ROCs
between the weighted sparse representation-based classifier (WSRC) method and the support vector
machine (SVM) method on the first fold of Human PPIs dataset.

Table 1. Five-fold cross validation result obtained in predicting the yeast PPIs dataset.

Test Set Accuracy (%) Precision (%) Sensitivity (%) MCC (%) AUC (%)

1 97.32 100.00 94.70 94.77 97.69
2 97.63 100.00 95.24 95.37 97.67
3 97.05 100.00 94.08 94.26 97.05
4 97.76 100.00 95.63 95.63 97.55
5 97.14 100.00 94.13 94.43 97.41

Average 97.38 ± 0.31 100.00 ± 0.00 94.76 ± 0.68 94.89 ± 0.59 97.48 ± 0.26
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Table 2. Five-fold cross validation result obtained in predicting the H. pylori PPIs dataset.

Test Set Accuracy (%) Precision (%) Sensitivity (%) MCC (%) AUC (%)

1 92.28 96.72 88.04 85.72 92.72
2 93.83 95.94 91.23 88.38 93.74
3 94.68 95.99 92.93 89.91 94.20
4 95.20 97.70 93.40 90.81 95.36
5 93.66 95.70 90.41 88.01 94.99

Average 93.93 ± 1.11 96.41 ± 0.81 91.20 ± 2.15 88.57 ± 1.95 94.20 ± 1.05

2.3. Comparison with SVM and Single Wavelet Feature Descriptor

A wide range of machine learning prediction models have been proposed for the field of protein
interaction prediction, and one of the most popular classifiers is SVM. In this section, using the same
feature extraction method, we compare the prediction performance of the proposed method with the
SVM-based method on the dataset of humans. To obtain optimal parameters for the SVM classifiers,
c and g, a grid search method was used. Here, we set c = 0.8 and g = 0.7 by using the grid search
method. Table 3 shows the comparison results of the WSRC and SVM classifiers, and we can see
that when using the proposed method to predict the PPIs in the human dataset, the averages of
accuracy, precision and sensitivity are as high as 98.92%, 99.95% and 97.77%, respectively. However,
when exploring the human dataset with the SVM-based method, we gained relatively low averages of
accuracy, precision and sensitivity of 90.13%, 96.14% and 82.41%, respectively. In addition, the standard
deviations of these criteria performed by the proposed method were lower than the standard deviations
yielded by the SVM-based method. When using the WSRC-based method to explore the human
dataset, the standard deviations of accuracy, precision and sensitivity were 0.27%, 0.07% and 0.57%
while the standard deviations performed by SVM classifier were 1.22%, 1.00% and 1.85%. The MCC
values and AUC scores for the comparison experiment were also computed. The ROC curves of the
comparison experiment are shown in Figure 1c,d. It can be observed that the WSRC yielded average
MCC and AUC values as high as 97.86% and 98.93%, with corresponding standard deviations of
0.52% and 0.37%. However, the SVM-based method yielded relatively poor results, with an average
MCC value of 81.87% and an average AUC score of 93.99%, with standard deviations of 1.99%
and 1.52%. Considering the higher values for criteria and lower standard deviations, WSRC is superior
to the SVM classifier with higher accuracy and better stability. In addition, we also did comparison
experiments to analyze the performance between using CW-SVD alone and using the DW feature
descriptor alone. When combined with WSRC and performed on the human dataset, CW-SVD yielded
average accuracies of 96.85 and 98.71, respectively, lower than that yielded by their combination: 98.92.
The result demonstrates the effectiveness of their combination for protein sequence feature extraction.

Table 3. Five-fold cross validation result obtained in predicting the human PPIs dataset.

Classification Model Testing Set Accuracy (%) Precision (%) Sensitivity (%) MCC (%) AUC (%)

Proposed Method

1 99.19 99.86 98.38 98.39 99.41
2 98.88 100.00 97.60 97.78 99.03
3 98.70 99.87 97.47 97.43 98.78
4 98.64 100.00 97.07 97.29 98.41
5 99.20 100.00 98.33 98.40 99.03

Average 98.92 ± 0.27 99.95 ± 0.07 97.77 ± 0.57 97.86 ± 0.52 98.93 ± 0.37

Combined Wavelet
Feature with SVM

1 91.39 96.15 84.57 83.91 94.71
2 90.77 97.17 82.53 82.83 94.77
3 88.85 96.08 80.53 79.87 93.65
4 88.79 94.53 80.56 79.62 91.50
5 90.85 96.75 83.85 83.14 95.33

Average 90.13 ± 1.22 96.14 ± 1.00 82.41 ± 1.85 81.87 ± 1.99 93.99 ± 1.52
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2.4. Comparison with Other Methods

Various kinds of computational methods have been proposed for predicting protein interactions.
In this section, we compare the prediction performance between the proposed method and other
different existing methods on the yeast and H. pylori datasets.

Table 4 shows the cross-validation results performed by other existing methods on the yeast
dataset, and it can be observed that the average accuracies yielded by these methods are between
75.08% and 92.05%, lower than the 97.38% accuracy which was obtained by the proposed method.
Considering the precision and sensitivity, none of the other methods can perform better than the
proposed method which yielded the highest precision and sensitivity values of 100.00% and 94.76%,
respectively. In addition, compared with the other methods, the proposed method yielded relatively
low standard deviations foraccuracy, precision and sensitivity of 0.31%, 0.00% and 0.68%, respectively.
In addition, we also compared the proposed combined wavelet feature descriptor with some other
previously proposed methods. When combined with the same classifier as WSRC, these proposed
feature extraction methods yielded prediction accuracies ranging from 96.03 to 96.60, lower than that
of our method. When introducing the pseudo amino acid descriptor into the combined wavelet-based
feature, the model obtained a poorer performance with an average accuracy of 0.9731 ± 0.003. Table 5
shows the average results performed by other existing method on the H. pylori dataset, and from
that, we can see that the accuracy yielded by the proposed method (93.93%), is the highest among all
six methods. In addition, compared with the other methods, our proposed method yielded the higher
average precision and sensitivity values of 96.41% and 91.20%.

Table 4. Performance comparison of different methods on the yeast dataset. (N/A means Not applicable).

Method Approach Accuracy (%) Precision (%) Sensitivity (%) MCC (%)

Guos’ work [18]
ACC 89.33 ± 2.67 88.87 ± 6.16 89.93 ± 3.68 N/A

AC(Auto Covariance) 87.36 ± 1.38 87.82 ± 4.33 87.30 ± 4.68 N/A

Zhous’ work [19] SVM + LD 88.56 ± 0.33 89.50 ± 0.60 87.37 ± 0.22 77.15 ± 0.68

Yangs’ work [20]

Cod1 75.08 ± 1.13 74.75 ± 1.23 75.81 ± 1.20 N/A
Cod2 80.04 ± 1.06 82.17 ± 1.35 76.77 ± 0.69 N/A
Cod3 80.41 ± 0.47 81.86 ± 0.99 78.14 ± 0.90 N/A
Cod4 86.15 ± 1.17 90.24 ± 1.34 81.03 ± 1.74 N/A

Huangs’ work [21] CW + PseAAC 92.05 ± 0.59 95.87 ± 0.89 88.82 ± 0.98 86.09 ± 1.02

Our work

WSRC + AM [22] 96.03 ± 0.55 100.00 ± 0.00 92.07 ± 1.03 92.36 ± 1.01
WSRC + BGR [22] 96.14 ± 0.43 100.00 ± 0.00 92.29 ± 0.77 92.55 ± 0.80

WSRC + LBP − HF [23] 96.60 ± 0.31 100.00 ± 0.00 93.20 ± 0.69 93.42 ± 0.58
WSRC+ LPQ [23] 96.25 ± 0.17 100.00 ± 0.00 92.51 ± 0.45 92.77 ± 0.33

WSRC + CW&DW 97.38 ± 0.31 100.00 ± 0.00 94.76 ± 0.68 94.89 ± 0.59

Table 5. Performance comparison of different methods on the H. pylori dataset. (N/A means Not applicable).

Method Accuracy (%) Precision (%) Sensitivity (%) MCC (%)

Phylogenetic Booststrap [24] 75.80 80.20 69.80 N/A
HKNN [25] 84.00 84.00 86.00 N/A

Signature Products [26] 83.40 85.70 79.90 N/A
Ensemble of HKNN [27] 86.60 85.00 86.70 N/A

Boosting [28] 79.52 81.69 80.37 70.64
Proposed Method 93.93 96.41 91.20 88.57

2.5. Performance on Independent Dataset

Since the proposed model gave a good performance when predicting PPIs on the three datasets,
to further evaluate the generalization ability, we used the whole samples from the yeast dataset as the
training set to predict the PPIs of six other species: D. mela, E. coli, C. elegans, H. sapien, H. pylori and
M. musculus. For these six datasets, all the samples were positive. From Table 6, it can be observed that
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when predicting the PPIs of D. mela, E. coli, C. elegans, H. sapien, H. pylori and M. musculus, the proposed
method yielded excellent results with accuracies as high as 97.36%, 86.56%, 96.64%, 94.24%, 95.07%
and 94.23%, respectively. For these experiments, most of prediction accuracies were over 94% and the
highest accuracy even reached 97.36%. When predicting the PPIs on the E. coli dataset, we obtained the
lowest prediction accuracy, but this was still over 86.5%. Interestingly, these outstanding results show
that it is sufficient to use yeast PPIs data to predict the PPIs of other species. Our proposed method is
powerful enough to deal with cross-species PPIs prediction and has excellent generalization ability
which may offer experience for further research.

Table 6. Prediction results for six species based on our model.

Species Test Pairs Accuracy

D. mela 21774 97.36%
E. coli 6897 86.56%

C. elegans 4013 96.64%
H. sapien 1406 94.24%
H. pylori 1420 95.07%

M. musculus 312 94.23%

3. Discussion

Continuous wavelet transform (CWT) and district wavelet transform (DWT) are two useful
and popular transformations used in various fields, and they are mutually complementary. In this
work, the outstanding performance yielded by our method on three standard PPI datasets shows the
feasibility and effectiveness of the proposed feature extraction method which combines the CWT-SVD
and DWT descriptors, and the low standard deviations show that our proposed prediction method
for protein interactions is robust. The effectiveness of the combined wavelet features may come from
the novelty of transforming the protein sequences into images (matrixes) and using the wavelet
transformation to extract the feature vectors. The physicochemical properties (hydrophobicity, in this
work) could be well embedded in this transformation. In addition, the comparison between combined
wavelet feature and single wavelet feature demonstrates that these two features may be complementary
to each other and can further enhance the representation ability of a single type of feature.

There are some possible reasons accounting for the good results yielded by our proposed method.
One reason lies in the fact that the sparse representation-based classifier performs well with matrix
features, such as CWT features, which are derived from primary sequences. As we transformed the
protein sequences into matrixes by using the hydrophobicity index, we can regard the matrixes as
images and use the classifier in the field of image processing to classify the samples. WSRC integrates
both sparsity and locality structure data into conventional SRC and therefore, further improves the
classification performance. Besides, when using the WSRC, little manual intervention is needed to
adjust the corresponding parameters, helping us to obtain good results without much effort. WSRC
tries to use a linear combination of training samples to reconstruct a testing sample. Each training
sample would be assigned a weight for this combination in the learning process, and the samples with
greater weights would play more important roles in the prediction. For example, in the task of image
classification, images from the sample label may contain similar textures, and SRC would assign these
images with greater weights for prediction. This algorithm principle is in accordance with the fact
that proteins of similar structure and physicochemical properties tend to have common interaction
partners. In addition, the sizes of the datasets that we explored in this work were relatively small
(about 10,000 or less) compared with the other prediction problems involved in machine learning.
As SRC are known to be effective on small and midsize datasets, datasets of this size could be good
choices in the construction of a prediction model for PPI interactions.

It is known that methods which are based on an ensemble classifier usually achieve more accurate
and robust performances than methods which use a single classifier. However, even though the
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weighted sparse representation-based classifier is a single classifier, its performance is superior
to some other methods which use ensemble classifiers, such as boosting and ensemble of HKNN.
The results of comparison experiments applied to the yeast and H. pylori datasets demonstrate that
the proposed method combing continuous and discrete wavelet transform features can improve the
prediction accuracy.

4. Materials and Methods

4.1. Datasets

In this work, the proposed method was verified with a high confidence Saccharomyces cerevisiae
PPIs data set. We collected this dataset from publicly available database of interacting proteins (DIP).
Protein pairs with ≥40% sequence identity or whose lengths were less than 50 residues were removed.
By doing this, we obtained the remaining 5594 protein pairs which were further used to construct
the positive data set. For the negative dataset, we used 5594 additional protein pairs of different
sub-cellular localizations. As a result, the whole data set was finally made up of 11,188 protein pairs,
of which half were from positive samples and half were from negative samples.

To demonstrate the generality of the proposed method, we also verified our approach on two other
types of PPIs data sets. The first dataset was collected from the Human Protein References Database
(HPRD). Protein pairs with ≥25% sequence identity were removed. Finally, to comprise the golden
standard positive dataset, we used the remaining 3899 protein-protein pairs of experimentally verified
PPIs from 2502 different human proteins. For the golden standard negative dataset, we followed
previous work [29] and assumed that the proteins in different subcellular compartments do not
interact with each other. Specifically, the negative dataset was randomly generated from the Swiss-Prot
database (version 57.3) by excluding protein sequences which met the following conditions: (i) protein
sequences without a certain subcellular location; (ii) protein sequences annotated with more than one
subcellular location or “fragment” term; (iii) protein sequences of less than 50 amino acids. Finally,
we obtained 4262 protein pairs from 661 different human proteins and used them to construct the
negative dataset. As a result, the human dataset contained 8161 protein pairs. The second PPI dataset
contained 2916 Helicobacter pylori protein pairs, of which 1458 were interacting pairs and 1458 were
non-interacting pairs, as described by Martin et al.

4.2. Continuous Wavelet Transformation

It is popular to use wavelet transform to extract information from many different kinds of data
as a mathematical tool. In the studies involving the prediction of PPIs, Li et al. [30] suggested using
wavelets as descriptors to represent proteins and proved that it is feasible to use wavelet transform in
feature extraction for proteins. Compared with Fourier transform, wavelet transform has a completely
different merit function. It uses functions which are localized in both the real and Fourier space, while
Fourier transform decomposes the input signal into sines and cosines. As an implementation of the
wavelet transform, continuous wavelet transform (CWT) uses arbitrary scales and almost arbitrary
wavelets. The child wavelets of CWT can be symbolized as follows:

ψa,b(t) =
1√
a

ψ(
t− b

a
) (1)

where a denotes the scale factor and b denotes the shift scale. Based on the child wavelets, the subspace
of scale a is generated. The continuous wavelet transform can be further defined as follows:

CWTf (a, b) =
〈

f , ψa,b
〉
=

1√
a

∫
f (t)ψ(

t− b
a

)dt (2)

where f (t) is the digital signal sequence. Continuous wavelets are localized in both time and frequency
domains. In addition, since it reinforces the traits due to the redundancy tends, continuous analysis
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is often easier to interpret. In this study, we applied Meyer continuous wavelet transform with
60 decomposition scales to transform every protein numerical sequence into a 60 × 60 matrix.
Singular value decomposition was then used to extract a 60-dimensional vector from each CW matrix,
which constructed the CW-SVD descriptor for the protein sequences.

4.3. Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) is another implementation of the wavelet transform. Different
from continuous wavelet transform, DWT uses a discrete set of the wavelet scales and translations and
decomposes the input signal into a mutually orthogonal set of wavelets. It is common to use discrete
wavelet to denoise a noisy signal. Similar to CWT, DWT can be expressed as

DWT f (a, b) =
1√
a

∫
f (t)ψ(

t− b
a

)dt (3)

where a and b are the scale and shift parameters and belong to a set of real numbers. a0 and b0 are set to
be 2 and 1 respectively. Hence, the results can lead to a binary dilation of 2−p and a dyadic translation
of q2p. The wavelet core of DWT can be described as

ψp,q(x) = 2−p/2ψ(2−px− q) (4)

where p = 1, 2, . . . and q = 0, 1, 2, . . . Therefore, DWT can further be described as

DWT f (a, b) =
〈

f (x), ψa,b(x)
〉
= 2−p/2

∫
f (x)ψ(2−p · x− q)dx (5)

The coefficients of the DWT are composed of two parts: approximation and detail coefficients.
Approximation coefficients account for the high-scale and low-frequency components of input signals
while detail coefficients represent the low-scale and high-frequency components. In this work, we first
transformed protein sequences into numerical sequences based on the hydrophobicity index and then
optimized the scale parameter of DWT to give the best performance. Since high-frequency components
contain more noise, we tended to choose approximation coefficients to represent protein sequences.
For this reason, we finally chose the first five discrete cosine coefficients from the approximation
coefficients and the maximum, minimum, mean and standard deviation values of both approximation
and detail coefficients to construct the 26 DW descriptors for the protein sequences. Then, all descriptors
from the CW-SVD and DW descriptors were concatenated and a final 86-dimensional vector was built
to represent each protein sequence. Finally, each PPI pair was characterized by concatenating the
two vector spaces of two individual proteins. Thus, a 172-dimentional vector was been constructed to
represent each protein pair and was used as a feature vector for input into the classifier.

4.4. Weighted Sparse Representation Based Classifier

With the great progress in the compressed sensing (CS) and the linear representation methods
(LRBM), sparse representation has been gradually developed for prediction classification. In particular,
in the field of signal processing, computer vision and pattern recognition, the sparse representation
based classifier (SRC) [31] plays a powerful role and has earnt a reputation for its strong ability to cope
with illumination variations, occlusions, and random noise. Sparse representation tries to optimize
a matrix to reveal the relationship between any given test sample and the training set. Through this
matrix, a sample can be represented by the linear combination of training samples, and the prediction
class of the test sample is finally assigned to the class with the minimum reconstruction residual.
Suppose that n samples of m dimensions construct a training matrix, X ∈ Rm × n, where there are
sufficient training samples belonging to the kth class, a submatrix constructed by sample of kth class
samples can be symbolized as Xk =

[
lk1, lk2 . . . lknk

]
, where li denotes the class of the ith sample
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and nk is the number of samples belonging to the kth class. Given a test sample y ∈ Rm, it can be
represented as

y = αk,1lk,1 + αk,2lk,2 + · · ·+ αk,nk
lk,nk

(6)

When representing the whole training set, Equation (6) can be further transformed as

y = Xα0 (7)

where α0 = [0, . . . ,0, αk,1, αk,2,.., 0,..,0]T Since the nonzero entries in α0 are only associated with the kth
class, α0 would come to be sparse when the class number of samples is large. In the SRC algorithm,
the α vector, which can minimize the l0-norm of itself subject to Equation (7), is the key question that
needs to be solved:

α̂0 = argmin||a||0 subject to y = Xα (8)

However, as an NP-hard problem, problem (8) can be achieved but it is hard to solve precisely.
The theory of compressive sensing [32,33] shows that the l0-minimization problem can be solved by
solving the solving the related convex l1-minimization problem instead when α is sparse enough:

α̂0 = argmin||a||1 subject to y = Xα (9)

Dealing with occlusion, we can extend Equation (9) to the stable l1-minimization problem:

α̂1 = argmin||a||1 subject to ||y− Xα||≤ ε (10)

where ε > 0 denotes the tolerance of the reconstruction error. Given the solution from Equation (10),
the SRC algorithm assigns the label of test sample y to class c which has the minimum
reconstruction residual:

min
c

rc(y) = ‖y− Xα̂c
1‖, c = 1, . . . , K (11)

Besides sparse representation, Nearest Neighbor (NN) classifier is another popular classifier used
in solving classification problems. Since the NN classifier only considers the nearest neighbor, it often
easily suffers from the noise. However, research [34,35] has shown that locality is more essential
than sparsity in some cases. Based on this theory, as a variant of conventional SRC, the weighted
sparse representation-based classifier (WSRC) integrates the locality structure of data into basic sparse
representation. Specifically, Gaussian distances between a sample and the whole set of training samples
are first computed and used as the weights of each training sample. The Gaussian distance between
two samples, s1 and s2, can be described as follows:

dG(s1, s2) = e−‖s1−s2‖2/2σ2
(12)

where dG means the Gaussian kernel width. The information about the locality structure of the data
can be retained by these weights. WSRC can then solve the following problem:

α̂1 = argmin||Wα||1 subject to y = Xα (13)

and specifically,

diag(W) = [dG(y, x1
1), ..., dG(y, xk

nk
)]

T
(14)

where W is a block-diagonal matrix of the locality adaptor and nk is the sample number of members
in in class k in the training set. Dealing with occlusion, we can finally solve the following stable
l1-minimization problem:

α̂1 = argmin||Wα||1 subject to ||y− Xα||≤ ε (15)
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where ε > 0 is the tolerance value.
The WSRC algorithm can be summarized by the following steps:

Algorithm 1. Weighted Sparse Representation-Based Classifier (WSRC)

1. Input: training samples matrix X ∈ Rm×n and any test sample y ∈ Rd.
2. Normalize the columns of X to have unit l2-norm.
3. Calculate the Gaussian distances between y and each sample in X and make up matrix W.
4. Solve the stable l1-minimization problem defined in Eq.(13)
5. Compute each residual of K classes: rc(y) =

∣∣∣∣y− Xα̂c
1

∣∣∣∣ (c = 1, 2, . . . , K)
6. Ouput: assign y to class c by the rule: identity(y) = argmin

c
(rc(y))

4.5. Evaluation Measures

In order to measure the prediction performance of the proposed method, the overall prediction
accuracy (Accu.), sensitivity (Sens.), precision (Prec.) and Matthews correlation coefficient (MCC) were
calculated. They are defined as follows:

Accu. =
TP + TN

TP + FP + TN + FN
(16)

Sens. =
TP

TP + FN
(17)

Prec. =
TP

TP + FP
(18)

MCC =
TP× TN− FP× FN√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(19)

where the true positive (TP) value denotes the number of true samples which are predicted correctly;
the false negative (FN) value is the number of true samples predicted to be non-interacting pairs
incorrectly; the false positive (FP) value is the number of true non-interacting pairs predicted to be PPIs
falsely; and the true negative (TN) value is the number of true non-interacting pairs predicted correctly.
In addition, the receiver operating characteristic (ROC) curve was used to evaluate the performance of
the proposed method. To summarize the ROC curve in a numerical way, the area under an ROC curve
(AUC) was computed.

4.6. Cross-Validation

As demonstrated in a series of studies [36–43], using three cross-validation methods,
i.e., independent dataset test, K-fold cross-validation test and Leave-one-out cross-validation
(LOOCV, also called jackknife cross validation), LOOCV is the most rigorous and objective evaluation
method. However, to reduce the computational time, we adopted the five-fold cross-validation method
in this study. In five-fold cross-validation, the training dataset is randomly divided into five parts,
from which four parts were used for training, and the fifth part was used for testing. This process was
repeated until all the parts were used at least once as a test set, and the overall performance on all five
parts was evaluated.

5. Conclusions

In this post-genomic era, there has been great progress in regard to the computational methods
applied to predict protein-protein interactions. In this work, we present a computational method
only using the information from protein sequences to predict PPIs. This method is based on
sparse representation and combines the continuous and discrete wavelet transforms. Specifically,
all protein sequences are first transformed into numerical sequences based on the hydrophobicity index.
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These numerical sequences are then transformed into CW matrixes using the Meyer continuous wavelet
transform and then the singular value decomposition method is used to extract CW-SVD features from
the matrixes. In addition, DW features were also extracted from the discrete wavelet transform. These
two complementary descriptors construct the whole feature space for protein sequence samples. The
weighted sparse representation-based classifier was then used to deal with sample classification. Good
results obtained from the experiments predicting PPIs of both one species data and cross-species data
show that the proposed method has a great generalization ability and powerful ability to predict
protein-protein interaction.
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