Probing the inhibitor versus chaperone properties of sp²-iminosugars towards human β -glucocerebrosidase: A picomolar chaperone for Gaucher disease

Teresa Mena-Barragán¹, M. Isabel García-Moreno¹, Alen Sevšek², Tetsuya Okazaki,³ Eiji Nanba,⁴ Katsumi Higaki^{4,*}, Nathaniel I. Martin,^{2,*} Roland J. Pieters^{2,*}, José Manuel García Fernández^{5,*}, Carmen Ortiz Mellet^{1,*}

Supplementary Information

List of contents

- S1 to S12 NMR spectra of compounds **4-15**.
- S13 to S33 Dixon and Lineweaver-Burk plots for *K*_i determination

Figure S1. ¹H and ¹³C RMN spectra (500 MHz, 125.7 MHz, CD₃OD) of 4.

Figure S2. ¹H and ¹³C NMR spectra (500 MHz, 125.7 MHz, CD₃OD) of 5.

Figure S3. ¹H and ¹³C NMR spectra (300 MHz, 75.5 MHz, CD₃OD) of 6.

Figure S4. 1 H and 13 C NMR spectra (400 MHz, 100.6 MHz, CD₃OD) of 7.

Figure S5. ¹H and ¹³C NMR spectra (500 MHz, 125.7 MHz, 9:1 acetone-*d*₆-D₂O) of **8**.

Figure S6. 1 H and 13 C NMR spectra (300 MHz, 75.5 MHz, CD₃OD) of 9.

Figure S7. 1 H and 13 C RMN spectra (500 MHz, 125.7 MHz, CD₃OD) of **10**.

Figure S8. ¹H and ¹³C NMR spectra (500 MHz, 125.7 MHz, CD₃OD) of 11.

Figure S9. 1 H and 13 C NMR spectra (300 MHz, 75.5 MHz, CD₃OD) of 12.

Figure S10. ¹H and ¹³C NMR spectra (300 MHz, 75.5 MHz, 9:1 acetone-*d*₆-D₂O, 313 K) of **13**.

Figure S11. ¹H and ¹³C NMR spectra (500 MHz, 125.7 MHz, 9:1 acetone-*d*₆-D₂O, 313 K) of **14**.

Figure S12. ¹H and ¹³C NMR spectra (500 MHz, 125.7 MHz, CD₃OD, 313 K) of **15**.

Figure S13. Dixon Plot for K_i determination (60±4 μ M) of **12** against yeast maltase.

Figure S14. Dixon Plot for K_i determination (44±3 μ M) of **6** against isomaltase.

Figure S15. Lineweaver-Burk Plot for K_i determination (18± 2µM) of **12** against isomaltase.

Figure S16. Lineweaver-Burk Plot for K_i determination (0.045±0.002 μ M) of **4** against almonds β -glucosidase.

Figure S17. Lineweaver-Burk Plot for K_i determination (1.1±0.1 μ M) of 5 against almonds β -glucosidase.

Figure S18. Dixon Plot for K_i determination (48±4 μ M) of **6** against almonds β -glucosidase.

FigureS19. Lineweaver-Burk Plot for K_i determination (1.3±0.1 μ M) of **10** against almonds β -glucosidase.

Figure S20. Dixon Plot for K_i determination (20±2 μ M) of **11** against almonds β -glucosidase.

Figure S21. Dixon Plot for K_i determination (23±3 μ M) of **12** against almonds β -glucosidase.

Figure S22 Lineweaver-Burk Plot for K_i determination (0.1±0.02 μ M) of **4** against bovine liver β -glucosidase.

Figure S23. Dixon Plot for K_i determination (5.8±0.5 μ M) of 5 against bovine liver β -glucosidase.

Figure S24. Dixon Plot for K_i determination (15±1 μ M) of **6** against bovine liver β -glucosidase.

Figure S25. Dixon Plot for K_i determination (15±2 μ M) of **7** against bovine liver β -glucosidase.

Figure S26. Dixon Plot for K_i determination (185±14 μ M) of 8 against bovine liver β -glucosidase.

Figure S27. Dixon Plot for K_i determination (255±20 μ M) of **9** against bovine liver β -glucosidase.

Figure S28. Lineweaver-Burk Plot for K_i determination (1.3±0.1 μ M) of **10** against bovine liver β -glucosidase.

Figure S29. Lineweaver-Burk Plot for K_i determination (12.7±0.1 µM) of **11** against bovine liver β -glucosidase.

Figure S30. Dixon Plot for K_i determination (71±8 μ M) of **12** against bovine liver β -glucosidase.

Figure S31. Lineweaver-Burk Plot for K_i determination (2.3±0.2 µM) of **13** against bovine liver β -glucosidase.

Figure S32. Lineweaver-Burk Plot for K_i determination (11±1 μ M) of **14** against bovine liver β -glucosidase.

Figure S33. Dixon Plot for ${\it K}_i$ determination (66±15 μM) of 15 against bovine liver β -glucosidase.