Supporting Information

A highly-selective and strong anti-interference host-guest complexas fluorescent probe for detection of amantadine by indicatordisplacement assay
Linzhao Zhu, Zhiyong Zhao, Xiongzhi Zhang, Haijun Zhang, Feng Liang and Simin Liu*
The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China)
Table of Contents Page
Table of Contents S1
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, COSY NMR spectrum S2
of ABAM
Competitive binding ${ }^{1} \mathrm{H}$ NMR for S3 determining K_{a} of $\mathrm{CB}[7] \cdot A B A M$
The fluorescence intensity changes of S4
ABAM and $\mathrm{CB}[7] \cdot \mathrm{ABAM}$ with different pH
Fluorescence titration graphs S5
Fluorescence spectra for checking anti- S6
interference capacity
Fluorescence spectra for determination S6
of AMA in simulative sample
Fluorescence spectra for determination S7 of AMA in pharmaceutical formulations

Figure $\mathbf{S 1}{ }^{1} \mathrm{H}$ NMR spectrum ($298 \mathrm{~K}, \mathrm{D}_{2} \mathrm{O}$) of fluorescence indicator (ABAM hydrochloride).

Figure $\mathbf{S 2}{ }^{13} \mathrm{C}$ NMR spectrum ($298 \mathrm{~K}, \mathrm{D}_{2} \mathrm{O}$) of fluorescence indicator (ABAM hydrochloride)

Figure S3 COSY NMR spectrum ($298 \mathrm{~K}, \mathrm{D}_{2} \mathrm{O}$) of ABAM.

Determination of $K_{\text {rel }}$ for the Competition between ABAM and PXDA for CB[7].

Figure S4 Competitive binding ${ }^{1} \mathrm{H}$ NMR spectrum used for the determination of $K_{\text {rel }}$ between CB[7]•ABAM and CB[7]•PXDA (p-xylylenediamine) ([CB[7]] $=[A B A M]=[P X D A]=1.0 \mathrm{mM})$.

Table S1. Results of the determined $K_{\text {rel }}$

$[C B[7]]:[A B A M]:[P X D A](\mathrm{mM})$	$\mathrm{K}_{\text {rel }}$
$1: 1: 1$	2.07
$1: 0.8: 0.8$	2.15
$1: 1.2: 1.2$	2.10

The average $K_{\text {rel }}$ is 2.11. The association constant of PXDA and CB[7] is $1.84 \times 10^{9} \mathrm{M}^{-1}(\mathrm{~J}$. Am. Chem. Soc., 2005, 127, 15959-15967), the association constant of ABAM and CB[7] is $8.7 \times 10^{8} \mathrm{M}^{-1}$.

Figure $\mathbf{S} 5 \mathrm{pH}$ titration plots of the emission of ABAM $(2.0 \mu \mathrm{M})$. The excitation and emission monochromator bandpasses were set at 15 nm and 3 nm , respectively ($\lambda_{\text {ex }} / \lambda_{\text {em }}=366 / 417$ $\mathrm{nm})$. The fitting gives the acidity of ABAM as 8.8.

Figure $\mathbf{S 6} \mathrm{pH}$ titration plots of the emission of ABAM in the presence of $\mathrm{CB}[7]$ ([ABAM] = $[C B[7]]=2.0 \mu \mathrm{M})$. The excitation and emission monochromator bandpasses were set at 15 nm and 3 nm , respectively ($\lambda_{\text {ex }} / \lambda_{\mathrm{em}}=366 / 417 \mathrm{~nm}$). The fitting gives the acidity of $\mathrm{CB}[7] \cdot \mathrm{ABAM}$ as 11.5.

Figure S7 Fluorescence spectra recorded for $\mathrm{CB}[7] \cdot \mathrm{ABAM}(2.0 \mu \mathrm{M}, \mathrm{pH}=4.70)$ with addition of AMA. The equivalent of AMA is: (a) 0 ; (b) 0.1 ; (c) 0.2 ; (d) 0.3 ; (e) 0.4 ; (f) 0.5 ; (g) 0.6 ; (h) 0.7 ; (i) 0.8; (j) 0.9; (k) 1.0. The excitation and emission monochromator bandpasses were set at 15 nm and 3 nm , respectively $\left(\lambda e x / \lambda_{\mathrm{em}}=366 / 417 \mathrm{~nm}\right)$.

Figure S8 Fluorescence spectra recorded for $\mathrm{CB}[7] \cdot \mathrm{ABAM}(0.2 \mu \mathrm{M}, \mathrm{pH}=4.70)$ with addition of AMA. The equivalent of AMA is (a): 0; (b) 0.005; (c) 0.01; (d) 0.02; (e) 0.04; (f) 0.06; (g) 0.08 ; (h) 0.1; (i) 0.2; (j) 0.4; (k) 0.6; (I) 0.8; (m) 1.0. The excitation and emission monochromator bandpasses were set at 10 nm and 6 nm , respectively ($\lambda_{\text {ex }} / \lambda_{\text {em }}=366 / 417$ $\mathrm{nm})$.

Figure S9 Fluorescence spectra recorded for CB[7]•ABAM ($2.0 \mu \mathrm{M}, \mathrm{pH}=4.70$) in the presence of interference sample (interference sample is the mixture solution of ribavirin, doxycycline, levofloxacin and florfenicol; the concentration of each component in the mixture is the same). The excitation and emission monochromator bandpasses were set at 15 nm and 3 nm , respectively $\left(\lambda_{\text {ex }} / \lambda_{\mathrm{em}}=366 / 417 \mathrm{~nm}\right)$.

Figure S10 Fluorescence spectra recorded for CB[7]•ABAM $(0.2 \mu \mathrm{M}, \mathrm{pH}=4.70)$ in the presence of 150 nM AMA in simulative sample (red dash line) and 25 nM AMA in simulative sample (blue dash line). The excitation and emission monochromator bandpasses were set at 10 nm and 6 nm , respectively ($\lambda_{e x} / \lambda_{\mathrm{em}}=366 / 417 \mathrm{~nm}$).

Figure S11 Fluorescence spectra recorded for CB[7]•ABAM ($0.2 \mu \mathrm{M}, \mathrm{pH}=4.70$) in the presence of 100 nM AMA in pharmaceutical formulations sample. The excitation and emission monochromator bandpasses were set at 10 nm and 6 nm , respectively ($\lambda_{\mathrm{ex}} / \lambda_{\mathrm{em}}=$ 366/417 nm).

