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Abstract: The synthesis and preliminary evaluation as donor material for organic photovoltaics of the
poly(diketopyrrolopyrrole-spirobifluorene) (PDPPSBF) is reported herein. Prepared via homogeneous
and heterogeneous direct (hetero)arylation polymerization (DHAP), through the use of different catalytic
systems, conjugated polymers with comparable molecular weights were obtained. The polymers
exhibited strong optical absorption out to 700 nm as thin-films and had appropriate electronic energy
levels for use as a donor with PC70BM. Bulk heterojunction solar cells were fabricated giving power
conversion efficiencies above 4%. These results reveal the potential of such polymers prepared in only
three steps from affordable and commercially available starting materials.

Keywords: direct (hetero)arylation polymerization; spirobifluorene; diketopyrrolopyrrole;
organic photovoltaics

1. Introduction

Due to their potential low cost, light-weight, compatibility with large-surface processing
techniques and low-environmental impact, organic photovoltaic cells (OPVs) have generated, in just
few years, a general enthusiasm within the scientific community. As a result, power conversion
efficiencies (PCEs) have been significantly improved now reaching 13% due to the recent advent of
non-fullerene acceptors [1–3]. However, this race to efficiencies, although essential from an industrial
point of view, appears to be in stark contrast with the main advantage of this technology which is to
primarily afford inexpensive and cost-effective materials. Indeed, efficient active materials reported
in the literature generally require numerous synthetic and purification steps that lower the overall
yields while generating large amounts of chemical wastes. This has rendered many top performing
materials expensive and not suitable for solar cell mass production [4–7]. Hence, to avoid this cryptic
situation, the direct (hetero)arylation (DHA) appears to be method of choice, from the chemist point of
view, to afford the next generation of π-conjugated materials [8–15]. The latter indeed offers several
practical advantages such as (i) a simplified and shortened synthetic route; (ii) a better stability of
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the monomers; (iii) the prevention of metal-substituted terminal groups; (iv) a lower environmental
impact, since organometallic transmetallation derivatives are no longer necessary and (v) the unique
opportunity of affording new compounds that cannot be achieved with the traditional methods.

In a further expression of our commitment toward simplified structures for organic
photovoltaics [16–23], we report herein the synthesis of a poly(diketopyrrolopyrrole-spirobifluorene)
(PDPPSBF) polymer via homogeneous and heterogeneous direct (hetero)arylation polymerization
(DHAP) for OPV applications. Prepared in a maximum of three steps from affordable and commercially
available materials, this macromolecular donor was built around a design principle where a bulky
electron-rich monomer is copolymerized with a more sterically accessible electron-accepting moiety to
maximize the interaction with the fullerene derivatives [24].

2. Results and Discussion

Widely involved in efficient active materials, the synthetically accessible
dithiophenyldiketopyrrolopyrrole (DPP), prepared in only two steps and in gram scale [25],
was co-polymerized with the commercially available 2,7-dibromo-9,9′-spirobi[fluorene] (SBF-Br2) via
direct (hetero)arylation (Scheme 1).
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Scheme 1. Synthesis of the poly(diketopyrrolopyrrole-spirobifluorene) (PDPPSBF) polymer. 

To achieve this goal, three different catalytic systems, involved in the functionalization of DPP 
derivatives via DHA, were used and evaluated herein [25–28]. However, for comparative purposes, 
all polymerizations were all carried out in dimetylacetamide at 80 °C in presence of potassium 
carbonate and pivalic acid. 

For both homogeneous systems (P1 and P2, Table 1), the color of the reaction quickly changed 
from dark pink to violet then greenish. After 24 h, the polymer mixtures were precipitated into 
methanol, purified by Soxhlet extraction, and isolated as dark solids. Gel permeation 
chromatography (GPC) analyses were then performed (Figures S5–S7) and revealed, in consistency 
with the polymerization yields, a significant difference in the number average molecular weight (Mn) 
and molar-mass dispersity (Đm). Longer chain polymers were obtained using the palladium acetate-
based catalyst system while only short oligomers were obtained using the Herrmann–Beller catalyst 
system. In parallel, first attempts of polymerization using the heterogeneous and commercially 
available SiliaCat® DPP-Pd [29] in similar reacting conditions, i.e., 5 mol % of catalyst, systematically 
led to a mixture of starting materials and traces of soluble short oligomers (P3). To overcome this 
problem, the concentration of supported palladium was doubled, leading to polymer P4 with 
comparable Mn than those obtained in homogenous conditions with the palladium 
acetate/tricyclohexylphosphine tetrafluoroborate system. 

  

Scheme 1. Synthesis of the poly(diketopyrrolopyrrole-spirobifluorene) (PDPPSBF) polymer.

To achieve this goal, three different catalytic systems, involved in the functionalization of DPP
derivatives via DHA, were used and evaluated herein [25–28]. However, for comparative purposes,
all polymerizations were all carried out in dimetylacetamide at 80 ◦C in presence of potassium
carbonate and pivalic acid.

For both homogeneous systems (P1 and P2, Table 1), the color of the reaction quickly changed
from dark pink to violet then greenish. After 24 h, the polymer mixtures were precipitated into methanol,
purified by Soxhlet extraction, and isolated as dark solids. Gel permeation chromatography (GPC)
analyses were then performed (Figures S5–S7) and revealed, in consistency with the polymerization yields,
a significant difference in the number average molecular weight (Mn) and molar-mass dispersity (Đm).
Longer chain polymers were obtained using the palladium acetate-based catalyst system while
only short oligomers were obtained using the Herrmann–Beller catalyst system. In parallel, first
attempts of polymerization using the heterogeneous and commercially available SiliaCat® DPP-Pd [29]
in similar reacting conditions, i.e., 5 mol % of catalyst, systematically led to a mixture of starting
materials and traces of soluble short oligomers (P3). To overcome this problem, the concentration of
supported palladium was doubled, leading to polymer P4 with comparable Mn than those obtained in
homogenous conditions with the palladium acetate/tricyclohexylphosphine tetrafluoroborate system.
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Table 1. Number-average molecular weight (Mn) and molar-mass dispersity (Đm) after chloroform
Soxhlet extraction according to the corresponding catalytic system.

Polymer
PDPPSBF

Catalyst
(mol %)

Ligand
(mol %) Yield (%) Mn (g·mol−1) Đm

P1 Pd(OAc)2
(5)

PCy3•HBF4
(10) 88 11,800 2.9

P2 Herrmann–Beller
(5)

P(o-OMePh)3
(10) 49 2800 1.5

P3 SiliaCat® DPP-Pd
(5)

— — — —

P4 SiliaCat® DPP-Pd
(10)

— 88 10,900 2.3

Soluble in chloroform, the three isolated polymers, namely P1, P2 and P4, were characterized by
UV-visible spectroscopy revealing strong optical absorption in the visible region (Figure 1).

Molecules 2018, 23, x FOR PEER REVIEW  3 of 10 

 

Table 1. Number-average molecular weight (Mn) and molar-mass dispersity (Đm) after chloroform 
Soxhlet extraction according to the corresponding catalytic system. 

Polymer 
PDPPSBF 

Catalyst 
(mol %) 

Ligand 
(mol %) 

Yield (%) Mn (g·mol−1) Đm 

P1 Pd(OAc)2 

(5) 
PCy3•HBF4 

(10) 
88 11,800 2.9 

P2 
Herrmann–Beller 

(5) 
P(o-OMePh)3 

(10) 49 2800 1.5 

P3 
SiliaCat® DPP-Pd 

(5) --- --- --- --- 

P4 SiliaCat® DPP-Pd 
(10) 

--- 88 10,900 2.3 

Soluble in chloroform, the three isolated polymers, namely P1, P2 and P4, were characterized by 
UV-visible spectroscopy revealing strong optical absorption in the visible region (Figure 1). 

300 400 500 600 700 800 900
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 a
bs

or
ba

nc
e

Wavelength (nm)
300 400 500 600 700 800 900 1000 1100

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 a

bs
or

ba
nc

e

Wavelength (nm)

(a) (b) 

Figure 1. Normalized UV-Vis absorption spectra of the P1 (red) P2 (blue) and P4 (black) in solution 
(a) and as thin film on glass (b). 

Two different optical absorption profiles were recorded and correlated to the molecular weights. 
The shorter chain polymer P2 exhibits a well-resolved vibrational structure with two equivalent 
maxima at ca. 638 nm and 599 nm. For the longer chain polymers P1 and P4 the intensity of the most 
energetic band decreases with the lowest energy peak becoming more prominent which is consistent 
with aggregation of the polymer structure. In addition, further investigation of the spectra of P4 also 
reveals extra transitions beyond 700 nm attributed to DPP homo-coupling defects along the chains 
[14,30–32]. We hypothesize that this issue might be attributed to the sluggish and step-wise nature of 
catalytic cycle using the SiliaCat® DPP-Pd catalyst, which starts as Pd(II) but has a Pd(0) resting state. 
Considering this is the first report of the use of this catalyst for the synthesis of conjugated polymers 
further investigation is warranted. Conversely, the homo-coupling defect has been recently and 
properly harnessed by Welch et al. to prepare dimeric DPP-based molecular systems [33]. 

Upon transitioning from solution to the thin-film, slight shifts toward longer wavelengths region 
were observed in the optical absorption spectra of the three polymers indicating minor solid state 
packing effects, partly attributed to the steric hindrance generated by the spirobifluorene co-
monomer (Table 2). 

  

Figure 1. Normalized UV-Vis absorption spectra of the P1 (red) P2 (blue) and P4 (black) in solution
(a) and as thin film on glass (b).

Two different optical absorption profiles were recorded and correlated to the molecular weights.
The shorter chain polymer P2 exhibits a well-resolved vibrational structure with two equivalent
maxima at ca. 638 nm and 599 nm. For the longer chain polymers P1 and P4 the intensity of the most
energetic band decreases with the lowest energy peak becoming more prominent which is consistent
with aggregation of the polymer structure. In addition, further investigation of the spectra of P4
also reveals extra transitions beyond 700 nm attributed to DPP homo-coupling defects along the
chains [14,30–32]. We hypothesize that this issue might be attributed to the sluggish and step-wise
nature of catalytic cycle using the SiliaCat® DPP-Pd catalyst, which starts as Pd(II) but has a Pd(0)
resting state. Considering this is the first report of the use of this catalyst for the synthesis of conjugated
polymers further investigation is warranted. Conversely, the homo-coupling defect has been recently
and properly harnessed by Welch et al. to prepare dimeric DPP-based molecular systems [33].

Upon transitioning from solution to the thin-film, slight shifts toward longer wavelengths region
were observed in the optical absorption spectra of the three polymers indicating minor solid state
packing effects, partly attributed to the steric hindrance generated by the spirobifluorene co-monomer
(Table 2).
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Table 2. Optical and electrochemical data. Potentials are expressed vs. Fc/Fc+ (EHOMO =−(4.80 + Eox_onset);
ELUMO = −(4.80 + Ered_onset)) [34].

Polymer
PDPPSBF

λmax (nm)
in CHCl3

λmax (nm)
Film

λonset (nm)
Film

Ered_onset
(V)

Eox_onset
(V)

ELUMO
(eV)

EHOMO
(eV)

P1 648; 601;
416; 370

649; 608;
422; 376 720 −1.45 0.33 −3.35 −5.13

P2 638; 599;
412; 366

652; 601;
412; 377 700 −1.36 0.63 −3.44 −5.43

P4 649; 605;
418; 367

650; 608;
422; 375 813 −1.44 0.28 −3.36 −5.08

Thin films, prepared by drop casting the latter solutions on a platinum working electrode, were
then characterized by cyclic voltammetry (Figure S8 in the Supporting Information). As expected,
increasing the molecular weights and therefore the conjugation length and intermolecular interactions
results in reducing the HOMO-LUMO band gap (Table 2). Moreover, and in agreement with the
literature [30,35–37], comparison of P1 and P4 reveals that DPP-homo coupling defects, monitored in
the UV-visible spectra, also contributes in reducing the band gap through a concomitant stabilization
of the LUMO and a destabilization of the HOMO level.

To evaluate their potential as donor materials and the impact of the polymerization method
on the photovoltaic properties, simple air processed bulk heterojunction (BHJ) solar cells were,
thereafter, fabricated. Hence, P1, P2 and P4 were combined with the [6,6]-phenyl-C70-butyric acid
methyl ester (PC70BM) and embedded between a transparent ITO/PEDOT:PSS front contact and a
reflective LiF/aluminum back contact electrode. Best devices were achieved from blends spun-cast at
1000 rpm from chloroform solutions in a 1:3 weight-to-weight donor:acceptor ratio at a concentration of
10 mg/mL. The corresponding density-voltage (J-V) curves and photovoltaic parameters are depicted
and gathered in Figure 2 and Table 3 respectively.
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Figure 2. J-V characteristics (a) and the corresponding external quantum efficiencies (EQE) spectra (b) 
of the best solar cells from P1, P2 or P4 blended with PC70BM. 

It turns out that the shortest polymer (P2) gave the lowest power conversion efficiencies mainly 
impacted by lower open circuit voltages (Voc) and fill factor (FF) values. However, and interestingly, 
polymers of comparable length, namely P1 and P4 were characterized by comparable photovoltaic 
parameters, and therefore PCEs, despite the different nature of the catalytic systems used to prepare 
each material, i.e., homogeneous vs. heterogeneous. 

Figure 2. J-V characteristics (a) and the corresponding external quantum efficiencies (EQE) spectra
(b) of the best solar cells from P1, P2 or P4 blended with PC70BM.

It turns out that the shortest polymer (P2) gave the lowest power conversion efficiencies mainly
impacted by lower open circuit voltages (Voc) and fill factor (FF) values. However, and interestingly,
polymers of comparable length, namely P1 and P4 were characterized by comparable photovoltaic
parameters, and therefore PCEs, despite the different nature of the catalytic systems used to prepare
each material, i.e., homogeneous vs. heterogeneous.
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Table 3. Photovoltaic properties of P1, P2 and P4 blended with PC70BM and measured under an AM.
1.5 simulated solar illumination (100 mW·cm−2). Average value recorded over 14 devices; maximum
values in brackets.

Polymer PDPPSBF Voc (V) Jsc (mA·cm−2) FF (%) PCE (%)

P1 0.87 ± 0.03
(0.88)

11.47 ± 0.64
(11.84)

41 ± 1
(43)

4.10 ± 0.28
(4.47)

P2 0.80 ± 0.02
(0.81)

11.04 ± 0.77
(11.14)

32 ± 3
(36)

2.87 ± 0.33
(3.27)

P4 0.87 ± 0.03
(0.89)

11.51 ± 0.65
(11.42)

41 ± 2
(43)

4.13 ± 0.35
(4.31)

This behaviors was particularly highlighted in the external quantum efficiencies (EQE) spectra
since both responses are almost superimposable. Moreover, it also appears that the possible DPP
homo coupling defects, emphasized in P4 in the long wavelengths, have negligible effects on the
photovoltaic characteristics [30,38]. On the other hand, although similar short circuit currents (Jsc) of
ca. 11 mA·cm−2 were recorded in the three cases, a different spectral response was monitored for P2
resulting from an improved contribution in the acceptor region (400–500 nm) that compensates the
lower photo conversion assigned to the polymer (550–700 nm).

Consequently, to further rationalize these results the nanoscale topographies of the optimized
blends were finally investigated by atomic force microscopy (Figure 3 and Figure S9).
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Figure 3. Atomic force microscopy (AFM) surface topography images of the P1, P2 and P4 based
optimized active layers (RMS = Root Mean Square).

The higher molecular weight polymers P1 and P4 based active layers exhibit comparable
morphologies, characterized by well-organized and segregated micro domains. The blend made
from the lower molecular weight polymer P2 shows, a contrario, a smoother and homogeneous
surface with coarse and nanometric structures. Here the higher molecular weight polymers promote
phase-separation likely through polymer-polymer aggregation which is beneficial for achieving high
photovoltaic performance These images once again highlight the key role of the morphology and its
impact on the resulting photovoltaic characteristics [39–42].

3. Materials and Methods

All reagents and chemicals from commercial sources were used without further purification.
Reactions were carried out under nitrogen atmosphere unless otherwise stated. Solvents were dried
and purified using standard techniques.

3.1. Measurements and Characterization

Flash chromatography was performed with analytical-grade solvents using Aldrich (Saint Louis,
MO, USA) silica gel (technical grade, pore size 60 Å, 230–400 mesh particle size). Flexible plates
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ALUGRAM® Xtra SIL G UV254 from MACHEREY-NAGEL were used for TLC. Compounds were
detected by UV irradiation (Thermo Fisher Scientific, Waltham, MA, USA) or staining with I2, unless
stated otherwise. NMR spectra were recorded with a Bruker AVANCE III 300 (1H, 300 MHz and 13C,
75 MHz) (Bruker, Billerica, MA, USA). Chemical shifts are given in ppm relative to TMS and coupling
constants (J) in Hz. Gel permeation chromatography (GPC) was conducted on a PL-GPC 220 instrument
(Agilent, Santa Clara, CA, USA) with dichlorobenzene (DCB) as eluent against polystyrene standards.
UV-vis spectra were recorded on a Shimadzu UV-1800 spectrometer (Shimadzu, Kyoto, Japan).
Matrix Assisted Laser Desorption/Ionization was performed on MALDI-TOF MS BIFLEX III
Bruker Daltonics spectrometer (Bruker Daltonics, Billerica, MA, USA) using dithranol as matrix.
Cyclic voltammetry was performed using a Bio-Logic SP-150 potentiostat (Bio-Logic, Seyssinet-Pariset,
France) with positive feedback compensation in 0.10 M Bu4NPF6/acetonitrile (HPLC grade, Thermo
Fisher Scientific, Waltham, MA, USA). Experiments were carried out in a one-compartment cell
equipped with a platinum working electrode (2 mm of diameter) and a platinum wire counter
electrode. A silver wire immersed in 0.10 M Bu4NPF6/acetonitrile was used as pseudo-reference
electrode and checked against the ferrocene/ferrocenium couple (Fc/Fc+) before and after each
experiment. Atomic force microscopy (AFM) experiments were performed using the Nano-Observer
device (CSInstrument, Les Ulis, France). The topographic images were obtained at room temperature
in tapping mode. Images were processed with the Gwyddion free SPM data analysis software
(v2.50, Czech Metrology Institute, Brno, Czech Republic).

3.2. Synthetic Procedures

2,5-bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole 1,4(2H,5H)-dione DPP was
synthetized according to previously reported method [25].

3.3. Polymerization of PDPPSBF in Homogeneous Conditions

DPP (50 mg; 1 eq), 2,7-dibromo-9,9′-spirobi[fluorene] (45 mg; 1 eq), potassium carbonate (33 mg;
2.5 eq), pivalic acid (3 mg; 0.3 eq), Palladium (Pd) catalyst (0.05 eq) and its ligand (L) (0.1 eq) were
placed in a dry Schlenk tube equipped with a stir bar and degassed under vacuum. Dry and degassed
dimethylacetamide (5 mL) was added to the powders and the reaction mixture was stirred at 80 ◦C
under inert atmosphere for 24 h. After cooling down to room temperature the reaction mixture was
precipitated in methanol before being filtered through a Soxhlet thimble and purified via Soxhlet
extraction with methanol and hexanes successively. The polymer was finally extracted with chloroform.
The resulting solution was then concentrated by evaporation, precipitated into methanol and filtered
to afford the desired polymer.

P1 (88%): Pd/L = Palladium(II) acetate/Tricyclohexylphosphine tetrafluoroborate; Mn = 11,800 Da,
PDI = 2.9; 1H NMR (300 MHz, CDCl3) δ = 8.86 (d, J = 3.6 Hz, 0.13H), 8.79 (d, J = 3.8 Hz, 1H), 7.90
(t, J = 7.8 Hz, 2H), 7.70 (d, J = 6.8 Hz, 1H), 7.60 (d, J = 4.8 Hz, 0.18H), 7.43 (t, J = 7.1 Hz, 1H), 7.15
(t, J = 7.3 Hz, 2H), 6.97 (s, 1H), 6.81 (d, J = 7.3 Hz, 1H), 3.96 (s, 2H), 1.80 (s, 2H), 1.27 (dd, J = 19.0, 9.9 Hz,
12H), 0.90–0.74 (m, 8H).

P2 (49%): Pd/L = trans-bis(acetato)bis[o-(di-o-tolylphosphino)benzyl]dipalladium(II)/tris(o-
methoxyphenyl)phosphine; Mn = 2800 Da, PDI = 1.5; 1H NMR (300 MHz, CDCl3) δ = 8.86
(d, J = 3.4 Hz, 0.31H), 8.82–8.75 (m, 1H), 7.89 (dd, J = 11.1, 5.2 Hz, 2H), 7.71 (d, J = 6.3 Hz, 1H),
7.60 (d, J = 5.0 Hz, 0.36H), 7.43 (t, J = 7.5 Hz, 1H), 7.14 (q, J = 7.7 Hz, 1H), 6.97 (s, 1H), 6.81 (d, J = 7.7 Hz,
1H), 3.98 (s, 3H), 1.80 (s, 2H), 1.38–1.11 (m, 13H), 0.90–0.73 (m, 9H).

3.4. Polymerization of PDPPSBF in Heterogeneous Conditions

DPP (50 mg; 1 eq), 2,7-dibromo-9,9′-spirobi[fluorene] (45 mg; 1 eq), potassium carbonate (33 mg;
2.5 eq), pivalic acid (3 mg; 0.3 eq) and SiliaCat DPP-Pd® (0.05 eq for P3 and 0.1 eq for P4) were placed
in a dry Schlenk tube equipped with a stir bar and degassed under vacuum. Dry and degassed
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dimethylacetamide (5 mL) was added to the powders and the reaction mixture was stirred at 80 ◦C
under inert atmosphere for 24 h. After cooling down to room temperature the reaction mixture was
precipitated in methanol before being filtered through a Soxhlet thimble and purified via Soxhlet
extraction with methanol and hexanes successively. The polymer was finally extracted with chloroform.
The resulting solution was then concentrated by evaporation, precipitated into methanol and filtered
to afford the desired polymer.

P3: no precipitation in methanol.

P4 (88%): Mn = 10,900 Da, PDI = 2.3; 1H NMR (300 MHz, CDCl3) δ = 8.86 (d, J = 3.2 Hz, 0.16H), 8.79
(d, J = 3.9 Hz, 1H), 7.90 (t, J = 7.9 Hz, 2H), 7.70 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 5.5 Hz, 0.19H), 7.42
(t, J = 7.4 Hz, 2H), 7.15 (t, J = 7.3 Hz, 2H), 6.97 (s, 1H), 6.81 (d, J = 7.5 Hz, 1H), 3.97 (s, 2H), 1.80 (s, 2H),
1.39–1.11 (m, 14H), 0.88–0.75 (m, 10H).

3.5. Device Fabrication and Testing

Pre-patterned indium-tin oxide coated glass slides of 24 × 25 × 1.1 mm with a sheet resistance
of RS = 7 Ω/sq were purchased from Visiontek Systems. The substrates were washed by successive
ultrasonic baths, namely diluted Deconex® 12 PA-x solution (2% in water), acetone and isopropanol
for 15 min each. Once dried under a steam of air, a UV-ozone plasma treatment (Ossila UV/Ozone
cleaner E511) (Ossila, Sheffield, UK) was performed for 15 min. A filtered aqueous solution of
poly(3,4-ethylenedioxy-thiophene)-poly(styrenesulfonate) (PEDOT:PSS; Ossila Al 4083) through a
0.45 µm RC membrane (Minisart® RC 15) was spun-cast onto the ITO surface at 5000 rpm for 40 s
before being baked at 120 ◦C for 30 min. Then, blends of P1, P2 or P4 and PC71BM (1:3 w/w) were
dissolved in chloroform (10 mg/mL), stirred at 35 ◦C for 2 h and spun-cast onto the PEDOT:PSS
layer at 1000 rpm for 30 s. Finally, devices were completed by the thermal deposition of lithium
fluoride (0.5 nm) and aluminum (100 nm) at a pressure of 1.5 × 10−5 Torr through a shadow mask
defining six cells of 27 mm2 each (13.5 mm × 2 mm). J-V curves were recorded in the dark and
under illumination using a Keithley 236 source-measure unit and a home-made acquisition program.
The light source is an AM1.5 Solar Constant 575 PV simulator (Steuernagel Lichttecknik, equipped
with a metal halogen lamp, 100 mW·cm−2). The light intensity was measured by a broad-band power
meter (13PEM001, Melles Griot). EQE were performed under ambient atmosphere using a halogen
lamp (Osram) with an Action Spectra Pro 150 monochromator, a lock-in amplifier (Perkin-Elmer 7225)
and a S2281 photodiode (Hamamatsu).

4. Conclusions

In summary and to move in directions that will improve on the eco-friendly and cost-efficient creed
of the OPV community, we explored herein the synthesis, via direct (hetero)arylation polymerization,
and preliminary evaluation of the simple and accessible PDPPSBF polymer as donor material in
organic solar cells. Different catalytic systems were assessed and polymers with comparable molecular
weights were obtained from both homogenous and heterogeneous conditions. Comparison of their
electronic and electrochemical properties reveal similarities with the difference being that DPP
homo-coupling defects were emphasized on the polymer prepared via the supported catalyst. However,
the latter does not seem to affect their photovoltaic properties since similar power conversion
efficiencies of ca 4.4% and morphologies were demonstrated. Hence, prepared in only three steps from
commercially available and affordable building blocks, these polymers highlight, once again, the true
potential of the direct (hetero)arylation as an efficient tool to design and afford simple, accessible and
promising materials.
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