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Abstract: Discovering the common modules that are co-expressed across various stages can lead to
an improved understanding of the underlying molecular mechanisms of cancers. There is a shortage
of efficient tools for integrative analysis of gene expression and protein interaction networks for
discovering common modules associated with cancer progression. To address this issue, we propose
a novel regularized multi-view subspace clustering (rMV-spc) algorithm to obtain a representation
matrix for each stage and a joint representation matrix that balances the agreement across various
stages. To avoid the heterogeneity of data, the protein interaction network is incorporated into
the objective of rMV-spc via regularization. Based on the interior point algorithm, we solve the
optimization problem to obtain the common modules. By using artificial networks, we demonstrate
that the proposed algorithm outperforms state-of-the-art methods in terms of accuracy. Furthermore,
the rMV-spc discovers common modules in breast cancer networks based on the breast data, and these
modules serve as biomarkers to predict stages of breast cancer. The proposed model and algorithm
effectively integrate heterogeneous data for dynamic modules.

Keywords: conserved modules; network analysis; subspace clustering; regularization; protein
interaction networks

1. Introduction

The advances in biological technologies, such as the RNA-seq, make it possible to generate
genome-wide high-throughput data with various platforms. The world consortia, such as The Cancer
Genome Atlas (TCGA) https://cancergenome.nih.gov/ and the Encyclopedia of DNA Elements
(ENCODE) https://www.encodeproject.org/, have generated large-scale heterogeneous data on,
for example, gene expression, DNA methylation, and mutation for various cancers or tissues (cells).
The accumulated biological data provides a great opportunity to investigate the mechanisms of cancers.

Among these genomic data, great efforts have been devoted to the analysis of gene expression
because regulation of gene expression refers to the control of the amount and timing of appearance
of the functional product of a gene. Control of expression is vital to allow a cell to produce the gene
products it needs when it needs them; in turn, this gives cells the flexibility to adapt to a variable
environment, external signals, damage to the cell, and other stimuli [1–3]. The differentially expressed
genes between two cohorts shed light on revealing the regulation mechanisms of cells. For example,
Li et al. [4] demonstrated that PE1 inhibits stem cell self-renewal in human chronic myelocytic leukemia.
To investigate the high-order relation among genes, network-based analysis has been devoted to gene
expression, which extracts many interesting patterns that are different from differentially expressed
genes. For instance, Langfelder et al. [5] proposed the weighted gene co-expression network analysis
tool (WGCNA) to mine the co-expression modules.
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Furthermore, biological networks have been proven to be powerful for describing and analyzing
profile data, where each vertex represents a gene and each edge corresponds to an interaction
between a pair of genes. There are many biological networks, such as gene regulation networks [6],
signal transduction networks [7], protein–protein interaction (PPI) networks [8], disease networks [9],
and gene regulation networks [10–15]. The accumulated biological networks provide an opportunity
to explore the mechanisms of cells via mining the graph patterns. Great efforts have been devoted to
network analysis, where the graph patterns shed light on the structure–function relations in biology.
For example, Taylor et al. [16] analyzed the PPI network and demonstrated that the genes with large
degrees (hub genes) play a critical role in the prognosis of breast cancer. Furthermore, Chuang et al. [17]
showed that the pathways where genes are differentially expressed between two cohorts of cancer
patients serve as biomarkers for predicting cancer metastasis.

However, a vast majority of analysis ignores the dynamics of data. Complex diseases, such
as cancers, are dynamic and involve a continuum of molecular events associated with disease
progression, from early warning events to catastrophic end-stage events [18]. How to extract modules
associated with cancer progression is critical for discovering the mechanisms of cancers because
these patterns provide clues for biologists for further research [19,20]. However, it is non-trivial to
detect dynamic modules associated with cancer progression because it is difficult to characterize and
extract dynamics of modules. Thus, the available algorithms for the dynamic modules differ greatly
in terms of how to define dynamic modules and the strategies to discover the predefined patterns.
Ma et al. [21] designed the M-Module algorithm to the common modules across various stages of
breast cancer, and demonstrated that the dynamics of interaction strength is critical for the acceleration
of heart failure [22]. Similar efforts have also been devoted to common and specific modules for
breast cancer [23,24]. However, these algorithms only focus on extracting the common and specific
modules associated with cancer progression. In [25], the authors developed the NMF-DM algorithm to
investigate how the pathway dynamically recruits genes, for example, in cancer progression.

However, these algorithms are only based on gene expression or DNA methylation data and
do not integrate any other data. In fact, integrative analysis of omic data has been extensively
studied since it identifies interesting patterns that cannot be obtained by analysis of a single type
of data [26]. Compared to the gene co-expression network, the protein interaction network is more
reliable since the large co-expression value between a pair of genes does not imply physical interaction.
Thus, the protein interaction network should be integrated with gene expression data to extract
dynamic modules. Even though many algorithms have been developed to integrate protein interaction
and gene expression data, no attempt has been made to identify modules associated with cancer
progression. The reason is that the integrative analysis of these data is difficult because it involves both
the breast progression and heterogeneity of data.

In this study, we address the integration of gene expression data and a protein interaction network
to mine the dynamic modules associated with cancer progression. As done in [21,22], the dynamic
modules are defined as common modules that are co-expressed across various stages. To analyze
cancer gene expression data, we adopt the multi-view subspace clustering algorithm with sparsity
constraints to obtain a representation matrix for each view and a consensus matrix, as shown in Figure 1
(Supplementary Materials). By effectively integrating the protein interaction networks, we expected
that the joint representation matrix C would not only balance the agreement across various stages
but also preserve the topological structure of the protein interaction network. Therefore, the protein
interaction network was incorporated into multi-view subspace clustering via regularization. In this
way, the common module detection problem is transformed into a convex optimization. The interior
point algorithm was used for convex optimization. The experimental results demonstrate that the
proposed algorithm is more accurate than the state of the art. The modules obtained by our algorithm
are more enriched by the known pathways and serve as biomarkers to predict cancer stages.



Molecules 2018, 23, 1016 3 of 11

Samples
G

en
e

G
en

e 
ex

p
re

ss
io

n

S
ta

g
e 

1

S
ta

g
e 

2
 

S
ta

g
e 

m

P
P

I 
n

et
w

o
rk

C1

C2

Cm

C
*

+

Regularization

Subspace 

clustering

Data Objective function of rMV-spc Modules

   consensus 

representation
    subspace

representation

     Spectral

     Clustering

subspace representation

Figure 1. Overview of the rMV-s2c algorithm, which comprises two major components, namely, the
regularized subspace clustering procedure, which obtains the subspaces for gene expression data of
each clinical stage by regularizing the protein interaction network, and the module discovery procedure,
which identifies common communities across cancer stages based on the consensus space.

The rest of the paper is organized as follows: Section 2 proposes the mathematical model and
algorithm. The related materials are presented in Section 3. The experimental results are provided in
Section 4. The conclusion is discussed in Section 5.

2. Methods

The objective function and optimization procedure of the proposed algorithm, and the algorithm
analysis, are presented in this section. The rMV-spc algorithm comprises two major components as
shown in Figure 1.

2.1. Preliminaries

Prior to giving the detailed description of the procedure of rMV-spc, let us introduce some
terminologies that are widely used in the forthcoming sections.

The protein interaction network can be modeled by an unweighted and undirected graph G =

(V, E), where the vertex set V = {v1, v2, . . . , vn} contains all the genes (proteins) and the edge set
E = {(vi, vj)} denotes the interaction between a pair of genes. The protein interaction network
G can be represented by an n× n adjacency matrix A, where aij =1 if vertex vi and vj are connected,
0 otherwise. The degree of vertex vi is the number of edges connected to it, i.e., di = ∑j aij. The degree
matrix D is the diagonal matrix with a degree sequence of G, i.e., D = diag(d1, . . . , dn). The trace of a
matrix W is the sum of diagonal elements of W, i.e., trace(W) = ∑i wij.

Let {1, 2, . . . , m} be a finite set of cancer clinical stages and the attached subscript s be the
value of the variable at the s-th stage. The gene expression for cancer with various clinical stages
X = {X1, X2, . . . , Xm}, where each Xi is the gene expression for the stage S. The gene expression data
Xs is an ns × n matrix, where each row corresponds a gene, each column represents a sample (patient),
and element xijs denotes the expression level of the j-th patients in the i-th gene at stage s.

2.2. Procedure of Algorithm

In the single-view clustering, the sparse subspace clustering (SSC) [27,28] represents each data
point using a small number of data points from its own subspace. Given the data X, it amounts to the
minimization problem as

min
C
‖C‖1, s.t. X = XC, diag(C) = 0 (1)
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where ‖C‖1 is the l1 norm, and constraint diag(C) = 0 is used to avoid trivial solutions where a data
point is represented as a linear combination of itself. In the case of the corrupted data, the above
equation can be re-written as

min
C
‖C‖1 +

λz

2
‖Z‖2

F, s.t. X = XC + Z, diag(C) = 0 (2)

where the l1 norm promotes sparsity of the columns of C, while the Frobenius norm favors small
entries in the columns of Z.

Given gene expression associated with cancer progression X = {X1, X2, . . . , Xm}, the multi-view
clustering finds representation matrices C1, . . . , Cm across different stages and a joint representation matrix
C that balance the agreement across various stages [29]. According to [30], we use the centroid based
strategy to obtain the consensus matrix C for the subspace clustering. Therefore, Equation (2) becomes

min
C1,...,Cm ,C

m

∑
s=1
‖Cs‖1 +

λz

2
‖Zs‖2

F +
λc

2
‖Cs − C‖2

s.t. Xs = XsCs + Zs, diag(Cs) = 0, s = 1, . . . , m.

(3)

We present the regularized multi-view sparse subspace clustering (rMV-spc) algorithm to discover
the common modules in multiple views of gene expression for cancers. However, the common modules
solely based on gene expression data assume that the genes within a module are co-expressed. In fact,
protein interactions between genes are more reliable than the co-expression relation. Thus, it is
promising to integrate the gene expression and protein interaction network to discover the common
modules across cancer stages. However, the protein interaction network is sparse. Therefore, we also
expect that the joint representation matrix C not only balances the agreement across various stages
but also preserves the topological structure of protein interaction network G. According to [31],
the local-structure-preserved embedding can be formulated as the trace form, which is defined as

O(C, G) = Trace(C
′
LGC) (4)

where LG is the Laplacian matrix of graph G, i.e., LG = D− A. By imposing the topology preserving
constraint, the model in Equation (3) is formulated as

min
C1,...,Cm ,C

m

∑
s=1
‖Cs‖1 +

λz

2
‖Zs‖2

F +
λc

2
‖Cs − C‖2 + λGTrace(C

′
LGC)

s.t. Xs = XsCs + Zs, diag(Cs) = 0, s = 1, . . . , m.

(5)

To solve the model in Equation (5), we adopt an alternative two-step procedure. Specifically,
we update Ci(1 ≤ i ≤ m) by fixing C, while we update C by fixing Ci(1 ≤ i ≤ m). In each
procedure, the problem in Equation (5) is a convex optimization, which can be solved using the convex
programming algorithms [32,33], and the sparsity of solutions is also preferred [34,35]. In this study,
we adopt the interior-point algorithm [32] to obtain matrix C.

After obtaining the consensus matrix C, we construct the affinity matrix W as

W = C + C
′
. (6)

The spectral clustering algorithm is used to obtain the final modules. The procedure is depicted
in Algorithm 1.



Molecules 2018, 23, 1016 5 of 11

Algorithm 1 The rMV-spc algorithm

Input:
X : Gene expression data
G = (V, E): Protein interaction network

Output:
{Vi}k

i=1: Common modules

1: Update Cs by fixing C and Ci(i 6= s) based on the interior point algorithm [32]

2: Update C by fixing Cs(1 ≤ m) based on the interior point algorithm [32];

3: Normalize the columns of consensus matrix C;

4: Construct the affinity matrix W = C + C
′

;

5: Apply spectral clustering to obtain modules based on matrix W;

6: return common modules.

3. Materials

3.1. Statistical Significance of Modules

The statistical significance of common modules is computed based on the null score distribution
of modules generated using randomized permutation. Each gene expression is completely randomized
1000 times by sample shuffling. The average Pearson coefficient among the gene pair with the module
is used as the module score. To construct the null distribution for module scores, we perform the
proposed algorithm on the randomized gene expression data. Using the null distribution, the empirical
p-value of a module is calculated as the probability of the module having the observed score or greater
by chance. p-values are corrected for multiple testing using the method of Benjamini–Hochberg [36].
An adjusted p-value of 0.05 is considered as significant.

3.2. Module-Based Features for a Support Vector Machine (SVM)

Given a module C, we normalize the expression level of each gene across all samples using z-score
transformation [17], denoted by Expij for the i-th gene and j-th patient. For each sample j, the activity
score of the k-th module is defined as the average gene expression of all genes within the module, i.e.,

eC = ∑
i∈C

Expij/
√
|C| (7)

where |C| is the number of genes in C. For each patient sample, a feature vector is constructed by
all modules.

3.3. Normalized Mutual Information

The normalized mutual information (NMI) [37] is based on the confusion matrix N whose rows
correspond to the real modules in standard partition P∗ and the columns correspond to the modules
in obtained partition P. The element Nij is the number of vertices overlapped by the i-th real and j-th
predicted module. The NMI is defined as

NMI(P, P∗) =
−2 ∑

|P|
i=1 ∑

|P∗ |
j=1 Nij log(

Nij N
Ni. N.j

)

∑
|P|
i=1 Ni. log(Ni.

N ) + ∑
|P∗ |
i=1 N.j log(

N.j
N )

where |P| is the number of modules in P and Ni. is the sum of the i-th row of the matrix.

3.4. Artificial Networks

The GN benchmark network, where each network consists of 128 nodes that are grouped into
4 clusters of equal sizes, is introduced in [38]. Every node has an average degree of 16 and shares
Zout edges connecting nodes outside of the module to which it belongs. As parameter Zout increases
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from 1 to 8, the detection of clusters in the networks becomes increasingly difficult. In this study,
we combine three GN networks to construct the artificial networks to testify the performance of the
proposed algorithms, where the first two networks are used for the multiple views and the last network
is used for the regularization.

3.5. Breast Cancer Gene Expression Data

The gene expression data for breast cancer is downloaded from the TCGA Data Portal,
where the clinical stage information for patients is also available. The RPKM values (RNA-seq
IlluminaHiSeq_RNASeq with level 3) are used. There are 809 samples across four stages (Stage I: 129,
Stage II: 458, Stage III: 209, Stage IV: 13).

3.6. Protein Interaction Network

The protein interaction network is downloaded from BioGrid database https://thebiogrid.org/,
which comprises 22,365 proteins (genes) and 437,751 interactions among genes. There are 435,543 physical
interaction and 2208 genetic interactions.

4. Results

To validate the performance of the proposed algorithm, three state-of-the-art algorithms are
selected to make a comparison of both artificial data and breast cancer data. The compared algorithms
are the M-Module algorithm [21], multi-view clustering (MV-NMF) [39], and spectral clustering [40].
Notice that the spectral clustering cannot be applied to the multiple networks directly. Thus, we
apply the spectral clustering to each network and then combine the results on each network based on
consensus clustering (CSC).

Two types of datasets, including both the artificial and real breast cancer data, are employed for a
comparison between various algorithms. The artificial networks are adopted to test the accuracy of the
rMV-spc algorithm, and the breast cancer data are used to determine the applicability of the proposed
algorithm in discovering common modules in real networks with strong backgrounds.

4.1. Benchmarking Performance on the Artificial Networks

In the artificial networks, we combine three GN networks, where the first two networks are
used for multiple views and the remaining one is used for regularization (Materials). To increase the
difficulty in discovering the common modules, we increase the parameter Zout from 1 to 8 while we fix
Zout as 6. To quantify the performance of algorithms, the normalized mutual information (NMI) is
adopted since the community structure is known in the artificial networks (Materials).

Prior to giving the performance of algorithms, we first investigate how the parameter affects
the performance of the proposed algorithm. Notice that there are three involved parameters:
parameter λZ controls the importance of the regularizer of factorization, parameter λC determines
the tradeoff between the consensus matrix among multiple views, and parameter λG denotes the
importance of the network for regularization. Similar to [41], we assume that these parameters
are equal since we hypothesize that all items for regularization are equally important. By setting
parameter λ ∈ {10−2, 10−1, 100, 101, 102}, we check how the accuracy of the proposed algorithm
changes as parameter Zout increases from 1 to 8 in terms of NMI, which is shown in Figure 2A.
As λ increases from 10−2 to 100, the accuracy of the rMV-spc algorithm increases and achieves the
best performance at λ = 1. The reason is that, when λ is small, the objective function is denominated
by subspace clustering, and the contribution of items of regularization is subtle. As λ increases,
the contribution of regularized items becomes increasingly important, which improves the accuracy of
rMV-spc. As λ increases from 100 to 102, the accuracy of the proposed algorithm decreases dramatically.
The reason is that, as lambda continues to increasing, the objective function of rMV-spc is dominated
by the regularization, resulting in the decrease in the performance of the algorithm. Furthermore,

https://thebiogrid.org/
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the proposed algorithm is robust since its accuracy is stable for a wide range of λ values. In all
experiments, we set λ = 1.
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Figure 2. Parameter effect and performance of the compared algorithms on artificial data.
(A) Parameter effect: how the NMI changes as parameter λ increases from 10−2 to 102. (B) Performance
as a function of the amount of parameter Zout in the simulated data among various algorithms,
where NMI is used as the performance measure.

We compare the MV-NMF, CSC, M-Module, and rMV-spc algorithms on the artificial networks in
terms of accuracy, which is shown in Figure 2B. From the panel, we assert that the proposed algorithm
achieves the best performance, followed by M-Module, MV-NMF, and CSC. While the M-Module is
inferior to the rMV-spc algorithm, it is much better than the others. There are two possible reasons
why the proposed algorithm outperforms the other methods. First, the subspaces are more precise
in characterizing the module structure in multiple view data compared with the data in the original
space . Second, the proposed algorithm incorporates both the subspace and topological information,
which provides a better way to characterize the structure of common modules. Moreover, it is easy
to conclude that the performance of algorithms decreases dramatically as Zout increases from 1 to
8 because the module structure becomes fuzzy as Zout increases. For example, the NMI is about 1 when
Zout ≤ 4. As Zout > 4, the NMI value decreases dramatically.

4.2. Benchmarking Performance on the Breast Cancer Networks

The artificial data is used to test the performance of the proposed algorithm in detecting the
common modules in terms of accuracy. To check whether the proposed algorithm can identify common
modules across various clinical stages in the data with biological background.

Because the true modules are unknown, multiple reference pathway annotations, including Gene
Ontology [42], KEGG [43], and Biocart [44], are used to determine the effectiveness of the algorithms
by using the enrichment analysis (Materials). To evaluate the performance, we use specificity and
sensitivity to quantify the accuracy, where specificity is defined as the fraction of the predicted
modules that significantly overlaps with at least one reference pathway, while sensitivity is defined
as the fraction of the reference pathways that significantly overlaps with at least one predicted
module. Figure 3A,B shows that the rMV-spc algorithm achieves higher specificity while maintaining
comparable sensitivity than the other methods. Specifically, the specificity values of rMV-spc are 76.9%,
80.3%, and 81.7% for the GO, KEGG, and BioCart pathways, respectively, while those of the M-Module
algorithm are 72.4%, 74.4% and 76.5%. The results demonstrate that the common modules obtained by
the proposed method are more enriched by the known pathways than those obtained by others. Notice
that the rMV-spc algorithm is inferior to M-Module in terms of sensitivity. We check the significance of
the difference between rMV-spc and M-Module on sensitivity using the Fisher exact test with a cutoff
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of 0.05. The results demonstrate that the difference in specificity is significant, while it is not significant
in terms of sensitivity.
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Figure 3. Performance of the compared algorithms on the TCGA breast cancer data. (A) Specificity
of modules obtained by various algorithms in the known pathway enrichment analysis of various
algorithms. (B) Sensitivity of communities obtained by various algorithms in the known pathway
enrichment analysis of different algorithms. (C) Specificity of modules obtained by the proposed
algorithms with and without the regularization of the protein interaction network. (D) Sensitivity
of modules obtained by the proposed algorithms with and without the regularization of the protein
interaction network. The ∗ denotes that the difference is significant using Fisher’s exact test with a
cutoff of 0.05.

The proposed algorithm integrate both the gene expression and protein interaction networks.
Then, we ask what is the different if the protein interaction network is not integrated. The specificity
and sensitivity of modules are shown in Figure 3C,D. From the panel, we assert that the integration
of the protein interaction network increases the percentage of modules that are enriched by known
pathways. The results demonstrate that the integration is promising in identifying the common
modules associated with cancer progression.

4.3. Common Modules Serve as Biomarkers to Predict Breast Cancer Stages

It has been shown that the hub genes [16] and modules [17,21] are predictive for the breast cancer
diagnosis. Thus, we hypothesize that the common modules can also be used to predict the stages of
breast cancer. Following [17], we construct module-based features to predict the stages of breast cancer
(Materials). For each module, we construct a feature vector that is the average of the gene expression
of the genes within the modules. Based on the feature vectors, we use the SVM to predict the stage
of cancers.

For a baseline comparison, we compare the classification accuracy by using the following
feature sets: modules generated by other algorithms, size-matched differentially expressed genes,
and randomly selected genes. We trained the support vector machine (SVM) classifier to perform
multi-class classification. This SVM employed accuracy (the percentage of patients that are corrected
classified) to measure performance. The results on the TCGA breast cancer data using five-fold
cross validation are presented in Figure 4A. The modules obtained by our algorithms are more
discriminative than the others. Specifically, the rMV-spc algorithm has significantly higher accuracy
than the M-Module (74.5% vs. 71.3%). These results demonstrate that the common modules obtained
by rMV-spc capture the specificity of pathways as breast cancer progression.
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Figure 4. Subtype-specific methylation modules improve the accuracy of breast cancer stage
classification using 50 independent 5-fold cross validations. (A) Classification accuracy of breast
cancer stages using different feature sets, including the stage-specific modules obtained by various
algorithms. Accuracy is defined as the number of patient samples correctly classified. The Y-axis is the
accuracy and the error bar is for the standard deviation. (B) External validation by training on TCGA
data and testing on the external data.

To further validate the performance of various algorithms, we evaluated the performance of the
SVM classifiers by using external data (GSE5874). We trained the SVM classifier on the TCGA data
and tested it on an external microarray dataset. Consistent results indicate that the performance is not
due to hidden confounding factors in the TCGA dataset (Figure 4B). The accuracy of rMV-spc is 51.4%,
while the accuracies of the M-Module, MV-NMF, CSC, and DGis are 49.8%, 44.9%, 41.3%, and 38.7%,
respectively. The results show that the proposed algorithm is better than the available approaches in
discovering common modules in data integration.

5. Conclusions

The advances in biological technologies enable the possibility of generating multiple genomic
profiling of biological samples for various conditions. How to integrate the heterogeneous genomic
data to extract patterns is critical since these patterns may shed light on the mechanisms of cancers.
Even though many algorithms have been devoted to the integrative analysis of omic data, few attempts
have been made to simultaneously integrate heterogeneous and time-series gene expression data.

In order to attack this issue, we provide a novel algorithm by considering the time and
heterogeneity factors at the same time. In this study, the gene expression associated with cancer
progression are projected to subspaces based on subspace clustering. In order to incorporate the
protein interaction network, we treat it as a regularizer with an immediate purpose to alleviate
the effects of heterogeneity. The experimental results demonstrate that the proposed algorithm is
promising in discovering common modules across various cancer stages. We see ample opportunities
to improve on the basic concept of rMV-spc in future work. For example, we can extend the algorithm
by integrating more heterogeneous data, such as DNA copy number variation and methylation.

Supplementary Materials: The following are available online.
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