Supplementary Information

Antifungal activities and mechanism of a polyoxovanadate functionalized by Zn-fluconazole complexes

Shuanli Guo^{a,†}, Wei Yang^{b,†}, Mingming Zhao^a, RuiTian^a, Boyu Zhang^a, Yanfei Qi^{a,*}

^{*a*}School of Public Health, Jilin University, Changchun, Jilin 130021, P. R. China. ^{*b*}College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P. R. China

Table S1 Bond lengths [Å] and angles [0] for ZnFLC.

Bonds			
V(1)-O(4)	1.601(5)	V(2)-O(5)	1.631(5)
V(1)-O(3)	1.799(5)	V(2)-O(9)	1.820(5)
V(1)-O(13)#1	1.887(5)	V(2)-O(10)	1.831(5)
V(1)-O(9)#1	1.902(5)	V(2)-O(8)#1	1.978(4)
V(1)-O(7)	2.113(5)	V(2)-O(11)	2.029(4)
V(1)-O(12)	2.288(4)	V(2)-O(12)#1	2.210(4)
V(3)-O(1)	1.597(5)	V(4)-O(6)	1.614(5)
V(3)-O(2)	2.027(5)	V(4)-O(13)	1.816(5)
V(3)-O(3)#1	1.850(5)	V(4)-O(14)	1.841(5)
V(3)-O(14)	1.856(5)	V(4)-O(11)#1	2.003(4)
V(3)-O(10)	1.904(5)	V(4)-O(8)	2.021(5)
V(3)-O(12)#1	2.325(4)	V(4)-O(12)#1	2.237(4)
V(5)-O(7)	1.687(4)	Zn(1)-OW2	1.982(6)
V(5)-O(8)	1.906(4)	Zn(1)-OW1	2.019(5)
V(5)-O(11)	1.932(4)	Zn(1)-N(1)	2.021(6)
V(5)-O(12)	2.086(4)	Zn(1)-N(13)	2.122(6)
V(5)-O(12)#1	2.181(4)	Zn(1)-OW3	2.180(6)
V(5)-O(2)	1.702(4)	Zn(2)-N(7)	2.220(6)
Zn(2)-N(7)#2	2.220(6)	Zn(2)-N(6)	2.277(6)
Zn(2)-N(10)	2.129(6)	Zn(2)-N(6)#2	2.277(6)
Zn(2)-N(10)#2	2.129(6)	F(5)-C(21)	1.333(12)
N(1)-C(2)	1.349(10)	C(4)-O(17)	1.410(8)
N(1)-C(1)	1.352(9)	C(4)-C(5)	1.514(9)

C(1)-N(3)	1.317(9)	C(4)-C(11)	1.548(9)
F(1)-C(39)	1.346(9)	F(6)-C(19)	1.340(9)
F(2)-C(8)	1.365(11)	N(4)-C(13)	1.340(9)
C(2)-N(2)	1.311(10)	N(4)-N(5)	1.364(9)
N(2)-N(3)	1.364(8)	N(4)-C(11)	1.458(9)
F(3)-C(10)	1.342(10)	C(5)-C(10)	1.383(11)
F(4)-C(37)	1.355(10)	C(5)-C(6)	1.384(10)
C(3)-N(3)	1.474(8)	N(5)-C(12)	1.296(10)
C(3)-C(4)	1.539(9)	C(6)-C(7)	1.394(11)
N(6)-C(13)	1.314(9)	C(16)-C(17)	1.550(10)
N(6)-C(12)	1.360(10)	N(16)-C(33)	1.320(11)
C(7)-C(8)	1.365(16)	N(16)-N(17)	1.357(9)
N(7)-C(14)	1.327(9)	N(16)-C(31)	1.441(10)
N(7)-C(15)	1.361(10)	O(16)-C(17)	1.406(8)
C(8)-C(9)	1.351(16)	C(17)-C(18)	1.517(10)
N(8)-C(15)	1.316(11)	C(17)-C(24)#2	1.557(9)
N(8)-N(9)	1.362(9)	N(17)-C(32)	1.319(12)
C(9)-C(10)	1.377(12)	C(18)-C(23)	1.387(11)
N(9)-C(14)	1.332(9)	C(18)-C(19)	1.388(11)
N(9)-C(16)	1.458(9)	N(18)-C(33)	1.313(12)
N(10)-C(27)	1.323(10)	N(18)-C(32)	1.349(13)
N(10)-C(28)	1.335(10)	C(19)-C(20)	1.394(12)
N(11)-C(27)	1.328(10)	C(20)-C(21)	1.351(16)
N(11)-N(12)	1.349(9)	C(21)-C(22)	1.359(15)
N(12)-C(28)	1.325(9)	C(22)-C(23)	1.412(13)
N(12)-C(29)	1.456(9)	C(24)-C(17)#2	1.557(9)
N(13)-C(25)	1.331(10)	C(29)-C(30)	1.541(10)
N(13)-C(26)	1.374(10)	C(30)-C(34)	1.527(10)
N(14)-C(26)	1.309(11)	C(30)-C(31)	1.551(10)
N(14)-N(15)	1.361(9)	C(34)-C(39)	1.371(10)
N(15)-C(25)	1.312(9)	C(34)-C(35)	1.374(10)
N(15)-C(24)	1.460(9)	C(35)-C(36)	1.393(11)
O(15)-C(30)	1.437(9)	C(36)-C(37)	1.369(13)
C(37)-C(38)	1.366(13)	C(38)-C(39)	1.374(12)
Angle			
O(4)-V(1)-O(3)	103.6(2)	O(5)-V(2)-O(9)	102.2(2)
O(4)-V(1)-O(13)#1	102.1(2)	O(5)-V(2)-O(10)	102.7(2)
O(3)-V(1)-O(13)#1	92.9(2)	O(9)-V(2)-O(10)	94.1(2)
O(4)-V(1)-O(9)#1	100.0(2)	O(5)-V(2)-O(8)#1	99.1(2)
O(3)-V(1)-O(9)#1	92.6(2)	O(9)-V(2)-O(8)#1	92.3(2)
O(13)#1-V(1)-O(9)#1	155.2(2)	O(10)-V(2)-O(8)#1	155.36(19)
O(4)-V(1)-O(7)	99.2(2)	O(5)-V(2)-O(11)	98.3(2)
O(3)-V(1)-O(7)	157.2(2)	O(9)-V(2)-O(11)	157.95(19)
O(13)#1-V(1)-O(7)	82.63(18)	O(10)-V(2)-O(11)	89.07(19)

O(9)#1-V(1)-O(7)	82.96(19)	O(8)#1-V(2)-O(11)	76.48(18)
O(4)-V(1)-O(12)	173.4(2)	O(5)-V(2)-O(12)#1	173.9(2)
O(3)-V(1)-O(12)	82.90(19)	O(9)-V(2)-O(12)#1	82.09(18)
O(13)#1-V(1)-O(12)	78.48(17)	O(10)-V(2)-O(12)#1	81.11(18)
O(9)#1-V(1)-O(12)	78.30(17)	O(8)#1-V(2)-O(12)#1	76.26(16)
O(7)-V(1)-O(12)	74.32(16)	O(11)-V(2)-O(12)#1	76.87(16)
O(1)-V(3)-O(3)#1	104.3(2)	O(6)-V(4)-O(13)	102.8(2)
O(1)-V(3)-O(14)	103.8(3)	O(6)-V(4)-O(14)	102.9(2)
O(3)#1-V(3)-O(14)	92.3(2)	O(13)-V(4)-O(14)	96.7(2)
O(1)-V(3)-O(10)	100.6(3)	O(6)-V(4)-O(11)#1	98.7(2)
O(3)#1-V(3)-O(10)	89.3(2)	O(13)-V(4)-O(11)#1	90.83(19)
O(14)-V(3)-O(10)	154.4(2)	O(14)-V(4)-O(11)#1	154.91(19)
O(1)-V(3)-O(2)	99.5(2)	O(6)-V(4)-O(8)	99.0(2)
O(3)#1-V(3)-O(2)	156.1(2)	O(13)-V(4)-O(8)	156.10(19)
O(14)-V(3)-O(2)	84.09(19)	O(14)-V(4)-O(8)	87.92(19)
O(10)-V(3)-O(2)	84.18(19)	O(11)#1-V(4)-O(8)	76.10(17)
O(1)-V(3)-O(12)#1	174.3(2)	O(6)-V(4)-O(12)#1	173.8(2)
O(3)#1-V(3)-O(12)#1	80.82(18)	O(13)-V(4)-O(12)#1	81.30(18)
O(14)-V(3)-O(12)#1	78.37(18)	O(14)-V(4)-O(12)#1	81.03(18)
O(10)-V(3)-O(12)#1	76.66(17)	O(11)#1-V(4)-O(12)#1	76.49(16)
O(2)-V(3)-O(12)#1	75.27(16)	O(8)-V(4)-O(12)#1	76.27(16)
O(7)-V(5)-O(2)	106.3(2)	O(2)-V(5)-O(12)	164.6(2)
O(7)-V(5)-O(8)	98.9(2)	O(8)-V(5)-O(12)	80.84(17)
O(2)-V(5)-O(8)	97.0(2)	O(11)-V(5)-O(12)	81.71(17)
O(7)-V(5)-O(11)	98.2(2)	O(7)-V(5)-O(12)#1	167.86(19)
O(2)-V(5)-O(11)	95.2(2)	O(2)-V(5)-O(12)#1	85.83(19)
O(8)-V(5)-O(11)	155.27(19)	O(8)-V(5)-O(12)#1	79.97(17)
O(7)-V(5)-O(12)	89.09(19)	O(11)-V(5)-O(12)#1	79.56(17)
O(12)-V(5)-O(12)#1	78.79(18)		

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y-1,-z-1; #2 -x,-y,-z

Table S2. Ergosterol content of C. albicans HL 973 treated with or without Drugs. Data are presented as the mean ± SD of three independent experiments. *P<0.05 for FCZ and ZnFLC vs. control, #P<0.05 for ZnFLC vs. FCZ

	Concentration (µg/mL)	Ergosterol content(mg/mL)
DMSO	-	7.46±0.01
FCZ	16	4.30±0.01*
ZnFLC	16	0.60±0.028* #

Table S3.	Primers	used fo	or Real-	Time	PCR.
Table 00.	1 micro	uscu it	n ittai-	rinc	I CIX.

Gene	Primer sequence (5'-3')	Size (bp)	
185	F:TCTTTCTTGATTTTGTGGGTGG	150	
	R: TCGATAGTCCCTCTAAGAAGTG	150	

ERG1	F: AAGGGCAAAGGTCATGTGTT	121
	R: CGTTAGCAGCAGAAGGAGGT	
ERG7	F: TTATGCGTCGATGTTTGCAT	117
	R: CCACCGTCTGGAAGTTGTTT	
ERG11	F: TTTGACCGTTCATTTGCTCA	110
	R: GCAGCATCACGTCTCCAATA	
ERG27	F: TTGCTGCTGCTTTAGGTCAA	110
	R: GTCCAGACCAGTGCTGTCAA	
ERG28	F:GCAAGAACTTTTGGAACTTGG	117
	R: TGCAGCAATAGCAAATGTGA	

Fig. S1 (a) and (b) Ball-stick representations of the coordination modes of Zn1 and Zn2 in ZnFLC.

Fig. S2. FT-IR spectrum of ZnFLC.

Fig. S3. The viability effects of $Zn(OAc)_2$ ·H₂O and NaVO₃ on 9 *C. albicans* strains with the equivalent doses (%wt) in ZnFLC (MIC₈₀) by MTX assay. Data are presented as the mean \pm SD of three independent experiments.

Fig. S4 HPLC graphs of ergosterol in *C. albicans* HL973 treated by DMSO (a), FLC (b) and ZnFLC (c). The ergosterol extraction of DMSO, FLC and ZnFLC were diluted into 10, 10, and 1mL with methanol. The retention time of ergosterol was about 12.9 min. Each graph displayed three repeated experiments.