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Abstract:



Arthrospira platensis, better known as Spirulina, is one of the most important microalgae species. This cyanobacterium possesses a rich metabolite pattern, including high amounts of natural pigments. In this study, we applied a combined strategy based on Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Ultra High-Performance Liquid Chromatography (UHPLC) for the qualitative/quantitative characterization of Spirulina pigments in three different commercial dietary supplements. FT-ICR was employed to elucidate the qualitative profile of Spirulina pigments, in both direct infusion mode (DIMS) and coupled to UHPLC. DIMS showed to be a very fast (4 min) and accurate (mass accuracy ≤ 0.01 ppm) tool. 51 pigments were tentatively identified. The profile revealed different classes, such as carotenes, xanthophylls and chlorophylls. Moreover, the antioxidant evaluation of the major compounds was assessed by pre-column reaction with the DPPH radical followed by fast UHPLC-PDA separation, highlighting the contribution of single analytes to the antioxidant potential of the entire pigment fraction. β-carotene, diadinoxanthin and diatoxanthin showed the highest scavenging activity. The method took 40 min per sample, comprising reaction. This strategy could represent a valid tool for the fast and comprehensive characterization of Spirulina pigments in dietary supplements, as well as in other microalgae-based products.
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1. Introduction


In the last decade, the food and pharmaceutical sector has been driven towards an interest in natural compounds that, if assumed on a daily basis, could bring benefits to human health, especially in the treatment of chronic diseases [1]. This led to the development of so-called nutraceuticals and functional foods, whose market is continually growing, helped by the interest of healthy conscious consumers. Among the natural matrices rich in bioactive compounds, microalgae represent one of the most promising [2]. These microorganisms are a source of various biologically active molecules, including aminoacids, polyunsaturated fatty acids, minerals, proteins and pigments [3]. Additionally, they are capable of growing in different aquatic environments, and can tolerate different temperatures, pH and salinities [4]. Arthrospira platensis, also known as Spirulina, is one of the most economically important species. This blue-green microalga has been widely commercialized and is sold in different forms, including as powder, tablets and creams. The high interest in Spirulina derives from numerous healthy properties attributed to the consumption of this microalga, which include antihypertensive, hypolipidemic, anticancer and antioxidant properties [5]. These properties are related to the outstanding content of biocompounds; in particular, Spirulina is characterized by a protein content that is roughly ten times higher than that of soybean [6]; moreover, it contains essential amino acids, polyunsaturated fatty acids, vitamins and pigments. Spirulina-based products are employed by athletes as anti-fatigue and amino acid supply, and for their anti-aging detoxifying and antioxidant properties in cosmetics. The antioxidant potential of Spirulina is partially attributed to the high content of natural pigments, especially carotenoids, which are also recognized as having numerous healthy benefits [7]. Carotenoids are a group of molecules characterized by a C40 chain of isoprene units synthetized by plants and microorganisms, and are usually colored [8]. They are distinct in primary, which are involved in the photosynthetic apparatus, and in secondary, that are produced by microalgae following a particular situation of stress [9]. Despite the success of Spirulina in the market, the profiling of pigment in this species has been only partially described. The determination of carotenoids in Spirulina has been carried out mainly by liquid chromatography (LC) coupled with diode array (DAD) and mass spectrometry (MS) detection by employing low-resolution mass analyzers [10], and recently also by high-performance thin layer chromatography (HPTLC) [11]. Given that the Spirulina pigment fraction is highly complex, conventional LC-MS-based methods suffer from a low separation efficiency, long analysis time, and low mass accuracy, which can result in inaccurate identification. Furthermore, the antioxidant activity of carotenoid extracts has been evaluated by spectrophotometric or enzymatic assays [12,13], which reflect only the total activity of the extract, without adequate measure of the antioxidant potential of individual molecules. Due to the increasing commercial interest in Spirulina, faster and more highly efficient analytical tools are required to characterize the final products and raw materials. In this regard, the objective of this study was to develop a combined platform for the qualitative and quantitative characterization of Spirulina pigments in different dietary supplements. To tackle such a task, we exploited the accurate mass measurement and resolution of Fourier Transform Ion Cyclotron (FT-ICR) for the qualitative profiling of the extract in both direct infusion (DIMS) mode or coupled with Ultra High-Performance Liquid Chromatography (UHPLC). Moreover, the antioxidant potential of major carotenoids was evaluated by the combination of pre-column reaction with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) followed by UHPLC separation, in order to obtain information regarding the contribution of individual pigments to the global antioxidant activity.




2. Results and Discussion


2.1. High-Resolution Mass Spectrometry Profiling of Spirulina Pigments


FT-ICR-MS is characterized by unmatched ultra-high mass accuracy and resolution, which are ideal for the analysis of complex phytochemical samples [14]. In this approach, we employed APCI ionization, which outperformed electrospray for almost all analytes in both DIMS and LC-MS modes (data not shown). Table 1 shows the tentative identification relative to both approaches. As can be observed, a higher number of tentatively identified compounds (51) was obtained by both DIMS and LCMS with respect to previous investigations on Spirulina [10]. Ultra-high mass accuracy was obtained for DIMS (≤0.01 ppm), while slightly higher values were obtained for LC-MS. This is relative to the intrinsic nature of FT-ICR, since the long scanning time required for ultra-high resolution is not very compatible with fast UHPLC timescales [15]. Contrariwise, direct infusion, which introduces constant ion flow, makes it possible to obtain the highest sensitivity, as well as accuracy and resolution. Ultra-high mass accuracy is highly beneficial to unambiguous formula assignment, and compounds can be identified often only by accurate mass [16]. Different carotenoid classes were present: hydroxyl, epoxy and ketocarotenoids, as well as carotenes; several compounds are reported for the first time in Spirulina (Table 1). Among hydroxycarotenoids, the peak at rt: 3.69 possessing strong absorbance at 450 nm, showed the typical loss of water [M + H − 18]+, with a molecular formula of C40H54O2, and thus it was tentatively proposed to be diatoxanthin. Regarding epoxy derivatives, the peak at rt: 3.29 was characterized by the diagnostic fragment ion at m/z 221 (C14H21O2), which is derived from the cleavage between the C10 and C11 bond (Figure 1A) and was tentatively identified as diadinoxanthin. Similarly, other compounds of this class showed an analogous fragmentation pattern [17]. Compound 18 exhibited a diagnostic fragment ion at 203 m/z (C14H18O), which points out a keto group on the B-ring. This fragment is observed in keto derivatives [18] deriving from the fragmentation at C10–C11, in which the positive charge is retained on the ketone moiety. Thus, this information and the molecular formula C40H54O, leads to possible identification as echinenone (Figure 1B). A large number of chlorophyll derivatives were detected, and some of them, such as divinyl chlorophyll a, presented the fragment at m/z 614 (C35H34MgN4O5), which indicates a phytyl chain loss. Hydroxylated derivatives of pheophytin and chlorophyll a showed a mass difference of 16 Da with respect to accurate mass, and their fragmentation patterns showed a loss of water [−18 Da]. Hydroxylated compounds could derive from transformations that occur during the extraction process [19]. A further benefit of DIMS is the analysis time, which was half of the LCMS method: 4 min vs. 16 min (Figure 2). Clearly, one of the drawbacks of DIMS is the inability to separate isomers, which, on the other hand, is possible using chromatography. The DIMS approach is highly useful when combined with other complementary techniques, as showed recently by several authors [20].


Figure 1. MS (top) and MS/MS (bottom) spectra showing structure elucidation and fragmentation pattern of peak 3 diadinoxanthin (A) and peak 18 echinenone (B).
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Figure 2. DIMS-APCI (top) and LC-APCI-FT-ICR MS (bottom) identification of Spirulina pigments.
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Table 1. DIMS-APCI and LC-APCI-FT-ICR MS identification of Spirulina pigments.
















	Peak
	rt
	Compound
	Molecular Formula
	[M + H]+

DIMS-APCI
	Error ppm

DIMS-APCI
	[M + H]+

LC-APCI-FT-ICR MS
	MS/MS
	Error ppm

LC-APCI-FT-ICR MS





	1
	1.87
	Apo-12-Violaxanthal 1
	C25H34O3
	383.25809
	−0.05
	383.25815
	365.24754 2, 347.23705 3
	−0.21



	2
	2.76
	Vaucheriaxanthin 1
	C40H56O5
	617.42010
	−0.08
	617.41998
	599.40933 2, 581.39890 3
	0.12



	3
	3.29
	Diadinoxanthin 1
	C40H54O3
	583.41458
	−0.02
	583.41456
	565.40420 2, 221.15364
	0.01



	4
	3.33
	Canthaxanthin
	C40H52O2
	565.40402
	−0.01
	565.40404
	547.39350 2
	−0.06



	5
	3.45
	Ethyl β-apo-8′-carotenoate 1
	C32H44O2
	461.34143
	−0.04
	461.34155
	
	−0.32



	6
	3.67
	Adonirubin 1
	C40H52O3
	581.39892
	0.01
	581.39891
	
	0.02



	7
	3.69
	Diatoxanthin 1
	C40H54O2
	567.41967
	−0.02
	567.41971
	221.13248, 549.40979 2
	−0.09



	8
	3.78
	β-Apo-8′-carotenal 1
	C30H40O
	417.3152
	−0.01
	417.31542
	399.30463 2, 293.22642
	−0.34



	9
	3.85
	Hexadehydro-β,β-caroten-3-ol 1
	C40H50O
	547.39347
	−0.06
	547.39344
	
	−0.36



	10
	3.88
	Rhodoxanthin 1
	C40H50O2
	563.38838
	−0.04
	563.38856
	545.37778 2
	−0.36



	11
	3.90
	Astaxanthin
	C40H52O4
	597.39382
	0.02
	597.39384
	
	0.01



	12
	4.04
	Antheraxanthin 1
	C40H56O3
	585.43023
	−0.02
	585.43029
	567.41961 2, 549.40920 3, 493.40407
	−0.12



	13
	4.20
	Myxoxanthophyll
	C46H66O7
	731.48807
	0.08
	731.48917
	
	−1.42



	14
	4.38
	Zeaxanthin
	C40H56O2
	569.43529
	0.02
	569.43552
	551.42497 2, 459.36256
	−0.37



	15
	5.06
	10-Apo-β-carotenal 1
	C27H36O
	377.28389
	−0.06
	377.28403
	
	−0.37



	16
	6.10
	α-tocopherol 1
	C29H50O2
	431.38835
	0.01
	431.37971
	
	−0.91



	17
	8.73
	Chlorophyll a isomer
	C55H72MgN4O5
	893.54226
	−0.03
	893.54274
	555.22547, 481.18779, 614.23848
	−0.17



	18
	8.74
	Echinenone 1
	C40H54O
	551.42473
	0.02
	551.42473
	203.17531
	0.03



	19
	9.00
	Pyrochlorophyll b 1
	C53H68MgN4O4
	849.51640
	−0.03
	849.51620
	
	0.21



	20
	9.00
	Pheophytin a derivate 1
	C55H72N4O5
	869.55755
	0.01
	869.55795
	
	−0.13



	21
	9.10
	Chlorophyllide b 1
	C35H32MgN4O6
	629.24050
	0.01
	629.22498
	
	−0.76



	22
	9.12
	Chlorophyll b 1
	C55H70MgN4O6
	907.55824
	0.01
	907.55841
	
	−0.19



	23
	9.15
	Pyrochlorophyll a 1
	C53H70MgN4O3
	835.53711
	0.01
	835.53746
	
	−0.42



	24
	9.18
	Pyrochlorophyllide a 1
	C33H32MgN4O3
	557.23978
	−0.04
	557.23992
	
	−0.29



	25
	9.26
	Pyrochlorophyllide b
	C33H30MgN4O4
	571.21901
	0.02
	571.21902
	
	0.01



	26
	9.28
	OH-Chlorophyll a 1
	C55H72MgN4O6
	909.53746
	0.05
	909.53786
	525.21366, 553.20861
	−0.95



	27
	9.32
	Protochlorophyllide a 1
	C35H32MgN4O5
	613.22959
	−0.01
	613.22998
	
	−0.64



	28
	9.32
	13-OH-Chlorophyllide a 1
	C35H34MgN4O6
	631.24015
	0.01
	631.24054
	
	−0.62



	29
	9.32
	Divinyl Chlorophyll a 1
	C55H70MgN4O5
	891.52691
	0.04
	891.52705
	555.22506, 614.23423
	0.21



	30
	9.56
	Chlorophyll a
	C55H72MgN4O5
	893.54262
	−0.03
	893.54274
	555.22547, 481.18779, 614.23848
	−0.17



	31
	10.03
	Cryptoxanthin 1
	C40H56O
	553.44040
	0.01
	553.44047
	535.430052, 461.37769
	−0.15



	32
	10.04
	Chlorophyll a isomer
	C55H72MgN4O5
	893.54262
	−0.03
	893.54274
	555.22547, 481.18779, 614.23848
	−0.17



	33
	10.10
	Chlorophyllide a 1
	C35H34MgN4O5
	615.24526
	−0.04
	615.2461
	
	−0.34



	34
	10.23
	Pheophytin b 1
	C55H72N4O6
	885.55233
	0.14
	885.53330
	
	−0.09



	35
	10.30
	15-OH-Lactone-Chlorophyll a 1
	C55H73MgN4O7
	925.53199
	0.47
	925.53324
	
	0.89



	36
	10.47
	Pyropheophorbide b 1
	C33H32N4O4
	549.24967
	−0.08
	549.24980
	
	−0.31



	37
	10.48
	15-OH-Lactone-Pheophytin a 1
	C55H73N4O7
	903.56328
	−0.28
	903.56341
	537.24965, 547.23401, 607.25553
	−0.09



	38
	10.79
	Chlorobactene 1
	C40H52
	533.41416
	0.03
	533.41406
	
	0.21



	39
	11.03
	Chlorophyll a derivate I 1
	C55H68MgN4O5
	889.51122
	0.08
	889.51165
	
	−0.41



	40
	11.06
	Phytoene 1
	C40H64
	545.50810
	−0.03
	545.50829
	
	−0.39



	41
	11.12
	13-OH-Pheophorbide a 1
	C35H36N4O6
	609.27078
	−0.02
	609.27091
	
	−0.24



	42
	11.12
	OH-Pheophytin a
	C55H73N4O6
	887.56810
	0.01
	887.56826
	531.23918, 559.23402, 591.26022
	−0.17



	43
	11.16
	β-carotene
	C40H56
	537.44547
	0.01
	537.44562
	413.32058, 445.38298
	−0.27



	44
	11.21
	Octadehydro-β,β-carotene 1
	C40H48
	529.38288
	0.03
	529.38303
	
	−0.29



	45
	11.41
	Pheophytin a
	C55H74N4O5
	871.57318
	0.02
	871.57254
	593.27615, 533.25473, 519.23921
	0.75



	46
	11.68
	Pheophorbide a 1
	C35H36N4O5
	593.27583
	0.02
	593.27601
	
	−0.27



	47
	12.30
	Pyropheophorbide a 1
	C33H34N4O3
	535.27037
	0.01
	535.27058
	
	0.39



	48
	12.30
	Pyropheophytin a 1
	C53H72N4O3
	813.56769
	0.04
	813.56787
	535.27058, 507.27549, 461.23369
	−0.18



	49
	
	δ-tocopherol 1
	C27H46O2
	403.35706
	0.01
	
	
	



	50
	
	γ-tocopherol 1
	C28H48O2
	417.37270
	0.02
	
	
	



	51
	
	Phytofluene 1
	C40H62
	543.49242
	0.01
	
	
	







1 Detected for the first time in Spirulina (Arthrospira platensis); 2 [M + H − H2O]+; 3 [M + H − H2O − H2O]+.









2.2. Quantitative Profile of Spirulina Pigments by UHPLC-PDA


Separation of natural pigments is usually performed by C18 and C30 columns [21], the latter are usually best suited for the separation of geometric isomers. Numerous evidence indicates the benefits of using sub-3 and sub-2 micrometers particles, either fully (FPP) or superficially porous (SPP), in the analysis of natural compounds [22,23]. This has also been recently shown for carotenoids in UHPLC conditions [24], as well as SFC [25]. In this work, we employed and compared both 1.7 µm FPP and SPP C18 and 2.6 µm SPP C30 columns. As can be seen from Figure S1, separation on the three columns were similar, except that a better separation of alfa, trans and cis beta carotene was obtained on the C30. The employed column (namely AccucoreTM C30) is the only sub-3 micrometer C30 column on the market. The stationary phase is endcapped, which, in comparison to non-endcapped polymeric C30 phases, provides no appreciable separation of isomers [21]. The employed gradients were optimized for instrument and column characteristics. The choice was made in order to obtain acceptable separations in less than 15 min analysis time; in this regard, it should be pointed out that the non-endcapped C30 columns employed in numerous papers are characterized by very long analysis times [26], which were unpractical for the scope of this study. Due to the high cost of standards, only major carotenoids were quantified, quantification was performed by PDA at the maximum of absorbance. The objective of this study was to highlight the profiles and differences among two commercial and one lab-made Spriulina-based products. Table 2 shows that the most abundant compounds were diatoxanthin (363.96 ± 1.03), zeaxanthin (362.51 ± 0.51) and beta carotene (2388.83 ± 14.94). Among the three formulations, both powders showed in total higher amounts of pigments with respect to tablets (1637.86 ± 8.41 μg/g and 2551.49 ± 6.86 μg/g, respectively vs. 1384.18 ± 7.55 μg/g). This aspect could be due to the different technological processes, during the production of final products. It is noteworthy that chlorophylls were highly abundant, but these were not quantified due to lack of standards. The employed method was able to resolve zeaxanthin from lutein, which are usually difficult to separate, and thus quantify, revealing that the latter was not present in the sample, as shown by the overlapped standards chromatogram in Figure S2. By taking advantage of the low dwell volume of the UHPLC system employed, the analysis time was kept under 15 min (10 min for the C18). Repeatability was established by triplicate injections of sample and solutions at low, medium, and high concentration levels of the calibration curve on the same day, and within two consecutive days; limits of detection (LODs) and quantification (LOQs) were calculated by the ratio between the standard deviation (SD) and analytical curve slope multiplied by 3 and 10, respectively. Results are reported in supplementary Tables S1 and S2.


Table 2. Quantitative data, RSA% of single compounds and IC50 of different dietary supplements.





	

	
Dietary Supplement Powder

	
Lab Made Powder

	
Dietary Supplement Tablet

	




	

	
Quantitative

	




	
Peak

	
Compounds

	
μg/g

	
μg/g

	
μg/g

	
RSA %






	
1

	
Diadinoxanthin

	
28.01 ± 0.11

	
55.27 ± 0.16

	
30.79 ± 0.05

	
15.07 ± 0.17




	
2

	
Alloxanthin/Canthaxanthin

	
22.76 ± 0.04

	
26.38 ± 0.17

	
25.79 ± 0.03

	
6.66 ± 0.27




	
3

	
Diatoxanthin

	
100.11 ± 0.22

	
363.96 ± 1.03

	
78.33 ± 0.29

	
14.45 ± 0.23




	
4

	
Antheraxanthin

	
27.20 ± 0.02

	
31.60 ± 0.15

	
28.45 ± 0.11

	
5.99 ± 0.11




	
5

	
Zeaxanthin

	
113.76 ± 0.15

	
362.51 ± 0.61

	
91.95 ± 0.32

	
10.02 ± 0.05




	
6

	
Echinenone

	
24.95 ± 0.16

	
25.05 ± 0.09

	
32.57 ± 0.15

	
4.54 ± 0.15




	
7

	
β-carotene

	
1226.99 ± 7.67

	
1544.36 ± 4.06

	
988.47 ± 6.10

	
16.23 ± 0.30




	

	

	
Dietary Supplement Powder (a)

	
Lab Made Powder (b)

	
Dietary Supplement Tablets

	
Ascorbic Acid

	
BHT




	
IC50 (mg/mL)

	

	
2.99 ± 0.05

	
1.21 ± 0.02

	
2.68 ± 0.03

	
0.03 ± 0.002

	
0.02 ± 0.001











2.3. Evaluation of Antioxidant Potential of Single Pigments by DPPH-UHPLC-PDA


The DPPH free radical assay is well known as an easy and rapid way to determine antioxidant activity, and is widely used for natural and food samples. Regarding complex multianalyte samples, one of its drawbacks is its inability to provide information regarding the individual antioxidant potential of analytes. Contrariwise, if the assay is coupled with a separation technique, such as UHPLC, the method can be useful for the screening of individual antioxidants [27]. In this case, after the reaction with the radical, the peak areas (UV/Vis) of potential antioxidants would decrease [28]. In this study, a pre-column reaction with DPPH radical was performed prior UHPLC separation. Two crucial aspects are: the ratio between the concentration of DPPH and the extract, and the reaction time. If an excess of DPPH is employed, the differences in the antioxidant activity cannot be measured, since every peak just disappears into the UV/Vis trace; on the contrary, with an inadequate concentration of DPPH, no significant differences can be observed. After several tests, we found that the best conditions were obtained with 0.5–0.9 mM of DPPH. The optimal reaction time was 30 min, which was determined by injecting at different time intervals; after this point, no further changes in peak areas were observed, with the color of the solution being stably yellow. The UV/Vis chromatogram (450 nm) related to the separation of both untreated and DPPH-spiked Spirulina sample is shown in Figure 3. As can be appreciated, several peaks were significantly reduced, while others remained almost unchanged. In particular, among the pigments in Table 2, as expected, β-carotene showed higher scavenging activity with respect to xanthophylls such as zeaxanthin and antheraxanthin, which is known to be related to the presence of hydroxyl substituents on the B-ring [29]. Interestingly, diadinoxanthin and diatoxanthin possessed a higher scavenging activity with respect to other xanthophylls. This difference is probably due to the triple bond, which is known to increase the oxidation potential, as previously reported [30,31]. These aspects have not been reported so far, and require further investigation with other antioxidant assays, such as ABTS. The comparison of the IC50 of the three dietary supplements revealed that the formulation with the lowest IC50 is the lab-made Spirulina powder (1.21 mg/mL), whereas the other dietary supplements possess similar values (2.99 mg/mL vs. 2.68 mg/mL). This is clearly related to the highest amount of pigment being contained in the lab-made powder (b), whereas the high content of chlorophylls, which are known to be antioxidant compounds [32], in the powder (a) with respect to tablets results in a lower IC50. The DPPH-UHPLC method took only 40 min per sample comprising reaction. In comparison to online methods, which require an additional pumping system and a reactor coil, the employed setup is easier and can take full advantage of the higher efficiency and speed of UHPLC [27], not being affected by the extra-column contributions.


Figure 3. UV/Vis-UHPLC- (450 nm) chromatograms of Spirulina pigment extract before (black) and after (red) reaction with DPPH radical (marked with an asterisk).
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3. Material and Methods


3.1. Chemicals


Ultra-pure water (H2O) was obtained by a Direct-8 Milli-Q system (Millipore, Milan, Italy); LC-MS grade acetonitrile (ACN), methanol (CH3OH), 2-propanol (IPA), water (H2O), ammonium acetate (CH3COONH4), and standards of β-carotene, lutein, and zeaxanthin, were all purchased from Sigma-Aldrich (St. Louis, MO, USA). Spirulina powders and tablets were respectively purchased from FarmaLabor SRL (Canosa di Puglia, Barletta-Trani, Italy) and Dr. Giorgini (Bologna, Italy). Lab-made Spirulina powder was kindly donated by a local farmer.




3.2. Sample Extraction


Pigment extraction was carried out as follows. 350 mg of Spirulina powder (tablets were prior pulverized in a mortar) were treated with 50 mL of ethanol fortified with 20 µg/mL of BHT. The sample was subjected to 15 min of ultrasound (550 W of power), then the suspension was stirred for 30 min at room temperature and then centrifuged (10 min × 6000 rpm at 25 °C). At the end, the supernatant was removed, and the pellet was retreated following the same protocol another four times. Finally, the supernatants were pooled and lyophilized. The same conditions were employed for each sample of Spirulina.




3.3. Instrumentation


High-resolution MS analyses were performed on a SolariX XR equipped with a 7T magnet (Bruker Daltonics, Bremen, Germany). An APCI source operating in positive ionization was used. For direct infusion mode, samples were injected with instrument syringe pump (250 µL), while for LC-HRMS, an Ultimate 3000 UHPLC (Thermo Scientific, Bremen, Germany) system was employed. DPPH-UHPLC-PDA analyses were performed on an Acquity I class, equipped with a QDa mass detector (Waters, Milford, MA, USA) system.




3.4. Columns


A Waters® Acquity UPLC® BEH C18 50 mm × 2.1 mm, 1.7 µm was employed for all analyses. A Thermo AccucoreTM C30 100 mm × 2.1 mm, 2.6 µm and a Phenomenex® (Castelmaggiore, Bologna, Italy) Kinetex® EVO C18 100 mm × 2.1 mm, 1.7 µm, were employed for purposes of comparison.




3.5. DIMS and LC-HRMS Parameters


The instrument was tuned with a standard solution of sodium trifluoracetate (NaTFA). Samples (10 µg/mL in CH3OH) were infused at 50 µL/min. Mass Spectra were recorded in broadband mode in the range 150–3000 m/z, with an ion accumulation of 20 ms, with 200 scans using 8 million data points (8M). Nebulizing (N2) and drying gases (air) were set at 1 and 4 mL/min, respectively, with a drying temperature of 200 °C. MS/MS of the ion of interest was obtained by isolation in the quadrupole and ramping the collision energy manually. LC-HRMS analyses were carried out with the same parameters, with the exception of: 2 million data points were used (2M), ion accumulation was 80 ms, nebulizing and drying gases were 2 and 8 mL/min, and drying temperature was 250 °C. MS/MS was performed in data-dependent mode, and dynamic collision energy ramp was used. Compound: 2,2,4,4,6,6-Hexakis(2,2-difluoroethoxy)-1,3,5-triazatriphosphinine (m/z 622.028960) (Apollo Scientific, Bredbury, UK) was employed as lock mass for LC-MS/MS. Mobile phases were: (A) 10 mM CH3COONH4 in H2O v/v; (B) ACN/CH3OH/IPA 70/20/10, flow rate was 0.4 mL/min, LC gradient was: 0 min, 40%B, 6.25 min, 85%B, 9.50 min, 92%B, 10 min, 98%B hold for 1 min, column oven was set at 45 °C, 2 μL of sample was injected. The instrument was controlled by Bruker FTMS Control, MS spectra were elaborated with Compass Data Analysis version 4.2 (Bruker Daltonics, Bremen, Germany), identification of compounds based on accurate MS and MS/MS measurements was performed by Compound Crawler ver. 3.0 (Bruker).




3.6. DPPH-UHPLC-PDA Parameters


The determination of antioxidant activity was carried out as previously developed [27]. One hundred microliters of ethanolic extract of Spirulina (2 mg/mL) and 100 μL of DPPH solution (ranging from 0.5 to 0.9 mM) in a 1:1 ratio were briefly mixed and allowed to react for 30 min in the dark at room temperature. 100 μL of methanol was added to the Spirulina extract as control. After filtration with a 0.45-μm filter, 2 μL of sample solution were injected for UHPLC analysis with the following conditions: mobile phases were the same as in Section 3.5, while the gradient was tuned for the different LC instrument: 0.01 min 60%B, 0.75 min 75%B, 3.25 min 85%B, 5.00 min 95%B, hold for 2 min, 7.01 min 100%B, hold for 1 min. Flow rate was 0.4 mL/min. Column oven temperature was set to 45 °C. PDA sampling rate was 20 Hz, time constant 80 ms, data acquisition was set in the range 190–800 nm, and chromatograms were monitored at 450 nm. QDa mass analyzer was operated under Selected Ion Monitoring (SIM) in ESI positive ionization, by specifying the m/z values of compounds detected with the HRMS approach. MassLynx 4.0 (Waters, Milford, MA, USA) was employed for data analysis.



The change in the pigments’ peak areas of analytes (PAcontrol) between control and DPPH-spiked (PAspiked) sample was used to evaluate the antioxidant power according to the following equation:


[image: ]



(1)




where (PAcontrol) refers to the Spirulina extract diluted with methanol, whereas (PAspiked) refers to the DPPH solution mixed with the Spirulina extract. The percentage of DPPH scavenging versus the concentration of samples was plotted. Whereas, by monitoring the DPPH peak at 517 nm, the concentration of ethanolic extract necessary to decrease the DPPH concentration by 50% was obtained by interpolation from a linear regression analysis and denoted as the IC50 value (μg/mL). All determinations were performed in triplicate.




3.7. Qualitative and Quantitative Analysis


Since standards were not available for all compounds, zeaxanthin, lutein and β-carotene were selected as external standards for the quantification. Stock solutions (1 mg/mL) were prepared in methanol/MTBE (70:30) and the calibration curves were obtained in a concentration range, respectively, of 0.25–25 μg/mL (R2 = 0.999), 1–100 μg/mL (R2 = 0.996), and 1–100 μg/mL (R2 = 0.996), with seven concentration levels, and triplicate injections of each level were run. Peak areas were plotted against corresponding concentrations. The amount of the compounds in the sample was expressed as micrograms per gram. Xanthophylls were quantified as zeaxanthin equivalents.





4. Conclusions


The developed analytical strategy, consisting of FT-ICR and UHPLC-PDA, provided a detailed definition of the Spirulina pigment fraction. DIMS-FT-ICR, thanks to its ultra-high resolution and mass accuracy, is a promising tool for in-depth profiling of microalgae pigments. The DPPH-UHPLC-PDA method revealed that two xanthophylls, namely diadinoxanthin and diatoxanthin, possess relevant radical scavenging activity. This study further confirms the content of high-value biocompounds in Spirulina, and its importance for the nutraceutical and pharmaceutical field.
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