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Abstract: The application of the reagent-based diversification strategy for generation of libraries
of biologically promising β-lactam derivatives is described. Key features are the versatility of the
linker used and the cross-metathesis functionalization at the cleavage step. From an immobilized
primary library, diversity was expanded by applying different cleavage conditions, leading to a series
of cholesterol absorption inhibitor analogues together with interesting hybrid compounds through
incorporation of a chalcone moiety.
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1. Introduction

The β-lactam skeleton is an active acylating agent with numerous applications in clinical
therapy [1]. Besides the well-known use as antibiotics [2], β-lactam ring has inhibitory effects on
prostate specific antigen [3,4], thrombin [5], human cytomegalovirus protein [6], human leukocyte
elastase [7], cysteine protease [8,9], and human fatty acid amide hydrolase [10], as well as anticancer
properties [11–15] and neuroprotective action [16,17]. A new area in β-lactam-based drugs has been
established by development of β-lactam derivatives with strong cholesterol absorption inhibitor
reducing LDL concentration [18–21]. An example is the commercial drug ezetimibe, which is one of
the most prescribed drugs in the US. Recently, simvastatin has been shown to provide an incremental
benefit on reducing cardiovascular events in acute coronary syndrome patients, when co-administered
with ezetimibe [22]. Furthermore, β-lactams have also been considered as peptidomimetic species for
mimicking certain properties of proteins and, from a synthetic point of view, they are key synthons for
the preparation of various heterocyclic compounds of biological importance [23–25].

In drug discovery related organic synthesis, one of the tools for a rapid and efficient
construction of diversity-based small molecules is parallel solid-phase synthesis. Particularly,
solid-phase chemistry has recently aroused interest in metal-catalyzed cross-coupling reactions since
undesirable soluble homodimers can be washed away during purification providing chemoselectivity,
while immobilization of one of the substrates makes its homodimerization a less favorable process
due to site isolation (Scheme 1) [26]. In this regard, we and others have recognized the usefulness
of solid-supported olefin cross-metathesis for generation of biologically relevant molecules [27–31],
including a comprehensive study to understand the process [32,33]. From the viewpoint of green
chemistry, using solid-phase synthetic sequences allows a significant reduction in solvent waste,
since purification is performed by phase separation, avoiding chromatographic isolation of products
which requires a large consumption of organic solvents [34].
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Scheme 1. Metal-catalyzed solid-phase synthesis.

In the search of diversity, a bunch of very ingenious strategies have been developed, among which
diversity-oriented synthesis (DOS) is the most widespread [35–37]. According to DOS, skeletal diversity
can be basically achieved by two main approaches: one known as “substrate-based diversification”
where the same reagent generates different structures by reaction with selected substrates; and
“reagent-based diversification” in which different products are obtained when the same substrate is
subjected to different reaction conditions [38].

Generally, the point of attachment to the resin in solid-phase organic synthesis (SPOS) limits
the possibilities of diversity generation. In previous work, we have developed a series of β-lactam
compounds linked to the resin at position 1 or 3 of the ring. Only the substituents on the two remaining
positions could be combined [27,39]. In order to maximize structural variation from a library of
compounds, we have studied a strategy based on a linker, which ensures release by different reaction
conditions to obtain diverse products using a DOS reagent-based diversification approach (Scheme 2).

Scheme 2. Reagent-based diversification approach in solid-phase synthesis.
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We have shown that high molecular diversity in β-lactam scaffolds can be obtained using a linker
cleavable by two orthogonal conditions: one by treatment with 10% TFA, and the other using a set of
olefin cross-metathesis reactions. While Seeberger developed olefin linkers for solid-phase synthesis
of glycosides [40], we decided to introduce a new twist using them to generate diversity during
cleavage step. Thus, a series of cholesterol absorption inhibitor analogues, together with interesting
β-lactam-chalcone hybrid compounds, have been generated. Our results are summarized in this
extended paper [41].

2. Results and Discussion

Synthesis started with immobilization of 4-pentenoic acid to Wang resin by standard coupling
conditions, to afford the corresponding resin 1 which, in turn, was the substrate for a solid-supported
olefin cross-metathesis by reaction with 1-(chloromethyl)-4-vinylbenzene in the presence of second
generation Grubbs precatalyst, according to the methodology reported by us (Scheme 3) [32].
Then, oxidation of the supported benzyl chloride 2 with DMSO/NaHCO3 at 155 ◦C [42] yielded
the aldehyde 3, which was characterized by 13C gel-phase NMR (Figure 1). Aldehyde 3 was used as
substrate for the synthesis of libraries of β-lactam derivatives.

Scheme 3. Synthesis of versatile linker 3.

Figure 1. 13C gel-phase NMR of compounds 2 and 3.
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2.1. Primary β-Lactam Library

For the solid-phase version of the classical Staudinger reaction between imines and ketenes [43–45],
we first developed the synthesis of a set of immobilized imines 5a–d by treatment of the aldehyde with
different amines 4a–d in refluxing benzene using a Dean–Stark trap (Scheme 4).

For the in situ generation of ketenes, we found that stable acid chlorides such as phenoxyacetyl
chloride were ideal, however, when aliphatic carboxylic acids derivatives were required, the best
choice was the activation of the free acid by Mukaiyama’s reagent. Thus, immobilized imines 5a–d
were treated with either acid chloride or carboxylic acids (6a–d) and Mukaiyama’s reagent to obtain
the primary β-lactam library (7aa–dd) (Scheme 4).

Scheme 4. Primary immobilized β-lactam library.

The relative configuration of C-3 and C-4 substituents was determined taking the coupling
constant between H-3 and H-4 nucleus in 1H-NMR experiments after trifluoroacetic acid (TFA)
cleavage into account. Coupling constants greater than 4 Hz were indicative of a cis configuration [46],
so β-lactams 8aa and 8ab had a cis configuration while 8bb had a trans configuration (Figure 2 and
Table 1).

During Staudinger reaction, the diastereoselectivity for cis or trans configuration of the resulting
β-lactams was governed by substituents on the starting building blocks (imine and ketene) [47,48].
Ketenes that were activated by heteroatoms had strong preference for formation of cis products.
This was the case for β-lactams 8aa (J = 5.0 Hz) and 8ab (J = 4.4 Hz) that have been constructed from
ketenes derived from dehydrohalogenation of phenoxyacetyl chloride. On the other hand, β-lactam
8bb, which was synthesized from an alkyl-ketene derivative obtained from 5-phenylvaleric acid, gave a
trans configuration (J = 2.2 Hz). The presence of a heteroatom tethered to the α-position of the ketene
and tended to form the cis products by conrotatory ring closure of the zwitterionic intermediate, formed
through a nucleophilic attack of imine nitrogen on the electrophilic carbonyl carbon of the ketene [47].
Conversely, thermodynamically more stable trans-β-lactam 8bb was generated by isomerization of the
zwitterion, when a hydrocarbon chain was tethered to the ketene.

1H-NMR signals corresponding to protons H-3 and H-4 showed a deshielding effect when
substituent of position 1 changed from N-benzyl to N-aryl, respectively (compare 8aa and 8ab in
Figure 2). Geometric optimization employing a semi-empirical method such as AM1 [49] indicated
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a radical change in the arrangement of the aromatic ring at position 1 (Figure 3). In the N-aryl
β-lactam, H-3 and H-4 were in the same plane of the N-1 aromatic ring, while in N-benzyl β-lactam
these protons were near the axis of the ring. Due to anisotropic effect, protons H-3 and H-4 in the
N-aryl-β-lactam were in a deshielding area, whereas in N-benzyl-β-lactam those protons were in a
shielding environment. The absence of an oxygen atom directly linked to position 3 of the β-lactam
ring in 8bb, leading to a drastic shift of the signal to higher fields.

Figure 2. Comparative 1H-NMR spectra of 3,4-cis- and trans-substituted β-lactams.

Table 1. The secondary “trifluoroacetic acid (TFA)” library of β-lactams.
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Figure 3. AM1 geometric optimization of N-aryl and N-benzyl β-lactams.

Generation of this primary library was monitored by IR and 13C gel-phase NMR. A representative
example of 13C gel-phase NMR of resin 7bd is shown in Figure 4. Signals assigned to the immobilized
β-lactam are marked (*). The most representative signals were 55.1 ppm (MeO-), and 60.7/60.2 ppm
corresponding to C-3 and C-4 of the β-lactam ring.

Figure 4. 13C gel-phase NMR of immobilized β-lactam 7bd.

2.2. Secondary β-Lactam Libraries

Taking advantage of the multiple possibilities of cleavage, a series of secondary libraries was
generated. Thus, TFA treatment of the primary library, followed by diazomethane methylation gave
an eleven compounds’ secondary “TFA” library (Table 1).

The efficiency of the solid-phase synthetic strategy has proven to be excellent. Yields ranged from
26% to 60% for five synthetic steps. Analyzing the reaction outcome of the obtained trans-β-lactams
(entries 3–11), no clear tendency could be observed. While yields increase from R2 = Ph to R2 = 4–FPh
and 4–MeOPh, in the cases of R1 = phenylpropyl and vinyl, this tendency was reverted in case of
R1 = allyl (Figure 5).

In order to increase diversity during cleavage step, we studied the olefin cross-metathesis on
the immobilized β-lactams. Thus, a new secondary library was created when β-lactams 7bb–bd,
bearing a 3-phenylpropyl group at C-3 position, reacted with different olefins to afford structural
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diversification at C4 position (Table 2). This secondary library, called “Ru1”, was present in six different
alternative β-lactams (10bba–bdc) obtained by reaction of the olefins in presence of second generation
Grubbs precatalyst. In accordance with our previous results in the area of olefin cross-metathesis [32],
trans-crotonic acid (entries 1 and 2), a type I olefin [50] and allylbenzene (entries 3 and 4), a type II
olefin, performed the cleavage process with high efficiency, while 2-bromostyrene (entries 5 and 6),
a type IV olefin, provided a more poor yield.

Figure 5. Yields of R1 and R2 β-lactam substituents.

Table 2. The secondary “Ru1” library of β-lactams.
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Hybrid structures, obtained from combining at least two biologically significant moieties,
have emerged as a novel approach in finding new chemical entities [51–53]. The molecular
hybridization strategy has proven to be helpful in many aspects related to drug discovery, such
as overcoming drug-resistance problems or improving active transport mechanisms. In particular,
β-lactam-based hybrids have recently acquired importance owing to the fact that many of them
exhibit very promising biological activity [54–59]. In order to further increase diversity and also
obtain biologically interesting β-lactam-based hybrids, metathesis conditions, previously developed
for the synthesis of chalcones, were applied for the cleavage step (Table 3) [60]. In this secondary
library, called “Ru2”, cleavage conditions were performed by reaction of β-lactams 7bc and 7bd with
non-immobilized α,β-unsaturated ketones, being the most efficient precatalyst of Hoveyda-Grubbs
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carbene ruthenium complex [61–63]. Thus, immobilized β-lactams 7bc–bd were treated with
substituted vinyl phenyl ketones 9d–f in the presence of Hoveyda-Grubbs precatalyst to yield the
soluble compounds 10bcd–bdg which combined two recognized pharmacophoric moieties such as
azetidinone and chalcone in one molecule.

Table 3. The secondary “Ru2” hybrid β–lactam library.
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Through the analysis of the 13C-NMR spectra of the components of obtained libraries, a clear
pattern could be determined (Figure 6). Signals corresponding to substituents of all positions are
slightly affected by remaining substituents. For instance, 4-methoxy-phenyl substituent at position 1
in azetidinones 8bd, 8cd, 8dd, 10bda, 10bdb, 10bdc, 10bdd and 10bde showed similar chemical shifts
regardless the remaining substituents of β-lactam. Signals of the three carbons of the β-lactam ring (C-2,
C-3 and C-4) could clearly be identified, having only a remarkable and expected low-field chemical
shift of C-3 in case of 3-phenoxy-cis-β-lactams (8aa and 8ab). Although there was the possibility
that other signals could interfere, the patterns shown in Figure 6 were useful for a rapid detection of
β-lactam ring containing compounds obtained by high throughput parallel synthesis.

Figure 6. Comparative chart of the 13C-NMR signals of the library components.
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3. Materials and Methods

3.1. General Information

Chemical reagents were purchased from commercial suppliers and used without further
purification, unless otherwise noted. Solvents were analytical grade or were purified by standard
procedures prior to use. Reactions requiring inert atmosphere were carried out under high-purity dry
nitrogen atmosphere. Solvents from these reactions were transferred under high-purity dry nitrogen
using syringes. All reactions were monitored by thin layer chromatography (Merck, Darmstadt,
Germany) performed on silica gel 60 F254 pre-coated aluminum sheets, visualized by a 254 nm UV
lamp, and stained with an ethanolic solution of 4-anisaldehyde. Column flash chromatography (Merck,
Darmstadt, Germany) was performed using silica gel 60 (230–400 mesh). The purity criteria were (i) the
appearance of a single spot by thin layer chromatography (ii) the presence of the corresponding signals
in 1H and 13C-NMR and (iii) the range of melting points in case of solid samples. Molecular modeling
was performed with HyperChem v8.03 (Hypercube, Gainesville, FL, USA) using the AM1 method

Solid-phase reactions were carried out in polypropylene cartridges equipped with a frit (Supelco,
Bellefonte, PA, USA), unless reflux conditions were required. In that case, standard glassware was used.
All solid-phase reaction mixtures were stirred at slowest rate. Compounds 8bb–8dd and 10bba–10bdc
have been previously reported [41].

3.2. Instrumental and Physical Data

1H-NMR spectra were recorded in a Bruker Avance spectrometer (Bruker Analytik GmbH,
Karlsruhe, Germany) at 300 MHz in CDCl3 with tetramethylsilane (TMS) as internal standard (0 ppm).
13C-NMR spectra were recorded on the same apparatus at 75 MHz with CDCl3 as solvent and reference
(76.9 ppm). Chemical shifts (δ) were reported in ppm upfield from TMS and coupling constants (J)
were expressed in Hertz. The following abbreviations were used to indicate multiplicities: s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, and bs = broad singlet. For preparation of the
samples for 13C gel-phase NMR, 50–80 mg of resin was placed in a standard NMR tube and 0.5 mL
of CDCl3 was slowly added in order to obtain a gel, which was homogenized by sonication. Spectra
were run according to the literature [64,65].

Infrared spectra were recorded on a Shimadzu FT-IR spectrometer model 8101 (Shimadzu, Tokyo,
Japan). The resin samples were measured as dispersions in KBr discs, made by compression of a
mixture finely powdered in an agate mortar. Approximately 3 mg sample was used in 100 mg KBr.

3.3. Synthetic Procedures

General procedure for the synthesis of 3-phenoxy-β-lactam derivatives (8aa–ab) and β-lactam-chalcone
hybrids (10bdd–bcg): a mixture of 4-pentenoic acid (420 µL, 4.15 mmol, 5.0 eq.) in anhydrous DMF
(10 mL) and DCC (830 µL, 4.15 mmol, 5.0 eq.) was stirred for 30 min at room temperature and
transferred via cannula to Wang resin (750.0 mg, 1.1 mmol/g, 0.83 mmol), which was previously
rinsed with anhydrous DMF (5.0 mL). After adding DMAP (100.0 mg, 0.83 mmol, 1.0 eq.), the reaction
mixture was stirred for 16 h at room temperature. Then, resin was washed with DMF (3 × 10 mL),
1% AcOH in AcOEt (3 × 10 mL), AcOEt (3 × 10 mL), MeOH (3 × 10 mL) and CH2Cl2 (3 × 10 mL),
and dried in vacuo. The immobilized pentenoate (1) (820 mg, 0.83 mmol) was suspended in anhydrous
CH2Cl2 (20 mL) and 4-vinylbenzyl chloride (590 µL, 4.15 mmol, 5.0 eq.) was added via syringe under a
nitrogen atmosphere. After that, Grubbs’ second generation pre-catalyst (35.0 mg, 41.5 µmol, 5 mol %)
was added and the reaction was refluxed for 20 h. The mixture was then filtered, washed with CH2Cl2
(3 × 10 mL), MeOH (3 × 10 mL), CH2Cl2 (1 × 10 mL), and dried under high vacuum. The procedure
was repeated once to ensure complete reaction. In the next step, NaHCO3 (68.5 mg, 2.2 eq.) in DMSO
(25.0 mL) was added to the immobilized benzyl chloride (2) (915.0 mg, 0.37 mmol) and the mixture
was heated to 155 ◦C for 6 h. After that, the suspension was filtered, washed with DMSO (3 × 10 mL),
CH2Cl2 (3 × 10 mL), MeOH (3 × 10 mL), CH2Cl2 (1 × 10 mL) and dried in vacuo to obtain the Wang
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resin-linked aldehyde 3. In the next step, the immobilized aldehyde 3 (121.2 mg; 0.13 mmol) was
placed in a round-bottom flask and suspended in anhydrous benzene (20 mL) and the corresponding
amine (10 equiv.) was added. A Dean-Stark trap was then fitted, filled with molecular sieves 4 Å and
the suspension was heated in reflux for 14 h. After that, the resin was filtered, washed with benzene
(3 × 4 mL), DCM (3 × 4 mL), MeOH (3 × 4 mL) and CH2Cl2 (1 × 4 mL), and dried in vacuo to obtain
the resin-bound imine 5.

For 3-phenoxy-β-lactam derivatives (8aa–ab): to an aliquot of immobilized imine 5a–b (0.11 mmoles),
triethylamine (0.30 mL, 2.2 mmoles, 20 eq.) and phenoxyacetyl chloride (0.23 mL, 1.65 mmoles,
15 equiv.) was added at 0 ◦C. The suspension was stirred for 16 h at room temperature. After filtration,
the resin was washed with CH2Cl2 (3 × 4 mL), AcOEt (3 × 4 mL), MeOH (3 × 4 mL), CH2Cl2
(1 × 4 mL), and dried under high vacuum. Then, a 10% solution of TFA in CH2Cl2 (3 mL) was
added to the polymer-bound β-lactam 7aa–ab. The reaction mixture was stirred for 50 min at room
temperature, filtered, and washed with CH2Cl2 (3 mL). The filtrate was evaporated under reduced
pressure. Esterification with diazomethane afforded the crude product that was then purified by
column chromatography (hexane-AcOEt).

For β-lactam-chalcone hybrids (10bdd–bcg): 5-phenylvaleric acid (49 mg, 0.28 mmoles, 2.5 equiv.)
and triethylamine (90 µL, 0.66 mmoles, 6 equiv.) were dissolved in anhydrous chloroform (3 mL) and
added to a suspension of immobilized imine 5b–d (0.11 mmoles) in anhydrous chloroform (1.5 mL)
under nitrogen atmosphere. After one minute, 2-chloro-1-methylpyridinium iodide (Mukaiyama’s
reagent, 84.3 mg, 0.33 mmoles, 3 equiv.) was added and the suspension was stirred at room temperature
for 24 h. Then, the reaction mixture was filtered and the resin was washed successively with CH2Cl2
(3 × 4 mL), AcOEt (3 × 4 mL), MeOH (3 × 4 mL), and CH2Cl2 (1 × 4 mL). Resin 7bc–bd (0.11 mmol)
was placed in a 25 mL round-bottom flask, purged with dry nitrogen, suspended in anhydrous toluene
(3 mL) and olefin 9d–f (0.55 mmol, 5 eq.) dissolved in anhydrous toluene (3 mL) was added via syringe.
After addition of Hoveyda-Grubbs precatalyst (3.4 mg, 5.5 µmol, 5 mol %), the flask was fitted with
a reflux condenser with a cannula adapted to allow the elimination of generated ethylene during
the reaction. The system was heated to 75 ◦C for one hour under nitrogen atmosphere. The mixture
was filtered and the filtrate was evaporated under reduced pressure to afford the crude product.
The solvent was evaporated under reduced pressure and the crude material was purified by flash
column chromatography (hexane-AcOEt).

3.4. Analytical Data

Methyl (E)-5-(4-(1-benzyl-4-oxo-3-phenoxyazetidin-2-yl)phenyl)pent-4-enoate: RMN de 1H (CDCl3,
300 MHz): δ 7.37–7.05 (m, 11H), 6.90–6.82 (m, 1H), 6.77–6.68 (m, 2H), 6.39 (d, J = 15.9 Hz, 1H),
6.20 (dt, J1 = 15.9 Hz, J2 = 6.6 Hz, 1H), 5.39 (d, J = 4.4 Hz, 1H), 4.89 (d, J = 14.6 Hz, 1H), 4.72 (d,
J = 4.4 Hz, 1H), 3.85 (d, J = 14.6 Hz, 1H), 3.69 (s, 3H), 2.60–2.40 (m, 4H). RMN de 13C (CDCl3, 75 MHz):
δ 173.2, 165.4, 156.9, 137.6, 134.6, 131.4, 130.3, 129.1, 129.0, 128.8, 128.7, 128.5, 127.8, 125.9, 121.9, 115.4,
82.1, 61.1, 51.5, 44.0, 33.6, 28.1.
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Methyl (E)-5-(4-(4-oxo-3-phenoxy-1-phenylazetidin-2-yl)phenyl)pent-4-enoate: RMN de 1H (CDCl3,
300 MHz): δ 7.40–7.02 (m, 11H), 6.98–6.90 (m, 1H), 6.86–6.75 (m, 2H), 6,37 (d, J = 15.9 Hz, 1H),
6.18 (dt, J1 = 15.9 Hz, J2 = 6.2 Hz, 1H), 5.56 (d, J = 5.0 Hz, 1H), 5.37 (d, J = 5.0 Hz, 1H), 3.68 (s, 3H),
2.55–2.40 (m, 4H). RMN de 13C (CDCl3, 75 MHz): δ 173.2, 163.0, 156.9, 137.7, 136.8, 131.3, 130.3, 129.2,
129.0, 128.2, 126.0, 124.5, 122.1, 117.5, 115.7, 81.2, 61.8, 51.5, 33.6, 28.1.

1-(4-Methoxy-phenyl)-4-[4-(3-oxo-3-p-tolyl-propenyl)-phenyl]-3-(3-phenyl-propyl)-azetidin-2-one: 1H-NMR:
7.92 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 15.9 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 15.9 Hz, 1H),
7.37 (d, J = 8.1 Hz, 2H), 7.31–7.14 (m, 7H), 6.78 (d, J = 9 Hz, 2H), 4.62 (d, J = 2.1 Hz, 1 H), 3.73 (s, 3H),
3.13–3.07 (m, 1H), 2.66 (t, J = 7 Hz, 2H), 2.43 (s, 3H), 1.99–185 (m, 4H). 13C-NMR: 189.8, 166.7, 156.0,
143.8, 143.3, 141.5, 140.6, 135.5, 135.2, 131.1, 129.3, 129.1, 128.6, 128.4, 126.4, 125.9, 122.5, 118.1, 114.3,
60.8, 60.6, 55.4, 35.7, 28.9, 28.4, 21.6. HRMS calcd. for: C35H33NNaO3

+; (M + Na+, m/z): 538.23527;
found: 538.23673.

1-(4-Methoxy-phenyl)-4-{4-[3-(4-methoxy-phenyl)-3-oxo-propenyl]-phenyl}-3-(3-phenyl-propyl)-azetidin-2-one:
1H-NMR: 8.02 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 15.7 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 15.7 Hz,
1H), 7.36 (d, J = 8.2 Hz, 2H) 7.30–7.14 (m, 7H), 6.97 (d, J = 8.8 Hz, 2H), 6.77 (d, J = 9.0 Hz, 2H), 4.62
(d, J = 2.1 Hz, 1H), 3.89 (s, 3H), 3.73 (s, 3H), 3.12–2.99 (m, 1H), 2.68–2.63 (m, 2H), 1.98–1.82 (m, 4H).
13C-NMR: 188.5, 166.8, 163.5, 156.0, 142.9, 141.5, 140.5, 135.3, 131.1, 130.9, 130.8, 129.1, 128.4, 126.4,
125.9, 122.3, 118.1, 114.3, 113.9, 60.8, 60.5, 55.5, 55.4, 35.7, 28.9, 28.4. HRMS calcd. for C35H33NNaO4

+

(M + Na+, m/z): 554.23018; found: 554.22853.
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1-(4-Fluoro-phenyl)-4-{4-[3-(4-iodo-phenyl)-3-oxo-propenyl]-phenyl}-3-(3-phenyl-propyl) azetidin-2-one:
1H-NMR: 7.87 (d, J = 8.5 Hz, 2H), 7.78 (d, J = 15.6 Hz, 1H), 7.70 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.1 Hz,
2H), 7.44 (d, J = 15.6 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 7.28–7.14 (m, 7H), 6.93 (m, 2H), 4.63 (d, J = 2.1 Hz,
1H), 3.10 (m, 1H), 2.67 (m, 2H), 2.0–1.82 (m 4H). 13C-NMR: 189.4, 167.0, 144.2, 141.4, 140.5, 137.9,
137.2, 135.1, 133.8, 129.8, 129.3, 128.4, 128.3, 127.9, 126.8, 126.5, 126.0, 125.6, 122.0, 118.3, 118.2, 116.0,
115.7, 100.8, 60.9, 60.8, 35.6, 28.9, 28.4. HRMS calcd. For C33H27FINNaO2

+ (M + Na+, m/z): 638.09627;
found: 638.09727.

4. Conclusions

An interesting application of DOS of biologically promising compounds has been developed.
A key feature was the application of the reagent-based diversification approach using a linker with
different possibilities of cleavage. Starting from an immobilized primary library, diversity was
expanded through many alternatives according to the reaction conditions used. A series of cholesterol
absorption inhibitor analogues was obtained, as well as interesting hybrid compounds through
incorporation of a chalcone group via cross-metathesis. Here, we have demonstrated the reliability of
the methodology which can be suitable for generating large libraries of analogue structures.
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