Density functional theory applied to excited state intramolecular proton transfer in imidazole-, oxazole- and thiazole-based systems

Fabricio de Carvalho¹, Maurício D. Coutinho Neto¹, Fernando H. Bartoloni^{1,*} and Paula Homem-de-Mello^{1,**}

¹ Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil.

*fernando.bartoloni@ufabc.edu.br; Tel.: +55-11-4996-8375

**paula.mello@ufabc.edu.br; Tel.: +55-11-4996-0166

Table S1: Comparison between structural parameters of S_E and HBT from Purkayastha [5] and crystallographic data [78]. Bond length (Å) and angle formed (°) in ground state

		() 0	
Structural parameters	Calculated	Purkayastha	Cryst. data
C ₈ – O	1.342	1.366	1.305
$C_3 - N_1$	1.315	1.327	1.280
$C_2 - N_1$	1.379	1.400	1.404
$C_3 - S$	1.751	1.751	1.749
$C_4 - S$	1.747	1.687	1.757
$C_2 - N - C_3$	113.3	110.3	110.8
$C_3 - S - C_4$	90.1	91.0	88.6

Figure S1: Optimized structure of N_E , O_E and S_E in enol closed forms, enol opened forms and their rotamers.

Authors to whom correspondence should be addressed:

Figure S2: Vibrational spectrum of N_{E} in the ground and excited state in gas phase.

Figure S3: Vibrational spectrum of O_E in the ground and excited state in gas phase.

Figure S4: Vibrational spectrum of S_{E} in the ground and excited state in gas phase.

Table S2: HOMO \rightarrow	LUMO transition	calculated with	different functionals:	theoretical absorption	otion
wavelength (λ_{abs}) and	l oscillator streng	th (f) calculated	for N _E compound		

Functional	% HF exchange	λ _{abs} (nm)	f
B3LYP	20	337.5	0.3850
M06	27	329.4	0.2948
wB97X-D3	22*	283.7	0.6434
M06-2X	54	274.6	0.4458

* Range separated hybrid functional with 22% short-range HF exchange, Grimme's dispersion correction and range-separation parameter γ = 0.2

Figure S5: Absorption spectrum of N_{E} in gas phase.

Figure S6: Absorption spectrum of O_E in gas phase.

Figure S7: Absorption spectrum of S_{E} in gas phase.

 HOMO K
 LUMO K

 Figure S9: HOMO and LUMO orbitals of enolic (E) and ketonic (K) forms of triphenyloxazolic species.

Figure S10: HOMO and LUMO orbitals of enolic (E) and ketonic (K) forms of triphenylthiazolic species.