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Abstract: Glucosinolates are secondary metabolites occurring in Brassicaceae plants whose
hydrolysis may yield isothiocyanates, widely recognized as health-promoting compounds.
Myrosinase catalyzes this conversion. The chemical mechanism involves an unstable intermediary
(thiohydroxamate-O-sulfonate) that spontaneously decomposes into isothiocyanates or other
non-bioactive compounds depending on pH and cofactors. At acidic pH, non-bioactive compounds
such as nitriles and thiocyanates are formed, while at neutral pH isothiocyanates are obtained.
Broccoli myrosinase has been poorly studied so far. Recently, its amino acidic sequence was elucidated,
and a structural model was built. The aim of this work was to study the molecular interaction of
broccoli myrosinase with different ligands at acidic pH to propose possible inhibitors that prevent
formation of undesirable compounds at acidic pH, and that at neutral pH dissociate from the enzyme,
allowing formation of isothiocyanates. The interaction between broccoli myrosinase and 40 ligands
was studied by molecular docking simulations. Both the enzyme and each inhibitor were set at pH
3.0. Amygdaline and arbutin showed the highest affinity to broccoli myrosinase in this condition.
The residues that stabilize the complexes agree with those that stabilize the substrate (Gln207, Glu429,
Tyr352, and Ser433). Accordingly, amygdaline and arbutin would perform as competitive inhibitors
of myrosinase at pH 3.0.
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1. Introduction

Glucosinolates (GSL) are nitrogen- and sulfur-containing secondary metabolites, mainly found in
Brassicaceae [1,2]. Approximately 130 glucosinolates have been identified. Their chemical structure
consists of a β-D-glucopyranose residue linked to a hydroxylamine sulfate ester by sulfur bridge, as
well as an amino acid-derived R-group, which can be aliphatic, aromatic, or indole [3–5]. Figure 1
shows the chemical structure of GSL.

Myrosinase (thioglucosidase glucohydrolase, EC 3.2.1.147) is a glycoprotein that catalyzes
the hydrolysis of glucosinolates [6,7]. The hydrolysis leads to the formation of an unstable
aglycone intermediate (thiohidroxamate-O-sulfonate), glucose and sulfate. This aglycone undergoes
a spontaneous non-enzymatic Lossen rearrangement to yield isothiocyanates (ITCs), thiocyanates,
nitriles, oxazolidinethiones and epithionitriles, depending on the structure of the GSL and the chemical
conditions, such as pH, availability of ferrous ions and the presence of myrosinase interacting
proteins [8]. Figure 2 shows a scheme of the reaction mechanism. The hydrolysis products that
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result from myrosinase activity on glucosinolates form part of the defense system of the plant against
the attack of microorganisms, insects and herbivores, since they have insecticidal, fungicidal and
bactericidal properties [9,10]. Among the hydrolysis products, isothiocyanates are of great interest
because of their health promoting properties. On the contrary, nitriles have been associated with
hepatic damage, liver hemorrhage and renal megalocytosis [11,12].Molecules 2018, 23, x FOR PEER REVIEW  2 of 14 

 

 
Figure 1. (a) General structure of glucosinolates, where R1 denotes the amino acidic-derived side 
chain; and (b) classification of glucosinolates according to the side chain (R1), and some examples of 
glucosinolates found in Brassicaceae vegetables (adapted from Holst et al. [5]). 
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with hepatic damage, liver hemorrhage and renal megalocytosis [11,12]. 

Sulforaphane, an isothiocyanate found mainly in broccoli, has anticancer and antimicrobial 
activity, providing protection to cells against exogenous or endogenous carcinogenic intermediates 
[13,14]. It also has demonstrated bactericidal effect against Helicobacter pylori [7]. Sulforaphane comes 
from the hydrolysis of glucoraphanin, which is the most abundant GSL in broccoli, and is scarce in 
other Brassicaceae family members. Recently, attention has been set on maximizing sulforaphane 
content in broccoli-derived foods through different food processing methods [15,16] to exploit the 
health properties of this isothiocyanate. However, the chemical instability of sulforaphane impairs 
its bioavailability. Moreover, after the intake of GSL, given the acidic pH and the presence of Fe+2 in 
stomach, the main products that come from GSL hydrolysis are nitriles [17]. Therefore, to improve 
the bioavailability of sulforaphane and other isothiocyanates, and minimize the formation of nitriles, 
we propose that myrosinase can probably be inhibited by small molecules that bind reversibly to the 

Figure 1. (a) General structure of glucosinolates, where R1 denotes the amino acidic-derived side
chain; and (b) classification of glucosinolates according to the side chain (R1), and some examples of
glucosinolates found in Brassicaceae vegetables (adapted from Holst et al. [5]).

Sulforaphane, an isothiocyanate found mainly in broccoli, has anticancer and antimicrobial
activity, providing protection to cells against exogenous or endogenous carcinogenic
intermediates [13,14]. It also has demonstrated bactericidal effect against Helicobacter pylori [7].
Sulforaphane comes from the hydrolysis of glucoraphanin, which is the most abundant GSL in broccoli,
and is scarce in other Brassicaceae family members. Recently, attention has been set on maximizing
sulforaphane content in broccoli-derived foods through different food processing methods [15,16] to
exploit the health properties of this isothiocyanate. However, the chemical instability of sulforaphane
impairs its bioavailability. Moreover, after the intake of GSL, given the acidic pH and the presence
of Fe+2 in stomach, the main products that come from GSL hydrolysis are nitriles [17]. Therefore,
to improve the bioavailability of sulforaphane and other isothiocyanates, and minimize the formation
of nitriles, we propose that myrosinase can probably be inhibited by small molecules that bind
reversibly to the active site of the enzyme at acidic pH, thus preventing the formation of undesirable
products. Then, the aim of this work was to investigate the molecular interaction of broccoli
myrosinase with different ligands that have potential as pH-dependent myrosinase inhibitors.
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Figure 2. Mechanism of hydrolysis of glucosinolates by myrosinase. ESP, epithiospecifier protein
(adapted from Latté et al. [2]).

Broccoli myrosinase has been poorly studied so far. This enzyme was purified for the first time
by Mahn et al. [18], and a preliminary characterization was reported. Recently, the cDNA nucleotide
sequence of broccoli myrosinase was determined (Genbank ID: MF 461331); its amino acid sequence
was deduced; and a three-dimensional model of its monomer was built (PMDB ID: 00811093) [19].
No studies about the molecular interaction of broccoli myrosinase and ligands other than the substrate
are available so far. In this work, we investigated the molecular interaction of broccoli myrosinase
with 40 ligands at acidic pH to propose a molecule that acts as reversible inhibitor of the enzyme.
The stability of the complexes was compared with the stability of myrosinase-substrate complexes.
Besides, the effect of pH on myrosinase activity was studied to select the pH value at which conduct
the molecular docking simulations.

2. Results

2.1. Effect of pH on Myrosinase Activity

Figure 3 shows the effect of pH on the specific activity of broccoli myrosinase. Myrosinase activity
was higher at acidic pH, with the maximum activity reached at pH 3.0. It is remarkable that at pH 2.0
broccoli myrosinase keeps high activity, since this is the stomach pH. Besides, at pH 6.0, which is the
condition in small intestine, myrosinase is also active. Thus, if GSL reaches small intestine after the
intake of broccoli-derived food, sulforaphane and other isothiocyanates would be the main products
that come from the hydrolysis mediated by myrosinase.
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Table 1. Docking scores and glide scores obtained for 40 thioglucosidase inhibitors and two substrates. 
In parentheses appear the values given by Autodock Vina. The energy values obtained at pH 7 are 
given in italics. 

N° Inhibitor 
PubChem 
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Glide Score 
(kcal/mol) 

Docking Score 

1 (2-sulfate) ethyl 1-thio-beta-D-glucopyranoside 23666133 −6.152 −6.152 

2 
(2R,5R)-dihydroxymethyl-(3R,4R)-
dihydroxypyrrolidine 124702 −5.167 −5.167 

3 (3-sulfonate) propyl 1-thio-beta-D-glucopyranoside 23674091 −6.392 −6.392 
4 1,10-phenanthroline 1318 −5.788 −5.782 
5 1,4-dideoxy-1,4-imino-D-arabinitol 451991 −5.508 −5.508 
6 1-deoxynojirimycin 29435 −4.671 −4.671 
7 1-O-methyl-alpha-D-glucopyranose 64947 −5.372 −5.372 
8 2-methoxy-5-nitrotropone 84563 −5.774 −5.148 
9 5,5′-dithiobis (2-nitrobenzoic acid) 6254 −6.076 −5.984 

Figure 3. Effect of pH on specific activity of broccoli myrosinase. The bars correspond to the average of
three independent experiments and the sticks indicate the standard deviation.

2.2. Molecular Docking of Broccoli Myrosinase with Substrates and Potential Inhibitors

The molecular docking simulations were carried out at pH 3.0, based on the previous results.
The ligands considered in this study correspond to small molecules reported as thioglucosidase
inhibitors, and were chosen based on the literature. Table 1 shows the glide scores and docking scores
obtained for the 40 myrosinase-ligand complexes. According to Schrödinger program, the docking
score (dimensionless) corresponds to the glide score (kcal/mol) modified by the inclusion of Epik
state penalties due to protonation (https://www.schrodinger.com/kb/348). To assess the docking of
protonated ligands, the docking score should be used. Thus, in this work, docking score was used to
compare the stability of the simulated complexes. The average docking score obtained for the potential
inhibitors was −5.276, while the docking scores obtained for the substrates sinigrin and glucoraphanin
were −5.508 and −6.649, respectively. Then, the myrosinase-glucoraphanin complex is more stable
than the myrosinase-sinigrin complex. Among the 40 inhibitors studied, 22 of them had a docking
score higher than the average (−5.276). In turn, 17 inhibitors presented a docking score higher than
that obtained for sinigrin. However, only arbutin and amygdalin formed a more stable myrosinase
complex in comparison with glucoraphanin. The docking scores obtained for amygdalin and arbutin
complexes were −6.918 and −7.474, respectively. These values suggest that these compounds would
compete with the substrates for the active site of broccoli myrosinase at acidic pH, resulting in more
stable complexes and thus preventing the hydrolysis of GSL at that pH. The previous results were
confirmed through molecular docking simulations performed in the program Autodock Vina (Table 1).
The energy values given by this program agree with the values obtained from Schrödinger simulations,
showing the same tendency.

Table 1. Docking scores and glide scores obtained for 40 thioglucosidase inhibitors and two substrates.
In parentheses appear the values given by Autodock Vina. The energy values obtained at pH 7 are
given in italics.

N◦ Inhibitor PubChem CID * Glide Score (kcal/mol) Docking Score

1 (2-sulfate) ethyl 1-thio-beta-D-glucopyranoside 23666133 −6.152 −6.152
2 (2R,5R)-dihydroxymethyl-(3R,4R)-dihydroxypyrrolidine 124702 −5.167 −5.167
3 (3-sulfonate) propyl 1-thio-beta-D-glucopyranoside 23674091 −6.392 −6.392
4 1,10-phenanthroline 1318 −5.788 −5.782
5 1,4-dideoxy-1,4-imino-D-arabinitol 451991 −5.508 −5.508
6 1-deoxynojirimycin 29435 −4.671 −4.671
7 1-O-methyl-alpha-D-glucopyranose 64947 −5.372 −5.372
8 2-methoxy-5-nitrotropone 84563 −5.774 −5.148
9 5,5′-dithiobis (2-nitrobenzoic acid) 6254 −6.076 −5.984
10 Alexine 189,377 −4.778 −4.778

11 Amygdalin 656,516 −6.964 (−6.900)
−6.918 (−6.600) −6.918

https://www.schrodinger.com/kb/348
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Table 1. Cont.

N◦ Inhibitor PubChem CID * Glide Score (kcal/mol) Docking Score

12 Arbutin 440,936 −7.842 (−6.900)
−7.474 (−6.500) −7.474

13 L-ascorbic acid 54,670,067 −5.626 −4.682
14 Castanospermine 54,445 −6.426 −6.426
15 Cysteamine 6058 −2.981 −2.981
16 Delta-gluconolactone 7027 −5.566 −5.566
17 Diisopropyl fluorophosphate 5936 −4.601 −4.601
18 Dithiothreitol 446,094 −3.613 −3.613
19 Ethylenediaminetetraacetic acid 6049 −2.266 −2.170
20 Fluorodinitrobenzene 6264 −5.331 −5.331
21 Fructose 5984 −4.356 −4.356
22 Galactose 6036 −5.671 −5.671
23 Glucose 64,689 −6.156 −6.156
24 L-Cysteine 5862 −4.176 −4.127
25 Maltose 6255 −5.396 −5.396
26 Mannose 18,950 −6.239 −6.239
27 Methyl jasmonate 5,281,929 −4.966 −4.966
28 Methyl-beta-D-glucopyranoside 445,238 −5.787 −5.787
29 Monochlorotrifluoro-p-benzoquinone 53,662,935 −5.092 −5.092
30 p-diazabenzenesulfonic acid 67,540 −4.707 −4.594
31 p-nitrophenyl-beta-D-glucopyranoside 92,930 −5.842 −5.842
32 Phenyl-beta-D-glucopyranoside 65,080 −6.524 −6.524
33 Salicin 439,503 −5.950 −5.950
34 Sorbitol 5780 −4.013 −4.013
35 Sucrose 5988 −5.305 −5.305
36 Thiobenzoate 80,024 −5.088 −5.088
37 Thiomalate 5,352,130 −5.475 −4.782
38 Thiophenol 7969 −4.786 −4.786
39 Trinitrobenzenesulfonic acid 11,045 −5.470 −5.470
40 Xylose 135,191 −6.164 −6.164

Mean glide and docking score — −5.341 −5.276
Sinigrin 23,682,211 −5.508 −5.508
Glucoraphanin 9,548,634 −6.649 −6.649

* Compound identifier.

2.3. Molecular Interactions

Docking was performed in a grid centered at the active site of broccoli myrosinase, as suggested
in the literature [19]. Figure 4 shows the residues in the active site that interact with arbutin (Figure 4a),
amygdalin (Figure 4b), sinigrin (Figure 4c) and glucoraphanin (Figure 4d). The amino acid residues
that stabilize amygdalin were Gln207, Glu429, Gln59, and Glh484. Glh484 may act as acid or base.
There were hydrophobic zones in the neighborhood of the active site, composed of residues: Val491,
Phe493, Phe485, Val394, Phe393, Val353, Phe432, Trp477, Ile279, and Trp162. Additionally, there
were positively charged residues, namely Arg281, Arg214, Lys487 and Hip161, the latter being a
histidine with different protonation states; and uncharged residues, namely Ser402, Ser433, Thr210
and Asn206. The amino acid residues that stabilize arbutin were Ser433, Tyr352, Phe493, Arg281
and Gln207. The hydrophobic zones were formed by Phe393, Phe432, Val353, Phe485, Trp162, and
Ile279. The positively charged residue was Arg281, and uncharged residues were Gln59 and Thr210;
and, finally, a glutamic acid, Glh484, with different protonation states. The residues that interact
directly with glucoraphanin (Figure 4c) were Ser433, Arg281 and Gln207. There were hydrophobic
zones, composed of residues: Phe393, Val394, Phe432, Val491, Phe493, Val353, Tyr352, Trp477, Trp162,
and Ile279. Additionally, there were positively charged residues, namely Arg281 and Arg214, and
uncharged residues, namely Thr210 and Ser402. Finally, there were Glu429 and Glh484. The latter is a
glutamic acid with different protonation states. The residues that interact with sinigrin (Figure 4d)
were Arg281 and Gln207. The hydrophobic zones were formed by Tyr404, Val353, Tyr352, Phe432,
Tyr452, Ile279, Trp477, Phe493, Phe485, and Trp162. The positively charged residue was Arg214,
and uncharged residues were Ser402, Ser433, Gln207 and Thr210. Finally, similar to glucoraphanin,
there were Glu429 and Glh484.
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Figure 4. Three-dimensional structure of the complexes between broccoli myrosinase and:
(a) amygdaline; (b) arbutin; (c) glucoraphanin; and (d) sinigrin.

3. Discussion

The hydrolysis of glucosinolates by myrosinase to form isothiocyanates such as sulforaphane,
depends on the chemical conditions. The effect of pH on myrosinase activity is critical, because
high myrosinase activity does not imply a high yield of the product of interest due to the formation
of undesirable side products. Myrosinase activity strongly depends on pH, whereas the pH that
maximizes activity varies between different species, ranging from pH 3 to 8 [20,21].

In the pH stability study, we used sinigrin as substrate because it is one of the most abundant
glucosinolates in Brassica oleracea species, such as white cabbage, savoy cabbage, red cabbage, kale,
Brussels sprouts, cauliflower and kohlrabi, and it is also present in broccoli [22]. Besides, since
most authors use sinigrin in myrosinase studies, its use facilitates comparison with literature data.
The highest specific activity of broccoli myrosinase and sinigrin was attained at pH 3.0, agreeing with
Mahn et al. [18], who reported that myrosinase activity was higher at acidic pH using sinigrin as
substrate. Nevertheless, other authors reported that pH below 5 produced a structural destabilization
of mustard seeds myrosinase. This would not be the case for broccoli myrosinase. Wasabi myrosinase
showed the maximum activity at pH 6.5–7 [23,24].

The results showed that the interaction of myrosinase with amygdaline or arbutin yields
complexes of higher stability than those obtained with substrates. For both ligands, the amino
acid residues that stabilize the interaction at the active site of myrosinase were Gln207, Glu429, Gln59,
Glh484, Ser433, Ser402, and Trp477 for amygdaline and Ser433, Tyr352, Phe493, Arg281 and Gln207
for arbutin. These residues agree with those identified in previous studies about the interaction of
myrosinase and glucoraphanin, where molecular docking simulations showed that the residues at the
active site responsible for substrate stabilization by hydrogen bonding were Gln207, Ser433, Ser402 and
Trp477 [19]. These results suggest that both amygdaline and arbutin interact with broccoli myrosinase
at the substrate binding site, behaving as possible competitive inhibitors.

In addition to the aforementioned interactions, in the neighborhood of the active site of broccoli
myrosinase, several amino acid residues form a hydrophobic pocket, some of which are highly
conserved (Val353, Phe393, Ile279 and Tyr352) and are present in the same position of the polypeptide
chain of Brassica juncea myrosinase [25]. In this context, it is remarkable that, in addition to interactions
by hydrogen bonds and other non-covalent interactions between the ligands and residues of the active
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site of the enzyme, the hydrophobic interactions between some amino acid residues of the active site
with apolar portions of the ligands, can have a very important role in the binding and stabilization
of the ligand. Thus, Val394, Phe393, Val353 and Tyr352 are the main residues that interact with the
mandelonitrile moiety corresponding to the apolar portion of the amygdalin. In fact, very important
evidence supporting this assumption was obtained by Gomez et al. [26], who demonstrated that the
enzyme trehalase is strongly inhibited by amygdalin (glucose β-1,6-glucose β-mandelonitrile), but that
the gentiobiose (glucose β-1,6-glucose) that lacks the mandelonitrile moiety is not a competitive
inhibitor of said enzyme. In the case of arbutin, the main hydrophobic interactions between this
ligand and the enzyme occur between residues Tyr352, Val353 and Phe493 with the phenyl moiety
of arbutin. For glucoraphanin and sinigrin, the residues involved in these types of interactions
are Val353, Tyr352 and Phe432, Tyr452 with the methylsulfinylbutyl and allyl portions of both
substrates, respectively. Because both ligands, amygdalin and arbutin, are molecules of higher
hydrophobicity than glucoraphanin and sinigrin, it is possible that such differences contribute in
part to their greater affinity with the active site of the enzyme, and thus may behave as competitive
inhibitors of broccoli myrosinase.

Docking simulations at pH 7 were conducted to elucidate if the selected inhibitors dissociate at
that pH, thus enabling myrosinase activity (Table 1). Both programs, Schrödinger and Autodock Vina,
gave higher energy values for the myrosinase–inhibitor complexes at pH 7, in comparison with those
obtained at pH 3. This suggests that at pH 7 the myrosinase–inhibitor complexes are more unstable
and therefore the inhibitor could probably dissociate from the enzyme.

Amygdaline and arbutin are naturally occurring chemical compounds. Amygdalin was initially
isolated from bitter almonds (Prunus dulcis) in the 1830s, and Laetrile, a semi-synthetic-injectable
form of amygdalin, became one of the most popular, non-conventional, anti-cancer treatments in
the 1970s [27]. In 1982, a clinical trial, sponsored by the NCI with approval of the US Food and
Drug Administration (FDA), failed to demonstrate anticancer activity. Since then, amygdalin has
been banned by the FDA and it is not authorized for sale as a drug in the USA or Europe, with some
exceptions. Nevertheless, FDA Information is not available about how many people currently consume
amygdalin [27].

On the other hand, arbutin is a glycoside extracted from the bearberry plant, which inhibits
tyrosinase and thus prevents the formation of melanin. Arbutin has been used in phytotherapy
for centuries. Nowadays, arbutin is recognized as a medicinal compound [28]. Accordingly,
this compound could be delivered as a nutritional supplement together with myrosinase and
glucosinolates, or ingested together with Brassicaceae vegetables, to prevent formation of nitriles and
favor sulforaphane bioavailability.

4. Materials and Methods

4.1. Plant Material

Broccoli (Brassica oleracea var. italica) heads were purchased at the local market (Santiago, Chile)
from a single supplier. Broccoli florets were immediately processed for protein extraction. Myrosinase
was obtained directly from broccoli protein extract, using the protocol described in literature [18].

4.2. Myrosinase Activity

Myrosinase activity was assessed using UV-Visible spectrophotometer (Rayleigh UV 1800,
Analytical Instrument Co. LTD, Beijing, China) by the method described in literature [19].
Eight hundred microliters of 33-mM sodium phosphate buffer (pH 7.0) and 100 µL of protein extract
were preincubated for 3 min at 37 ◦C, then 100-µL of 100 mM sinigrin was added. Decline in absorbance
at 227 nm as a result of sinigrin breakdown was plotted against time, and enzyme activity was
calculated from the slope within the linear phase of the graph. One unit of enzyme activity was defined
as the amount of myrosinase that catalyzes the hydrolysis of 1 µmol of sinigrin per minute, under the
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conditions described above. Measurements were made in triplicate and specific activity was expressed
as units per milligram of protein.

4.3. Effect of pH on Myrosinase Activity

The effect of pH on myrosinase activity was determined in the pH range of 2.0–8.0 using the
following buffers: HCl-KCl (pH 2.0), glycine-HCl (pH 3.0), acetate (pH 4.0 and 5.0), sodium phosphate
(pH 6.0 and 7.0) and Tris-HCl (pH 8.0), at 37 ◦C, using a thermostatic bath (Stuart, Staffordshire, UK).
Assays were made in triplicate. All reagents were purchased from Sigma-Aldrich, St. Louis, MO, USA.

4.4. Molecular Docking

Figure 5 shows the pipeline used in this work. First, a search in Brenda enzyme database
(https://www.brenda-enzymes.org/) was performed, using E.C. number 3.2.1.147, that corresponds
to thioglucosidase. This database was chosen because it stores enzymes information obtained from
in vitro assays and the data is supported by research papers. Seventy-three entries of inhibitors were
obtained, of which 33 were discarded for being ions or because their structure was not available at
PubChem (https://pubchem.ncbi.nlm.nih.gov/). Toxic ligands were not discarded because this is
a preliminary study that aims to analyze the types of molecules that could be used as myrosinase
inhibitors. From that information it would be possible to design a specific inhibitor in the future.
The 40 selected ligands were docked on myrosinase (PMDB ID: PM00811093) using Free-Maestro
11.4, of Schrödinger suite [29]. As reference substrates, we used glucoraphanin, which is the most
abundant GSL in broccoli, and sinigrin, because it is present in almost all Brassicaceae members and
also most studies on myrosinases use sinigrin as substrate. The simulations were conducted at pH 3,
using Epik ionization tools [30,31]. The ligands that were proposed as possible myrosinase inhibitors
were selected considering that the binding energies of the ligand to broccoli myrosinase were lower
than the binding energy of the substrates sinigrin and glucoraphanin. In addition, molecular docking
simulations were conducted using AutoDock Vina [32]. Ligands structures were prepared for docking
by adding the polar hydrogens and partial charges and defining the rotatable bonds. Myrosinase was
also prepared by adding polar hydrogens and merging non-polar hydrogens. Grid map dimensions
were assigned to active site residues and to the surrounding surface, according to Roman et al. [19].
Finally, the three-dimensional structure of the chosen complexes was represented by PyMOL tool [33].
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4.4.1. Preparation of Broccoli Myrosinase Structure

The three-dimensional structure of broccoli myrosinase was retrieved from Protein Model Data
Base (https://bioinformatics.cineca.it/PMDB/) (PMDB ID: PM00811093) [19]. The PDB file of broccoli
myrosinase structure was processed with the Protein Preparation Wizard in the Schrödinger suite [34].
The protein structure integrity was adjusted, and the missing side-chain atoms within the protein
residues were predicted by Prime. Hydrogen atoms were added after deleting ions, cofactors and
water molecules. The protonation and tautomeric states were adjusted to pH 3.0 [35].

4.4.2. Ligand Preparation

Figure 6 shows the structures of the selected ligands in protonated state. The preparation
of the ligands was carried out by means of LigPrep module of Schrodinger Suite [36]. OPLS3
force field was selected for energy minimization. LigPrep converts 2D structures to 3D structures,
by adding hydrogens, considering bond lengths and angles, and selecting the conformers structure
that shows the lowest conformational energy, which in turn depends on correct chiralities, tautomers,
stereochemistries and ring conformations. The ionization state was set at pH range of 3.0 ± 1.0,
using EPIK 2.1 ionization tool [35]. All possible protonation states and ionization states, tautomers,
stereochemistry, and ring conformations were generated. Stereoisomers were generated with
unassigned stereogenic centers, considering a maximum of 32 stereoisomers per ligand. Only the
lowest energy conformation was kept for each ligand.
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4.4.3. Receptor Grid Generation

Receptor grid was located at the active site of broccoli myrosinase. The grid was a cubic box,
centered at the centroid of the active site residues. In glide, the grid was generated keeping the default
parameters of van der Waals forces scaling factor 0.08 and charge cut-off 0.15, subjected to OPLS3 force
field [37].

4.4.4. Glide Standard Precision (SP) Ligand Docking

Standard precision flexible ligand docking was carried out using glide of Schrödinger [37].
Penalties were applied to non-cis/trans amide bonds. Van der Waals scaling factor and partial charge
cut-off were set at 0.80 and 0.15, respectively, for ligand atoms. Epik state penalties were added to
docking score. Final scoring was performed on energy-minimized conformations and displayed as
glide score and docking score. The docked conformation with the lowest docking score was recorded
for each ligand (Table 1).

4.4.5. Residues that Stabilize Myrosinase-Ligand Complexes

The identification of myrosinase residues that interact with the different ligands in the most
stable complex conformations was performed using 2D ligand–protein interaction of Schrödinger suite.
In addition, three-dimensional structure of broccoli myrosinase and residue–ligand interactions were
visualized with PyMOL tool [33].

5. Conclusions

The highest specific activity of broccoli myrosinase was obtained at pH 3.0. Molecular docking
analysis suggested that amygdalin and arbutin probably act as broccoli myrosinase inhibitors at acidic
pH, since these ligands showed the highest affinity to myrosinase, in comparison with sinigrin and
glucoraphanin. Besides, the residues that stabilize the amygdalin and arbutin complexes agree with
those that stabilize the substrate (Gln207, Glu429, Tyr352, and Ser433). Accordingly, amygdaline and
arbutin would perform as competitive inhibitors of myrosinase at pH 3.0, of which arbutin offers
the highest application potential since there is no evidence against its use. At pH 7, the stability
of the myrosinase–arbutin complex was lower than at pH 3, suggesting that the interaction is
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pH-dependent, and that arbutin would probably dissociate at neutral pH. These findings should
be verified experimentally in the future.
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