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Abstract: A novel cyclodextrin-functionalized hybrid silicon nano-adsorbent material (6-EA-β-CD-Si)
was synthesized via the nucleophilic substitution method. The structure was detected by Fourier
transform infrared (FT-IR), X-ray, thermogravimetric analysis, and Brunauer-Emmett-Teller (BET)
analysis. Results reveal that the BET surface area of 6-EA-β-CD-Si is 240 m2/g and the average
pore size is 4.16 nm. The adsorption properties of 6-EA-β-CD-Si onto methylene blue (MB) were
studied and fitted with adsorption kinetic models. Both the Freundlich adsorption isotherm model
and pseudo-second-order model were fitted with well shows that the multi-layer adsorption with
chemisorption and physisorption co-existing in the system. The maximum adsorption capacities
are 39.37, 39.21, 36.90, and 36.36 mg/g at temperatures 303, 313, 323, and 333 K, respectively.
The maximum removal rate of MB could reach 99.5%, indicating the potential application value of
6-EA-β-CD-Si in wastewater treatment. The adsorption mechanisms of 6-EA-β-CD-Si showed that
the hydrophobic cave of β-CD plays an important role on the adsorption of MB.
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1. Introduction

Water pollution from small industries is a serious problem throughout the world [1]. Toxic
dyeing effluents generated in the textile, dyestuffs, leather, papermaking, and plastics are genotoxic,
carcinogenic, and teratogenic hazards to humans and pose a significant threat to human health [2].
Therefore, removing the dye in wastewater to an acceptable level before being discharged into the
natural environment has been defined in many countries’ laws. To date, a series of methods have
been adopted, including catalytic degradation [3], biological treatment [4], chemical precipitation [5],
membrane filtration [6], adsorption [7], and many other technologies to reduce the pollution and
hazard to the environment caused by dye wastewater. However, each method has its own limitations.
At present, the adsorption process is considered as one of the most effective and economical methods
for removing pollutants from effluent due to its simplicity of design and ease of operation [8,9]. Some
of easy acceptable adsorbent materials such as zeolite [10], graphene [11], metal oxides [12], magnetic
particles [13], and activated carbon [14] have been chosen for removing dyes in wastewater. However,
there are still some limitations for these materials being used widely because of slow adsorption rate,
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low adsorption capacity, and inconvenient separation [15]. Therefore, high selectivity, high adsorption
capacity, long useful lifetime, and low-cost promising adsorbents are still in urgent need.

It is widely known that β-cyclodextrin (β-CD) is a commercial natural macrocycle molecule that
contains a hydrophilic exterior and a hydrophobic internal cavity and has properties of non-toxicity
and biodegradability due to its special structure and excellent chemical reactivity. β-CD can form
a complex with a wide range of organic and inorganic molecules, charged ions, and other groups
in a solution by host-guest interactions through hydrophobic interactions and hydrogen-bonding
interactions [16]. However, β-CD was hard to apply in wastewater directly because of its solubility in
water. Fortunately, a large number of hydroxyl groups on the surface of β-CD can undergo chemical
reactions to improve its performance and to gain insoluble properties [17]. It has been used as a drug
carrier [18], to remove metals [19] and organic compounds [20] from aqueous media, as well as in
catalysis [21], and chromatography [22]. Therefore, they can also enable relatively facile synthesis of
innovative materials for applications in the field of pollution removal from various compartments
of the environment such as water, air and soil. However, the preparation steps of the traditionally
modified cyclodextrin are quite complicated, with large amounts of reagents used, the cost is relatively
high, and the yield of the intermediate product is low [23]. The latest application of nanomaterials in
wastewater treatment provided us with the idea to construct a kind of structure in accordance with the
nanoscale adsorbent based on the covalent immobilization of β-CD [24]. In this study, a new way was
found to solve these problems by making a novel nanoparticle adsorbent.

The novel nanoparticle adsorbent was made by immobilization of β-CD on hybrid silicon by
the nucleophilic substitution method, with hybrid silicon inside as the core and β-CD as the “shell.”
The most important aspects for this novel material was that the β-CD shell should avoid the violent
changes or even destruction of the cavity. Furthermore, the hybrid silicon as carrier and core play
the role of immobilization and as an adsorbing material because of its large surface area, large pore
volume, and good performance. Both the core and “shell” in this novel nanomaterial are capable of
organic pollutants adsorption [25]. It can also overcome the problems of water-solubility, difficulties
of recovery, and other defects and achieve a synergism effect between β-CD “shell” and the carrier
core [26]. The adsorption ability was evaluated for the treatment of methylene blue (MB) wastewater.
This novel material combined the advantages of both hydrophobic cavity of β-CD and high specific
surface area of hybrid silicon, and it has the advantage of being environmentally friendly, having low
costs in production, strong mechanical stability, and it is easy to separate from the wastewater.

2. Results and Discussion

2.1. Structural Characterization

The overall synthesis process is divided into three steps, and the corresponding synthetic route
is shown in Scheme 1. The synthesis of 6-EA-β-CD was achieved through the formation of ether
linkage between hydroxyl group and halogen. The 6-EA-β-CD-Si forms secondary amino groups via
nucleophilic substitution. However, as a novel particle, the exact structure information was unknown.
The linkage, crystallize, structure and geometry shape were detected as follows:

The formation of secondary amine groups is the key step in the synthesis of 6-EA-β-CD-Si.
Thus, the Fourier transform infrared (FT-IR) spectra of β-CD, 6-EA-β-CD, Cl-Si and 6-EA-β-CD-Si are
illustrated in Figure 1. Comparing the FT-IR spectra of β-CD and 6-EA-β-CD, the strong and broad
peaks at around 3396 cm−1 are attributed to the O-H stretching vibrations, and the peak becomes
wider and broader on the FT-IR spectra of 6-EA-β-CD. The peaks at around 2900 cm−1 belong to
the C-H stretching vibrations, and the N-H deformation vibration at around 1645 cm−1 appeared
in 6-EA-β-CD for the existence of the primary amine groups. Meanwhile, the peaks at 1045 cm−1

were attributed to the C-O-C stretching vibrations, and the peaks at 1159 cm−1 corresponded to the
C-C and C-O stretching vibrations [27]. The peak at 1367 cm−1 was attributed to the C-N stretching
vibration, and red shift occurs on the FT-IR spectra of 6-EA-β-CD due to the amine ethyl was grafted
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on β-CD, which verified that 6-EA-β-CD molecules were conjugated via the nucleophilic substitution
method. Furthermore, comparing with the FT-IR spectroscopy of Cl-Si and 6-EA-β-CD-Si, the O-H
stretching vibration in 6-EA-β-CD-Si become stronger due to the abundant hydroxyl group existing
of β-CD molecules. The peaks at around 1160 cm−1 belong to the C-C and C-O stretching vibrations.
The peak at 880 cm−1 corresponded to the bending vibration of the R-1,4-bond in β-CD. Meanwhile,
the N-H deformation vibration at around 1655 cm−1 become stronger in 6-EA-β-CD-Si for the existence
of the secondary amine groups. Thus, the FT-IR spectroscopy characterization proves that β-CD is
successfully immobilized on the surface of Cl-Si.Molecules 2018, 23, x 3 of 16 
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According to the results of X-ray diffraction (XRD) (Figure 2), it can be derived that there are
many characteristic diffraction peaks of β-CD and 6-EA-β-CD in the range of 2θ = 10–25◦. These
peaks are indicative of the presence of highly crystalline [28]. Meanwhile, it was found that the
crystallization peak of 6-EA-β-CD slightly lower than that of β-CD, which is due to the substitution
of the aminoethyl group of β-CD by the aminoethyl group, and it is similar to the result of grafting
citric acid on the surface of β-CD to form cyclodextrin derivatives [29]. Meanwhile, it is noted that
Cl-Si and 6-EA-β-CD-Si have a wider peak shape in the range of 2θ = 20–25◦, which mainly shows
the characteristic peak of Cl-Si. After 6-EA-β-CD is immobilized on the surface of Cl-Si, the overall
peaks of Cl-Si had almost not changed, mainly because β-CD is arranged in the monomolecular layer
on the surface of Cl-Si and there are not enough molecules to form β-CD crystal structures, so it is
difficult to observe the β-CD characteristic peaks from the XRD of 6-EA-β-CD-Si. The X-ray diffraction
characterization further proves that β-CD is successfully immobilized on the surface of Cl-Si.

Molecules 2018, 23, x 4 of 16 
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Figure 2. X-ray diffraction (XRD) spectra of β-CD (a), 6-EA-β-CD (b), Cl-Si (c) and 6-EA-β-CD-Si (d).

According to the TG curves (Figure 3), the weight loss before 150 ◦C comes from the moisture
on the sample surface and inside the cavity of β-CD. Comparing β-CD with 6-EA-β-CD, the peak
temperature of 6-EA-β-CD and the temperature corresponding to 50% weight loss of 6-EA-β-CD
were lower than that of β-CD, which is mainly due to the higher disorder of the cyclodextrin
molecules after grafting of the amine ethyl group on β-CD [19]. Meanwhile, the reduction of the
crystallinity of 6-EA-β-CD in the X-ray spectrum also confirms this phenomenon. Compared to Cl-Si
and 6-EA-β-CD-Si, the weight loss of Cl-Si was only 3% before 150 ◦C, which is mainly due to the
hydrophobic surface of Cl-Si, while the weight loss of 6-EA-β-CD-Si was about 7% due to the partial
decomposition of β-CD immobilized on the surface of Cl-Si. The overall mass loss of Cl-Si in the
range of 150–700 ◦C was 20.15%, which is mainly due to the decomposition of CPTES, so it can be
concluded that the organic layer on Cl-Si was about 20.15%. The overall mass loss of 6-EA-β-CD-Si
was 34.75%, mainly due to the thermal decomposition of β-CD and -CH2CH2CH2-, it is inferred
that the amount of β-CD immobilized on the surface of Cl-Si is 34.75% (Neglecting -CH2CH2CH2-
thermal decomposition). From the TG curve, it can be further concluded that 6-EA-β-CD-Si has a good
thermal stability.
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The scanning electron microscopy (SEM) image and particle size of 6-EA-β-CD-Si are employed
to characterize the shape and dimensions of 6-EA-β-CD-Si (Figure 4). It can be clearly seen that
6-EA-β-CD-Si has a better spherical structure and a higher specific surface area, which increases the
active sites of the guest molecules. In addition, the particle size of 6-EA-β-CD-Si is mainly distributed
in the range of 150–250 nm, which is mainly due to the aggregation of nanoparticles. Exposed β-CD
and active sites on the surface of 6-EA-β-CD-Si may be better contacted with MB, which is conducive
to adsorption.
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From the results of Brunauer-Emmett-Teller (BET) surface area (Figure 5), it can be seen the
adsorption curve and the desorption curve are almost in a coincide state, indicating that 6-EA-β-CD-Si
has good adsorption properties. Meanwhile, β-CD, 6-EA-β-CD, Cl-Si, and 6-EA-β-CD-Si have been
characterized in terms of BET surface area, hole volume, and pore size. Data are shown in Table 1.
By comparison, 6-EA-β-CD has higher BET surface area and lower hole volume and pore size than
β-CD, further verifying the successful modification of amine-ethyl on the β-CD surface. In addition,
the pore diameter of 6-EA-β-CD-Si is larger than that of Cl-Si, further illustrating that 6-EA-CD-Si
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has both the pore size characteristics of cyclodextrin and the high BET surface area characteristics of
Cl-Si. It’s noted that the BET surface area of 6-EA-β-CD-Si was 240.411 m2/g and average pore size is
4.162 nm, and the pore size distribution of the product is mostly between 2 and 10 nm, indicating that
6-EA-β-CD-Si belongs to a typical nanocomposite hole material. Compared with common adsorbent
materials [30], the specific surface area of the two studies is the same, but this study has a higher
adsorption capacity for MB. Compared with other cyclodextrin-modified materials [31], the specific
surface area of the study can reach 919 m2/g, but its maximum adsorption capacity is only 60 mg/g.
Thus, this novel material is conducive to adsorption, and the adsorption capacity of 6-EA-β-CD-Si is
due to the existence of hydrophobic cavities and high specific surface area.
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Table 1. Micro-structure data of β-CD, 6-EA-β-CD, Cl-Si, and 6-EA-β-CD-Si.

Material BET Surface Area (m2/g) Hole Volume (cm3/g) Pore Size (nm)

β-CD 0.3445 0.0003 12.00
6-EA-β-CD 0.3669 0.0002 10.80

Cl-Si 341.7485 0.2438 3.940
6-EA-β-CD-Si 240.4112 0.3010 4.162

2.2. Adsorption Properties

For the adsorption reaction, effective dosage, pH, and initial MB concentration are the important
factors affecting the adsorption of MB on 6-EA-β-CD-Si. Figure 6a shows the effects of 6-EA-β-CD-Si
dosage on the adsorption of MB. With the increase of the dose of 6-EA-β-CD-Si, the removal rate of
MB increases, but the dose of 6-EA-β-CD-Si increases further, and the removal rate increases slightly.
And the amount of adsorption decreased with the increase of the dose, which is mainly due to the fact
the higher dose provides a large excess of active sites, resulting in a lower utilization of the site at a
certain concentration of MB [16]. Meanwhile, 6-EA-β-CD-Si aggregation and competition will also
affect the adsorption behavior between 6-EA-β-CD-Si and MB.
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Figure 6. (a) Effective dosage of 6-EA-β-CD-Si on adsorption capacity of MB; (b) Effect of pH on
adsorption of methylene blue (MB) by 6-EA-β-CD-Si; (c,d) MB solutions adsorbed by 6-EA-β-CD-Si at
different incubation time.

pH value is also one of the important factors affecting the adsorption of dyes on the adsorbent
material. It affects the surface charge of 6-EA-β-CD-Si and also affects the structure of MB in
solution [32]. The pH of MB solution was varied from 3–12 to investigate the effect of pH value
on the adsorption of 6-EA-β-CD-Si, and the results are shown in Figure 6b. The adsorption capacity
of 6-EA-β-CD-Si onto MB was found to increase with a pH increase from 3 to 8. At about pH 8,
the amount of adsorption displayed a slight increase. As pH changed from 8 to 12, the maximum
removals in the range of 98.5 to 99.2% were achieved in the range of 9 to 12, indicating that the alkaline
conditions conducive to the adsorption. This is due to the excess hydrogen ions (H+) competed with
MB for the active sites on the surface of 6-EA-β-CD-Si [19], hindering the adsorption of 6-EA-β-CD-Si
onto MB. As the pH increases, the dimethylamine group becomes neutral, enhancing the interaction of
MB molecules with the surface of 6-EA-β-CD-Si.

Figure 6c–d shows the amount of MB adsorbed (Qt, mg/g) at a specific reaction time (t, min) at
pH 8 (± 0.1) by 6-EA-β-CD-Si at temperature 30 ◦C, respectively. It can be seen that the adsorption
amounts of 6-EA-β-CD-Si onto MB increased with increasing incubation time. The adsorption amount
increases rapidly within 0–10 min, the adsorption amount increases slowly within 10–60 min, and the
adsorption equilibrium was reached at an incubation time of 60 min. Therefore, in about 10 min,
the adsorption rate of 6-EA-β-CD-Si onto MB can reach about 80% at equilibrium, so the fast adsorption
rate indicates that the internal mass transfer resistance is weak during the adsorption process [30].
The short adsorption equilibrium time indicates the high removal efficiency of 6-EA-β-CD-Si, which is
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significant in practical applications. In addition, with the initial concentration of MB increasing from
20 mg/L to 100 mg/L, the adsorption capacity increases from 18.86 to 51.42 mg/g, indicating that the
higher initial concentration will provide a more powerful driving force to overcome the mass transfer
resistances between 6-EA-β-CD-Si and the MB solution.

2.3. Adsorption Kinetics

In order to evaluate the rate-controlling step in the adsorption of MB, the data were fitted by
Pseudo-first-order kinetic model (1) and Pseudo-second-order kinetic model (2), respectively.

Pseudo-first-order kinetic model:

ln(Qe − Qt) = lnQe − K1t (1)

where Qe and Qt are the adsorption capacities at equilibrium time and time t (mg/g), respectively.
K1 represents the pseudo-first-order kinetic model rate constant (1/min). K1 and Qe can be gained
from the slope and intercept of the ln(Qe − Qt) versus t, respectively.

Pseudo-second-order kinetic model:

t/Qt = − 1
K2Qe2 +

1
Qe

t (2)

where K2 represents the pseudo-second-order kinetic model rate constant (g/(mg min)). Qe and K2

can be obtained from the slope and intercept of the t/Qt versus t, respectively.
The adsorption kinetics of 6-EA-β-CD-Si were conducted with the initial concentration of

MB from 20 mg/L to 100 mg/L and initial pH of 8 (± 0.1). The linear fitting results for the
adsorption of MB on 6-EA-β-CD-Si are shown in Figure 7a,b. Based on the values of the linear
regression coefficient (R2), the adsorption process of MB by 6-EA-β-CD-Si was fitted better by the
pseudo-second-order kinetic model (R2 = 0.9896 − 0.9994) than by the pseudo-first-order kinetic model
(R2 = 0.9024 − 0.9597). Furthermore, the kinetic parameters, which were calculated, are shown in
Table 2. The adsorption capacity of the experimental values (Qe, exp) is very close to the value
calculated from the pseudo-second-order kinetic model (Qe, cal) at five different initial concentrations.
The rate constant (K2) of pseudo-second-order kinetic model decreases with the initial concentration
increasing from 20 mg/L to 100 mg/L. Therefore, the reaction rate is inversely proportional to the
initial concentration of MB.
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Table 2. Kinetic parameters of different initial concentrations of MB.

C0 (mg/L)
Pseudo-first-order Kinetic Model Pseudo-second-order Kinetic Model

K1/min−1 Qe, cal/(mg/g) R2 K2/min−1 Qe, cal/(mg/g) R2 Qe, exp/(mg/g)

20 0.0378 8.0776 0.9391 0.02 17.7305 0.9966 18.8629
35 0.064 13.2567 0.9387 0.0106 31.0559 0.9896 30.4405
50 0.2004 30.8674 0.9024 0.0075 42.7351 0.9931 39.122
75 0.0664 14.7508 0.9597 0.0051 43.8596 0.9993 43.233

100 0.1377 21.0774 0.9549 0.0034 54.3478 0.9994 51.4216

Qe, cal is the calculated equilibrium adsorption capacity, and Qe, exp is the experimental equilibrium
adsorption capacity.

2.4. Adsorption Isotherms

Adsorption isotherms can also better simulate the adsorption behavior of MB. The Langmuir
adsorption isotherm model (Equation (3)) and the Freundlich adsorption isotherm model (Equation (4))
have been used to discuss the equilibrium characteristics of the adsorption process.

The Langmuir isotherm equation can be written as

Ce
Qe

= Qmax × Ce +
1

(Qmax × KL)
(3)

where Ce is the equilibrium concentration of the MB solution (mg/L), Qe is the adsorption capacity
of MB on the adsorbent at equilibrium (mg/g), Qmax is the maximum adsorption capacity (mg/g),
and KL is the Langmuir binding constant (L/mg), which is related to the free energy of adsorption.
The value of Qmax and KL can be calculated from the slope and intercept of the Ce/Qe versus Ce,
respectively.

Freundlich isotherm equation can be written as

lgQe =
1
n

lgCe + logKF (4)

where KF is the Freundlich parameter and n is constant related to adsorption intensity. If n is greater
than 1, the adsorption process is favorable. KF and n can be derived from the slope and intercept of the
lgQe versus lgCe.

The equilibrium adsorption study was performed with different initial concentrations of MB at
the temperatures 303 K, 313 K, 323 K, and 333 K, respectively. The slope and the intercept of each linear
plot shown in Figure 8a, b. It can be found that the regression coefficient (R2) obtained from Freundlich
model (R2 = 0.9903 − 0.9944) is much higher than that from Langmuir model (R2 = 0.9707 − 0.9858)
for MB. The results suggested that the Freundlich isotherm fits better with the experimental data.
The adsorption process between MB and material could occur on heterogeneous surfaces without being
restricted to monolayers, and as the concentration of MB increase, more MB molecules can be captured
on the material surfaces. Furthermore, the results fitted by Freundlich and Langmuir models are shown
in Table 3. As the temperature increases, the maximum adsorption capacity decreases. The Qmax
calculated from the Langmuir model is 39.37, 39.21, 36.90, and 36.36 mg/g at the temperatures 303, 313,
323, and 333 K, respectively. Therefore, it is concluded that the temperature remarkably influences the
adsorption of MB, which indicates that adsorption is an exothermic process. Meanwhile, n is greater
than 1 (n = 2.0669 − 2.8775), intimating that the adsorption of MB on 6-EA-β-CD-Si is a favorable
process [33].
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Table 3. Langmuir and Freundlich isotherm fitting parameters at different temperatures.

T(K)
Langmuir Adsorption Isotherm Freundlich Adsorption Isotherm

Qmax (mg/g) KL (L/g) R2 KF n R2

303 39.47 0.4790 0.9858 15.8433 2.8775 0.9927
313 39.21 0.3778 0.9825 12.4202 2.6749 0.9930
323 36.90 0.2691 0.9812 10.4340 2.6142 0.9903
333 36.36 0.1436 0.9707 6.5337 2.0669 0.9944

2.5. Adsorption Thermodynamics

Temperature is also a controlling parameter for MB removal. To determine the effect of
6-EA-β-CD-Si on the adsorption of MB at different temperatures, thermodynamic parameters need
to be further determined and calculated by the following formula (Equations (5)–(7)). The values
of enthalpy change (∆H◦) and entropy change (∆S◦) were obtained from the slope and intercept,
respectively, of the graphical plot of lnKd as a function of 1/T (Figure 9).

∆G◦ = −RTlnKd (5)

lnKd = −
(

∆H◦

R

)(
1
T

)
+

∆S◦

R
(6)

∆G◦ = ∆H◦ − T∆S◦ (7)

where ∆G◦ is the Gibbs free energy variable for the adsorption process, kJ/mol; Kd is the isothermal
adsorption constant (L/g); Kd = Qe/Ce; R is the universal gas constant, 8.314 J/(mol·K); T is the
thermodynamic temperature, K; ∆H◦ is the enthalpy change of the adsorption process, and kJ/mol;
∆S◦ is the entropy change of the adsorption process, J/(mol·K).

Table 4 presents the thermodynamic parameters at the initial concentration of 20 mg/L and
40 mg/L in MB aqueous solution. Values of the enthalpy changes (∆H◦ < 0 kJ/mol), indicating that
the adsorption of MB is an exothermic process, which is a good explanation for the decrease in the
amount of adsorption with rising temperature appears in Table 3, and their magnitudes (<40 kJ/mol)
means the adsorption process is mainly due to the physical adsorption in nature and the weak contact
in the system [34]. The Gibbs free energy changes (∆G◦) are negative of the tested temperatures range
from 303 K to 333 K, confirming that the adsorption of MB on 6-EA-β-CD-Si is spontaneous and
thermodynamically favorable [35]. The values of ∆G◦ are among −15.6178 and −11.2937 kJ/mol,
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which further indicating that the physical adsorption might dominate the adsorption of MB on
6-EA-β-CD-Si, along with the weak interactions between MB and 6-EA-β-CD-Si.
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Table 4. Adsorption thermodynamic parameters at different temperatures.

Co (mg/L) T (K) ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (J·mol−1·K−1)

20

303 −15.6178

−19.3966 −12.4710313 −15.4931
323 −15.3684
333 −15.2437

40

303 −11.5930

−14.616 −9.9768313 −11.4933
323 −11.3935
333 −11.2937

2.6. Adsorption Mechanism

Through the above study of adsorption kinetics, adsorption isotherms, thermodynamic analysis,
and optimum pH conditions, the MB adsorption mechanism can be inferred. To verify the adsorption
mechanism, the FT-IR spectra of MB, 6-EA-β-CD-Si, and 6-EA-β-CD-Si/MB are shown in Figure 10a.
After the adsorption of MB onto 6-EA-β-CD-Si, the FT-IR spectra exhibits many changes. It is found that
the appearance of peaks at 1602 cm−1, 1489 cm−1, and 1394 cm−1 in the FT-IR spectra of 6-EA-β-CD-Si
after adsorption of MB, which belongs to the stretching vibrations of C=C in benzene rings and the
C-N stretching vibration existing on the MB molecules. Thus, there is the interaction between MB and
6-EA-β-CD-Si, which is a hydrogen bond. The adsorption mechanism of MB onto 6-EA-β-CD-Si can
be summarized as shown in Figure 10b. Based on the analysis above, the adsorption mechanism is
attributed to the host-guest interactions between cyclodextrin and aromatic molecules, the electrostatic
interactions, and weak hydrogen bonding between MB and 6-EA-β-CD-Si.

Table 5 contrasts this study on the adsorption of MB to those in previous literature and revealed
that 6-EA-β-CD-Si shows a greater adsorption capability comparing with other adsorbents, including
activated carbon and some other low-cost adsorbents. However, the adsorption mechanisms between
MB and the adsorbents reported by other researchers were unknown. In this work, through the
detailed discussion, it can be found that the removal mechanism of MB by 6-EA-β-CD-Si is mainly
due to the host–guest interactions, the electrostatic interactions, and weak hydrogen bonding between
6-EA-β-CD-Si and MB. These results indicated that the 6-EA-β-CD-Si core-shell nanomaterial could be
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considered as a promising adsorbent for the removal of MB from wastewater. At the end of the third
cycle, the adsorption rate of MB on 6-EA-β-CD-Si can still reach 65% (data not shown). Furthermore,
the processes of adsorption, separation and desorption with 6-EA-β-CD-Si avoids the secondary
pollution of water and improve the adsorption efficiency of dyes compared with the previous.
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Table 5. Adsorption isotherms of MB on various adsorbents.

Adsorbents BET Surface
Area (m2/g) Isotherm Adsorption Capacity,

Qm (mg/g) pH Reference

sodium hydroxide 31.35 Langmuir 27.86 – [36]
phenyl-functionalized

silica materials − Sips 33.7 8 [37]

magnetic
graphene-carbon

nanotube
– Langmuir 24.88 7 [38]

clay 30 Freundlich 6.3 – [39]
activated carbon from

waste biomass 240.02 Langmuir 16.43 6 [30]

vegetal fiber activated
carbons – – 33.7 10 [40]

cyclodextrin-functionalized
hybrid silicon 240 Freundlich 39.47 8 This work

3. Materials and Methods

3.1. Preparation of 6-EA-β-CD

2-chloroethylamine hydrochloride (1.5 g) was sonicated and dispersed in double-distilled water
(6 mL). β-CD (15 g) was added to the dispersion and dried at 50 ◦C until the water was completely
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evaporated. The product was added to NaOH solution (10%), and the reaction was stirred for 240 min
at 70 ◦C. After the reaction, the product was precipitated with methanol, filtered and washed three
times and dried at 40 ◦C for 6 h to obtain 6-EA-β-CD.

3.2. Preparation of Cl-Si

The synthesis of Cl-Si was slightly modified according to the method previously reported [26].
3-Chloropropyl-triethoxysilane (CPTES) (4.78 mL) and tetraethyl orthosilicate (TEOS) (22 mL) were
fully dissolved in anhydrous ethanol (60 mL). Ultrapure water (7.2 mL) and 1 M tetrabutylammonium
fluoride in THF (6 mL) were dissolved in another absolute ethanol solution (40 mL), and then the two
mixtures were thoroughly mixed for 10 s to obtain a homogenous solution. Gel was observed after
30 min and aged at room temperature for six days. The obtained gel was crushed, filtered, and washed
successively with ethanol and acetone solution. Thus, the material was dried at 80 ◦C for 6 h to obtain
Cl-Si as a white powder.

3.3. Preparation of 6-EA-β-CD-Si

The 6-EA-β-CD-Si was prepared as following methods: 6-EA-β-CD (3 g), Cl-Si (2 g), and KI (0.2 g)
were dissolved in DMF (60 mL), nitrogen gas was blown into the reaction vessel for 5 min so that air in
the reaction vessel was discharged, and the reaction was stirred at 110 ◦C for 24 h. After the reaction
was completed, the mixtures were cooled to room temperature, and the suspension was filtered and
washed successively with DMF, ethanol, and water, and then the obtained material was dried under
vacuum at 60 ◦C for 9 h to obtain 6-EA-β-CD-Si as a white power.

3.4. Samples Characterization

Fourier transform infrared spectrometer was carried out using a Nicolet 5700 spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA), and spectra were recorded between 500 and 4000 cm−1.
The X-ray diffraction spectrometer (XRD) experiments were recorded on an X-ray diffraction
spectrometer using Cu Kα 1.5406 Å in the scattering angle range of 2θ = 5 to 50◦. The SEM images of
6-EA-β-CD-Si were taken using a scanning electron microscope. Thermal stability was analyzed by a
thermogravimetric analyzer in the air atmosphere with the airflow rate of 50 cm3/min. The temperature
was ranged from 30 to 700 ◦C at a scanning rate of 10 ◦C/min. The Brunauer-Emmett-Teller (BET)
surface area analyses of the sample were performed using a low-temperature N2 adsorption-desorption
technique with a Micromeritics ASAP 2020 (Micromeritics, Orlando, FL, USA) gas adsorption
apparatus. The particle size of as-synthesized nanoparticles was measured using a Nanoparticle
size and zeta potential analysis Uptake was determined by measuring the reduction in absorbance or
depletion from solution using UV-vis spectrophotometry at the wavelength 660 nm.

3.5. Adsorption of Anionic Dyes

The adsorption behaviors of 6-EA-β-CD-Si were systematically investigated by changing the
factors of adsorbent dosage, pH value, adsorption time, initial concentration, and adsorption
temperature. The specific experimental process is as follow: The process of adsorption was performed
in bath thermostatic shaker with a certain temperature at a speed of 210 rpm. After the adsorption
reaction was completed, the supernatant solution was taken after centrifugation at 10,000 rpm for
15 min, and the residual concentration of MB was determined by UV-vis spectrophotometry at the
wavelength 660 nm.

The adsorption capacity Equation (8) and removal rate Equation (9) were calculated according to
the following formulas:

Qe = (C0-Ce)/C0 × V/m (8)

E(%) = (C0-Ce)/C0 × 100 (9)
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where Qe (mg/g) is the adsorbed amount of MB on 6-EA-β-CD-Si. C0 (mg/L) and Ce (mg/L) are the
initial and real-time concentrations of MB, respectively. V (mL) is the volume of solution, and m (mg)
is the mass of 6-EA-β-CD-Si used.

4. Conclusions

In summary, a novel cyclodextrin-functionalized hybrid silicon nano-adsorbent core-shell material
(6-EA-β-CD-Si) was successfully prepared via the nucleophilic substitution method, and the removal
of MB in an aqueous solution was studied. The adsorption results confirm that 6-EA-β-CD-Si is an
effective adsorbent and exhibited good adsorption property toward methylene blue (MB). The best
pH value for adsorption of MB is 10.5 with maximum removal efficiency of 99.2%. The result of
kinetic study shows that pseudo-second-order kinetic model is the best kinetic model for describing of
MB adsorption onto 6-EA-β-CD-Si and maximum 99.5% removal was achieved during adsorption
kinetic study. The equilibrium data were well-modeled by the Freundlich isotherm model, and the
thermodynamic parameters indicated that the adsorption process of MB onto 6-EA-β-CD-Si was a
spontaneous and exothermic process. The host-guest interactions between 6-EA-β-CD-Si and aromatic
molecules, the electrostatic interactions, and weak hydrogen bonding between MB and 6-EA-β-CD-Si
are essential for the adsorption of MB. The above results confirmed the potential of 6-EA-β-CD-Si as
an efficient adsorbent material with advantages of widespread availability, environmental friendliness,
and low cost in separating dye from solution. Thus, 6-EA-β-CD-Si has great potential applications in
industrial wastewater treatment and environmental protection.
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