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Abstract: Carbohydrates mediate a wide range of biological interactions, and understanding
these processes benefits the development of new therapeutics. Isolating sufficient quantities of
glycoconjugates from biological samples remains a significant challenge. With advances in chemical
and enzymatic carbohydrate synthesis, the availability of complex carbohydrates is increasing and
developing methods for stereoselective conjugation these polar head groups to proteins and lipids is
critically important for pharmaceutical applications. The aim of this review is to provide an overview
of commonly employed strategies for installing a functionalized linker at the anomeric position as
well as examples of further transformations that have successfully led to glycoconjugation to vaccine
constructs for biological evaluation as carbohydrate-based therapeutics.
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1. Introduction

1.1. Emergence of Glycomics

Nucleic acids, proteins and carbohydrates are three important classes of biomolecules. DNA,
RNA and the proteins they encode have relatively confined connectivity and predictable chemistries
owing to the limited number of ways the nucleic acid and amino acid building blocks can be
combined. In contrast, carbohydrates have multiple similarly reactive hydroxyl groups that connect
with varying region- and stereochemistries giving rise to a complex set of structures that have no
corresponding genetic blueprint [1,2]. With the launch of the Human Genomic Project in the beginning
of this century [3,4], efforts have shifted toward understanding structure/function relationships of
post-translational modifications of proteins. Glycosylation is a prominent form of post-translational
modification occurring in a majority of eukaryotic proteins [5–7]. Other biomolecules such as
glycolipids and glycosylphosphatidylinositols (GPI anchor) display hydrophilic carbohydrate moieties
that participate in ligand-receptor binding, cell-to-cell interactions and pathogenic processes such as
bacterial and viral infection as well as cancer metastasis [8,9]. Deciphering the “sugar codes” created
by specific sequences of oligosaccharides linked to lipid and protein anchors is an emerging area
of glycomics, which like proteomics has the underlying goal of connecting chemical structures to
biological functions.

Understanding how structure gives rise to function is critical for the development of
carbohydrate-based therapeutics and expedient access to synthetic materials is a significant challenge
for researchers in this area. Like most natural products, glycoconjugates are typically difficult to isolate
and may only occur as heterogenic mixtures in scarce amounts. Common isolation techniques often
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require enzymatic digestion, detergent extraction and multiple purifications, which may degrade
the sugars; although recent methods to extract O-glycans using bleach hold promise for commercial
use [10]. To address these limitations, synthetic platforms that afford large-scale production of pure
and chemically defined glycoconjugates are under development. Chemoenzymatic methods offer a
complementary approach; however, enzyme availability, substrate specificity and scalability can hinder
product diversity. In either case, achieving the desired stereochemical specificity and multiplicity
of ligation products with high purity remains a challenge [11–13]. One approach to conjugating
carbohydrates to binding partners of interest (i.e., protein or lipid) in enantiomerically pure form
is through the stereoselective installment of linkers with functionalizable handles, which can be
elaborated to generate complex glycans and/or multivalent displays.

1.2. Overview of Glycosylation Principles

Carbohydrate synthesis requires a crafty approach in selecting protecting groups, participating
groups, promoter systems, glycosyl donor and selectively deprotected glycosyl acceptors in order to
achieve stereo-controlled glycosylation in reasonable yields [14,15] (Figure 1A). The reactivities of the
carbohydrate and aglycon partners can be finely-tuned by introducing different protecting groups.
According to the “arm-disarm” concept introduced by Fraser-Reid, electron releasing ether-type
(i.e., silyl and benzyl) protecting groups arm the donor while inductively withdrawing ester (i.e., acetyl
and benzoyl) disarm the donor [16,17]. Donor leaving groups can be activated using various promoters,
which are commonly Lewis acids added in stoichiometric or catalytic amounts. Upon departure of the
anomeric leaving group, the resulting oxocarbenium ion is ready for coupling with a glycosyl acceptor
(nucleophile) to form the corresponding glycosidic bond. When the acceptor is another carbohydrate,
oligosaccharide synthesis results. If the acceptor is a non-carbohydrate aglycon, a glycoconjugate
is formed. The stereoselectivity at the anomeric position can be influenced by steric hindrance, the
anomeric effect, and internal or external group participation (such as neighbor-group participation
or solvent effect) [18,19] (Figure 1B,C). NMR is an essential tool used to determine the anomeric
stereoselectivity. According to the Karplus equation, α/β-glycosides are characterized by the chemical
shift of the anomeric proton, as well as the 3JH,H and 1JC,H coupling constants.[20] Concordantly, the
ratio of products is measured by integration of the anomeric proton peaks.
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Figure 1. (A) Glycosylation reaction at a glance. (B) Mechanistic overview of α-glycosides.
(C) Mechanistic overview of β-glycosides.
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A wide-range of glycosyl donors are available in the synthetic chemist’s tool box including
halides, imidates and thioglycosides. Each of these has advantages and drawbacks depending upon
the synthetic strategies employed. Nevertheless, the underlying goal in all these endeavors is to achieve
efficient assembly of glycoconjugates with high stereochemical integrity and to this end programmable
one-pot glycosylations [21,22] and pre-activation one-pot glycosylations [23,24], together with
automated solid-phase synthesis [25,26] have emerged as powerful platforms. Despite considerable
efforts toward achieving efficient glycosylations, currently there is no general methodology for
synthesizing oligosaccharides and glycoconjugates.

1.3. Elements of Carbohydrate-Based Vaccine Research

Strategies to reduce the number of protecting group manipulations and to use common
intermediates offer alternative ways of streamlining oligosaccharide synthesis [27]. For example,
integrating regioselective silyl exchange technology (ReSET) [28,29] with glycosyl iodide glycosylation
has afforded step-economical total syntheses of α-lactosylceramide (α-LacCer) and globo series
tumor-associated carbohydrate antigens (TACAs) [30] (Figure 2). The methodology utilizes
per-O-TMS-lactose to generate a library of partially acetylated/silylated building blocks in just two
steps from free lactose. The resulting orthogonally protected “modules” can be transformed into
either a glycosyl iodide or a selectively deprotected glycosyl acceptor for oligosaccharide assembly.
Compared to previously published methods, which require 16–20 steps [31,32], the ReSET platform
uses one-third of the synthetic steps, providing a solution for rapid, stereoselective synthesis of
immunogenic glycolipids and TACAs.
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Figure 2. Regioselective Silyl Exchange Technology (ReSET) to streamline the total synthesis of
glycolipids and tumor-associated carbohydrate antigens (TACAs).

Tumor-associated carbohydrate antigens (TACAs) are a class of carbohydrate biomarkers
expressed on tumor cells. The polar head group may be attached to a protein backbone and classified
as a glycoprotein or a lipid anchor, such as ceramide, to constitute a glycolipid [33–35]. In either case,
the stereochemistry at the glycosylation site is well defined because specific presentation geometry
is required for biological recognition. Another salient feature of TACAs is that they are poorly
immunogenic and typically are found in clusters on the cell surface, which increases the effective
concentration of the carbohydrate recognition element.

Carbohydrate vaccine development encompasses three major elements of research: (1) efficient
synthesis of complex carbohydrate recognition elements; (2) identification of protein/adjuvant carriers
that elicit immune response; and (3) chemically compatible and stereoselective methodologies for
conjugating carbohydrate antigens to the immunogenic protein (Figure 3). Aspects of each of these
elements have been reviewed in the recent literature [26,31,36,37] The focus of this review is to
highlight chemical methods for achieving stereoselective functionalization of the anomeric center with
functionalized linkers that can be further elaborated for conjugation to vaccines carriers [38–42].
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2. Stereoselective Anomeric Functionalization for Chemical Conjugation

Introducing a functionalizable linker at the anomeric position is a common way to modify
oligosaccharides for chemical conjugation. Often, the linker is introduced at the beginning of the
synthesis, usually at the mono- or disaccharide stage (Figure 4). However, the functional group on
the linker must tolerate all chemical transformations en route to the target compound. The starting
oligosaccharide is either derived from chemical synthesis or isolated from natural sources by digestion
of glycoproteins or glycolipids. In either case, chemical modification of a free oligosaccharide to ready
it for conjugation requires multiple synthetic transformations and may be challenging due to the
chemical vulnerability of interglycosidic linkages. The following sections provide an overview of two
commonly employed linker functionalities, alkene and azide, and compatible glycosylation conditions.
These two reactive groups were developed in 1990s and have gained in popularity because of their
biological orthogonality and widespread application.
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2.1. Anomeric Functionalization with Terminal Alkenyl Linkers

A literature survey of terminal alkene linkers incorporated into oligosaccharides is shown in
Figure 5. The n-4-pentenyl linker was first introduced by the Fraser-Reid group in 1988 [43,44].
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It was added to a benzylated glucose with an anomeric hemiacetal under acidic reflux conditions
(Figure 5, entry 1). The Koenigs-Knorr type method led to a 1:1 α/β mixture of anomers in 80%
yield, and the glycosylated product was used to explore the “arm-disarm” concept. The glycosylation
of per-O-benzylated glucose afforded a higher yield compared to ester protected sugars (80% vs.
high 60–70%), but the lack of neighboring group participation at C-2 led to a mixture of α/β anomers.
Later on, the same group screened different terminal alkenyl linkers ranging from three to six carbons
for coupling with per-O-acetylated glucosyl bromide with AgCO3 promotion [45] (Figure 5, entry 2).
The results showed the n-4-pentenyl analog gave better yields among the alcohols of differing
lengths. Bromide formation followed by AgCO3-promoted n-4-pentenol addition also occurred
with per-O-acetylated lactose to obtain the corresponding β-lactoside in 72% yield [46,47] (Figure 5,
entry 3). Silver-promoted glycosylations gave exclusive β-glycosides due to the neighboring group
participation of the C-2 acetate. Optimal conditions usually required low temperatures to suppress
side reactions, such as hydrolysis and acyl migration, and to increase the stereoselectivity.
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In an effort to develop metal free methodologies, Lewis acid-promoted conditions were then
explored. Transformation of per-O-acetylated sugars to n-4-pentenyl sugars was achieved by the
direct activation of an anomeric acetate using stoichiometric amounts of BF3·Et2O [48,49] (Figure 5,
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entry 4). Although this strategy alleviated the bromide formation step, yields were typically lower
than the bromide method, presumably due to batch-to-batch variations of a key reagent, BF3·Et2O,
which is typically found in 46–49% in commercial form and therefore requires fresh distillation prior
to the reaction.

In 1999, the Seeberger group developed a version of the 4-pentenyl glycosylation for solid
phase oligosaccharide synthesis [50–52] (Figure 5, entry 5). An octenediol linker attached to solid
support was coupled with a glycosyl phosphate using catalytic TMSOTf for activation. After the
carbohydrate elongation process, the linker was released using olefin metathesis with Grubbs’ catalyst
and the corresponding n-4-pentenyl glycoside was isolated via HPLC. The n-4-pentenyl linker not only
functionalized the anomeric position, but also served as a leaving group under the activation of proper
promoters [53]. The dual property of the linker was found very useful in traditional total synthesis
of oligosaccharides published by the same group [54,55] (Figure 5, entry 6). Instead of using acetate
at the C-2 position for neighboring group participation, the Seeberger group used the pivaloyl (Piv)
group for this purpose, since the Piv group is less likely to form orthoester side products. Similarly,
the trichloroacetate (TCA) protecting group was also used to protect nitrogen-containing sugars, such
as glucosamine, to prevent oxazoline formation [56,57] (Figure 5, entry 7).

Oxazoline formation is a common byproduct of N-Acetyl containing sugars due to the neighboring
group participation. The relatively stable intermediates can be isolated without decomposition
and can be used as glycosyl donors under proper conditions. In 1991, the Nishimura group
demonstrated that oxazolines of glucose and lactose could be glycosylated with n-4-pentenol under
heated, acidic conditions [58] (Figure 5, entries 8 and 9). However, harsh conditions leading to the
cleavage of glycosidic linkages and yielding undesired products prevented this methodology from
gaining popularity.

The Danishefsky group is well known for developing glycals as carbohydrate donors in complex
oligosaccharide syntheses [59]. Epoxidation of glucal with dimethyldioxirane (DMDO) give the
α-1,2-epoxide, which undergoes glycosylation with 2-propenol in the presence of zinc catalyst.
The glycosylation yields mostly β-linked alkenyl glycan in 60% yield.

Diversification of the Alkene Linker Functionality for Carbohydrate Conjugation to Carriers

Further manipulation of terminal alkenyl linkers can be achieved through various conditions [60]
(Figure 6). The double bond functionality can be transformed to the corresponding thioether via
radical reaction using thiol derivatives. Hydrogenation using Pd and Wikinson’s catalyst affords
saturated alkyl linkers. Oxidative cleavage using NaIO4 with RuCl3 and OsO4 yield the corresponding
carboxylic acid and aldehyde which are readily available for ester bond formation, Wittig-type reaction,
and reductive amination. Ozonolysis followed by hydroboration-oxidation can also be applied to
alkenyl linker, leading to the corresponding alcohol.

Ozonolysis and reductive amination were employed in the preparation of Globo H conjugates.
Globo H was isolated in 1984 by the Hakomori group [61]. It is composed of hexasaccharide β-linked
to ceramide. The tumor-associated carbohydrate antigen (TACA) can be found overexpressed in breast,
pancreas, small bowel, ovarian and prostate cancer [62]; therefore, it has been a valuable synthetic
target toward novel therapeutic development. Isolating globo H from biological samples is challenging
and typically limited to sub-milligram quantities. On the other hand, chemical synthesis has enabled
large-scale production of homogenous and pure oligosaccharides in larger scale.

The Danishefsky group has led efforts toward fully synthetic carbohydrate-based anticancer
vaccine development [63,64]. In the first generation of globo H total synthesis, the hexasaccharide
was assembled via glycal chemistry, leaving a glycal functionality at the reducing end (Figure 7).
The protected globo H glycal was subsequently reacted with dimethyldioxirane (DMDO) followed by
solvolysis with allylic alcohol. The epoxide ring opening glycosylation reaction proceeded in good
yield with b-selective incorporation of the alkenyl linker. However, this functionality did not survive
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the subsequent deprotection step using the Birch reduction. The crude reaction mixture contained
mainly glycosidic bond cleavage products and fragmentation of the hexasaccharide [65–67].

To avoid these complications, the globo H glycal was deprotected and then reprotected as a
per-O-acetylated trisaccharide prior to the DMDO reaction. Epoxide ring opening glycosylation with
allylic alcohol solvolysis under the activation of ZnCl2 led to a 66% yield of the desired β-glycoside,
but a significant amount of the α-glycoside was also found (29% yield). Saponification of the
major per-acetylated β-O-allyl globo H glycoside afforded a fully deprotected globo H trisaccharide
functionalized with an alkenyl linker in quantitative yield. Ozonolysis of the alkene followed by
reductive amination with the KLH carrier protein, gave a fully synthetic carbohydrate vaccine for the
immunology investigations (Figure 7).
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Figure 7. Danishefsky’s late stage introduction of an allyl linker and subsequent reductive amination
with KLH carrier to prepare Globo H containing cancer vaccine candidate.

The group also developed a second-generation total synthesis of globo H by introducing a
4-pentenyl linker at an early stage of the lactosyl building block preparation (Figure 8). The linker
was not only orthogonal to both [1+2] and [3+3] glycosylation conditions but also stable enough to
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undergo both TBAF desilylation and Birch reduction. The fully deprotected 4-pentenyl glycoside could
also be subjected to the same ozonolysis/reductive amination conditions to conjugate KLH carrier
protein [66].
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Figure 8. Danishefsky’s 2nd generation total synthesis of Globo H cancer vaccine: Early stage
introduction of 4-pentenyl linker.

In 2008, the Bundle group developed a non-immunologenic triethylene oxide linker equipped
with an NHS ester on one end and an alkenyl functional group on the other [68]. This linker was then
attached to amine functionalized oligosaccharides including β-1,2 mannan and ganglioside series GM2
upon treatment with an aqueous borate buffer (0.02M) at pH 8.1 in 74–79% yields (Figure 9).
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Figure 9. Synthesis of conjugate vaccine candidates composed of Man3 or GM2 and TH cell peptide
epitope (p458m) by the Bundle group [68].

The glycoconjugate linker retained an alkenyl handle that could be further reacted with a
sulfhydryl group of a peptide construct containing the specific TH peptide epitope (p458m) in high
yields. Remarkably, the β-Man3 glycoconjugates can be synthesized post-glycosylation in an aqueous
buffer and be recognized by Man3 specific antibody [68].
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More recently, the Cairo group employed thio-alkenylation conjugation chemistry to construct
multivalent ABO blood group glycoconjugates [69] on a PEGylated scaffold. The design for generating
tetravalent or trivalent forms of ABO blood glycoconjugates was based on various conjugation
chemical strategies. It first started with an octenyl lactoside, which was converted to an amine
under photo-induced radical addition of cysteamine hydrochloride. The resulting amine-terminated
glycan was then conjugated to an NHS PEG scaffold. In order to construct fluorescently labeled
glycoconjugates, the authors used iterative amine chemistry to attach the AlexaFluor 488 tag followed
by the addition of amine-terminated glycans in 90–91% yields (Figure 10).
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In addition, the authors crafted a heterotrifunctional linker equipped with NHFmoc, azido, and
NHS ester groups (Figure 11). The first group of the amine-terminated glycan was reacted with the
NHS ester of the linker followed by the removal of NHFmoc to expose an amine, which was reacted
with the PEG scaffold. With the azide functionality intact, a second sialoglycan was attached by
CuAAc (vide infra) to generate octavalent heterobifunctional glycoconjugates in >78% yields with
molecular weights ranging from 15.5–18.1 kDa (Figure 11). An extension of the conjugation chemistry
with deprotected glycans explored by the Bundle group was applied to a heterotrifunctional linker
to generate a large, complex glycoconjugate in a controlled manner in good yields. This work was a
more straightforward approach than the earlier work by the Buriak group, which demonstrated the
feasibility of conjugating p-nitrophenyl functionalized glycan antigens on silica microparticles albeit in
lower molecular size [70]. With careful manipulation of the bio-orthogonal functional groups available
on a robust, non-immunologenic linker, large glycotopes could be synthesized in pure forms.
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Figure 11. Synthesis of multivalent ABO blood group glycoconjugates using heterotrifunctional PEG
linker developed by the Cairo group [69].

In general, terminal alkene linkers, especially the n-4-pentenyl linker, have been popular in the
carbohydrate chemistry community since the late 1980 to 2000s. While thiolinker was first introduced
to study glycosylation reactions, it later proved to be a versatile functional group for total synthesis
of complex glycans equipped with a functionalizable linker. One drawback of the linker is the
electron-rich nature of the double bond functionality. It does not survive strongly acidic conditions,
Lewis acid-abundant environments, radical reactions or hydrogenation, which limits the use of certain
reagents during oligosaccharide syntheses. Partly due to the limitations of terminal alkenyl linkers in
conjugation applications, the concept of bioorthogonal chemistry has been advanced by the Bertozzi
laboratory to explore the next generation of reactions that could be performed under physiological
conditions without losing reactivity and selectivity [71]. For these purposes, azido linkers have been
explored and continue to garner interest in the area of chemical glycobiology.

2.2. O-Anomeric Functionalization with Terminal Azide Linkers

Click chemistry was first described by Sharpless and co-workers in 2001 as the term for
biocompatible, highly reactive and atom economical reactions [72]. Among the reactions that
fulfill the criteria of click chemistry and bioorgonal chemistry, the copper-catalyzed azide-alkyne
cycloaddition (CuAAC) (i.e., ‘click’) has been widely applied in the synthesis of biologically important
molecules. In fact, this reaction has become synonymous to click chemistry. Many modifications of
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the azido-alkyne cycloaddition reaction have been investigated including the introduction of terminal
azido linkers at the sugar anomeric position [73].

An azido alcohol linker was utilized by the Wong laboratory for sugar anomeric
functionalization [74,75] (Figure 12, entry 1). In the reaction, 2-azidoethanol was coupled with
per-O-acetylated galactose using stoichiometric BF3·Et2O to form β-2-azidoethyl galactoside in 76%
yield. Besides the 2-azidoethyl linker, a 6-azidohexyl linker was also used in anomeric functionalization.
The higher C to N ratio made the 6-azidohexyl linker a safer choice compared to its two carbon
counterpart [76,77].
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Interestingly, the length of the azido linker affected the glycosylation results—the longer the linker,
the less reactive it was under glycosylation conditions. To hasten the process, BF3·OEt2-promoted
glycosylations were sonicated using either the anomeric acetate or thiophenyl donors [78] (Figure 12,
entries 2 and 3), which helped reduce the reaction time from 16 h to less than 60 min with increased
yield to 85–95%.
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Trichloroacetimidates are reliable donors for glycosylation and can easily be prepared from
acetates in two steps, which involve deacetylation and basic imidate formation [14]. Glycosylation
under the activation of BF3·OEt2 to form β-6-azidohexyl glycoside was not very successful, leading
to only around a 30% yield [79] (Figure 12, entries 4 and 5). The low glycosylation yields have
been attributed to the disarmed nature of the per-O-acetylated donors and the nucleophilicity of the
leaving group, which can lead to N-glycosylated side products [80]. N-Phenyltrifluoroacetimidate was
invented to avoid these issues and has been applied to a variety of natural glycoside syntheses [81].
The glycosylation result of N-phenyltrifluoroacetimidate with 6-azidohexyl linker under the activation
of catalytic TMSOTf was demonstrated to have higher yields than its tricholoracetimidate analogues
and could be extended to aminodisaccharides, such as protected N-acetyllactosamine [82] (Figure 12,
entry 6).

Thioglycosides, such as thiophenyl and thiotolyl glycosides, are stable and easy to handle with
long shelf-life. They have proven useful in challenging glycosidic bond forming reactions, including
mannosyl glycosides. In 2013, Lin’s group demonstrated thiotolyl mannoside could be coupled with a
6-azidohexyl linker under the activation of NIS/TfOH at low temperature to afford α-6-azidohexyl
manoside in good yield [83] (Figure 12, entry 7). On the other hand, a more challenging β-azidoethyl
mannoside was synthesized by Leino’s group using Crich’s modified pre-activation [84] method,
which required very careful temperature control [85] (Figure 12, entry 8). Although the yield of the
desired product was only 34%, the applicability of this methodology to disaccharide thioglycoside
donors is notable.

More recently, the Kovac group utilized a thiotolyl donor in conjunction with the α-directing
effect of a 4,6-di-tert-butylsilylene group to stereoselectively install an azido linker en route to the
O-specific antigen glycotope of V. cholerae O139 polysaccharide. A salient feature of this approach was
the use of protecting groups amenable to global deprotection in the final step (Figure 13) [86]. Given
the specific anomeric attachment of glycans found in Nature, synthetic strategies that produce either
α- or β-anomeric isomers are essential.
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2.2.1. O-Anomeric Functionalization with TMO Addition: Stepwise Introduction of Azide

The Gervay-Hague group has been interested in developing stereoselective glycosylation reactions
using glycosyl iodides [30,87–91]. In early explorations, it was observed that glycosyl iodides generated
in tetrahydrofuran readily underwent glycosylation yielding an iodo-terminated C-4 linker [92]. It was
later discovered that strained cyclic ethers such as trimethylene oxide (TMO) readily add to armed
glycosyl iodides to form β-selective 3-iodopropyl glycosides [93]. The methodology involves the
formation of the glycosyl iodide using trimethylsilyl iodide (TMSI) in the presence of MgO, a weak
base, which sequesters the formation of TMSOAc, followed by direct addition of TMO in various
temperatures [94]. The α/β ratios of the glycosylated products ranged from 1:2 to 1:4 under reflux
conditions and β-selectivity could be improved from 1:5 to 1:29 at lower reaction temperatures, albeit
at the expense of longer reaction time. Nevertheless, the one-pot two-step glycosylation procedure
afforded 69–89% yields under various conditions (Figure 14, entries 1–4).
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Figure 14. O-Anomeric functionalization using glycosyl iodide and trimethylene oxide (TMO).

Extending the methodology to “armed” per-O-TMS or per-O-Bn oligosaccharides was not
successful, as TMSI-promoted glycosyl iodide formation gave complex reaction mixtures due to
internal glycosidic bond cleavage [30,95]. Efforts to employ per-O-acetylated sugars were more fruitful
because ester protected analogs cleanly form stable glycosyl iodides. A recently developed iodide
promoted two-step methodology for functionalizing per-O-acetylated sugars has been reported [96]
(Figure 14, entries 5 and 6). The reaction involves in-situ iodide formation using TMSI and microwave
I2-promoted TMO glycosylation to form the corresponding β-3-iodopropyl glycosides, which later on
could be transformed to the corresponding azide using NaN3 at rt. The one-pot, step-economical and
rapid functionalization was not only applied to per-O-acetylated monosaccharides but also di- and
trisaccharides and no evidence of glycosidic bond cleavage was observed. The resulting iodopropyl
glycosides were subsequently treated with sodium azide and subjected to global deprotection
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with NaOMe/MeOH to afford oligosaccharides with chemical handles for further modifications.
With these azido handles in place, more sophisticated strategies can be applied to produce multivalent
oligosaccharide containing antigens for therapeutic application.

2.2.2. Multivalent Conjugation Strategies Using Azide-terminated Linkers

The Gervay-Hague lab demonstrated using copper-catalyzed azide–alkyne cycloadditions to
construct a new class of immune modulating molecules consisting of a trimeric carbohydrate moiety
attached to a peptide epitope. PADRE, [97] a known artificial T helper (TH) epitope containing
thirteen amino acids, has been used in cancer-vaccine development as an immunogenic carrier to
stimulate the immune response. Applying the TMO-addition concept and click chemistry, a trimeric
globotriaose–PADRE conjugate was constructed as a potential cancer-vaccine candidate (Figure 15).
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More recently, researchers have exploited triazolinedione scaffolds to attach glycans to tyrosine
residues of the genetically modified carrier protein, CRM197 [98–101], commonly present in FDA
approved conjugate vaccines. Using the click approach, the Group B Streptococcus type II capsular
polysaccharide was attached to a triazolinedione based linker, which was followed by a site-specific
attachment to tyrosine moieties of CRM197 (Figure 16). Utilizing this technology, researchers at GSK
Vaccines and Novartis Institutes for Biomedical Research (NIBR) analyzed efficacy vaccine candidates
based upon the number of carbohydrates present and conjugation sites [101].
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Figure 16. CuAAC mediated installment of sugars at predefined sites of CRM197 via site-selective
tyrosine ligation [101].

Since aberrant glycosylation is highly related to cancer, tumor-associated carbohydrate antigens
(TACAs) become very promising synthetic targets for cancer vaccine development. To construct
potential cancer vaccine candidates, several excellent reviews have been published to elaborate their
design, synthesis and biology [38,39,102–105]. The above mention variants are all important to
determine the potency of a vaccine candidate. The Danishefsky group was one of the pioneers in
developing fully synthetic carbohydrate cancer vaccine. In 1999, the group synthesized 4-n-pentenyl
fucosylated GM1 and successfully conjugated with KLH carrier protein. The construct had
demonstrated high specificity to antibody against small cell lung carcinoma, suggesting its potential to
elicit the immune response [48]. Along this line, the same group synthesized a series of functionalized
TACAs, and then coupled them with immunogenic peptides as well as carrier proteins to construct
multivalent TACA-containing cancer vaccines [64,106,107]. Multivalent glycol(cyclo)peptide are also
a promising platform for cancer vaccine development [40]. The technology allows carbohydrates
epitopes, immunogenic epitopes and proteins installed on the defined, size-controllable platforms,
mimicking the multivalent nature on the cancer cell surface.

Besides fighting cancer, multivalent carbohydrate vaccines have also been designed to treat
bacterial and fungal infections [41,108,109]. Just like the approach with cancer vaccines, the constructs
target particular oligosaccharides that are overexpressed on the bacterial or fungal surfaces, teaching
the immune system to recognize the antigens. Alternative therapeutic strategies also include
non-covalent multivalent constructs that utilize micelles and liposome formulations to trigger immune
response [110]. The size and morphology of these aggregates can be controlled by introducing different
lipid chains on the oligosaccharides, varying lipid compositions and adjusting physical conditions.
The glycosylated liposomes are not only similar to the cellular environments (bio-compatible) but also
have large surface area, which enhance the recognition interactions.

3. Functionalized Sugars and Glycan Arrays

Functionalized sugars are great tools for chemical biology research and they are highly related to
glycan array fabrication. It is known that the oligosaccharides in nature are highly diverse. They play an
important role in cell-to-cell interaction, but detailed mechanisms of signaling processes are still unclear.
Understanding the roles and the functions of the oligosaccharides has developed to a specialized area:
Glycomics. To decipher the complex “sugar code”, understanding the binding interaction and the
binding mode between sugars and other biomolecules is an obvious start. Since sugars are displayed
outside of the cell surface, a platform for reconstructing the sugar-coated surface would be very useful
to reflect the dynamics of the interaction. The idea of immobilizing functionalized oligosaccharide to
form glycan arrays has been demonstrated by Wang [111], Mrksich [112], Feizi [113], and Wong [114]
groups independently in 2002. Since then, the glycan arrays not only have become one of the major
applications of functionalized oligosaccharides but also essential tools for studying glycobiology
(Figure 17).

Glycan arrays are powerful tools for the analysis of carbohydrate-related interactions, and their
fabrications and applications are well reviewed in recent literature [42,115–118]. Since the screening
required relatively small amounts of oligosaccharides and short equilibrium time, the technology
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enables scientists to extract useful kinetic data and analyze binding specificity among biomolecules
such as proteins, antibodies and enzymes with reliable read-out.
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In addition to carbohydrate-based vaccine development, glycan arrays have also benefitted from
synthetic platforms that deliver carbohydrates equipped with functionalized linkers. An iterative
one-pot chemical glycosylation to prepare complex oligosaccharides for immobilization on solid
support was reported by Wong et al. [119]. Similar to Danishefsky’s 2nd generation globo H synthesis,
they group chose to install a carboxybenzyl (Cbz) protected amine linker at the building block
stage. The linker successfully went through the one-pot [1+2+3] glycosylation, as well as the global
deprotection, affording globo H hexasaccharide with a terminal amine. Diazo transfer conditions
developed in the Wong lab produced the azide that was then coupled with the disulfide alkyne linker
via click chemistry. Subsequent reaction with an NHS-modified microplate successfully immobilized
the globo H antigen on the solid support (Figure 18) [119].
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4. Conclusions

Recent advances in the development of synthetic methodologies with wide scope and application
have provided a more in-depth understanding of carbohydrate chemistry and glycobiology. While the
atlas of human glycomics has yet been completed, having practical tools and materials, such glycolipid
and glycopeptide conjugates, multivalent constructs and well defined glycan arrays, to tackle health
related issues can bring meaningful insight to biomedical research and impact pharmaceutical science.

A perennial issue in translational science involves obtaining sufficient amounts of
well-characterized materials with high purity. While Nature produces highly complex and dense
glycopeptides, these compounds are presented in scarce amounts making isolation and purification
a significant challenge. Thus, synthetic methods and technologies to access these materials in
large quantity and high quality are needed. Given that carbohydrates alone are generally poorly
immunogenic, chemical strategies to conjugate peptides or carrier proteins in a site-specific manner
are critical in carbohydrate-based pharmaceutical development. One effective approach incorporates a
functionalized linker at the non-reducing ends of glycans as a functional handle for attaching peptides
of interest. Selective methods for introducing the two most common linkers, terminal alkenyl and
azido linkers, are described in this review. Taking advantage of functionalized oligosaccharides is a
giant step toward discovering efficacious carbohydrate-based vaccines. Well-defined and characterized
synthetic platforms will lead to better understanding of molecular recognition processes associated
with diseases.

Despite the aforementioned, several challenges still lie ahead. First, the structural diversity of
currently available carbohydrates does not cover all of natural occurring oligosaccharides. To fully
explore vaccine and glycan array development, new approaches to generate more structurally
and connectively diverse functionalized oligosaccharides is necessary. Secondly, methods utilized
in different laboratories are often difficult to replicate in laboratories with less expertise and the
experimental read-outs may differ significantly. In order to have comparable analytical data, reliable
standard operating procedures and processes need to be shared. For example, standardized glycan
arrays would accelerate commercialization and mass production of this technology, bringing more
impact to the scientific community. Analyzing complex and large high-throughput datasets generated
by glycan array screening is not an easy task. The ability of extracting the meaningful data becomes
crucial for interpretation experiment results. Therefore, developing methods to process the information
is also warranted.
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