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Abstract: The CCAAT enhancer-binding protein α (C/EBPα) plays an important role in myeloid cell
differentiation and in the enhancement of C/EBPα expression/activity, which can lead to granulocytic
differentiation in acute myeloid leukemia (AML) cells. We found that styryl quinazolinones
induce upregulation of C/EBPα expression, and thereby induce myeloid differentiation in
human myeloid leukemia cell lines. We screened a series of active styryl quinazolinones and
evaluated the structure–activity relationship (SAR) of these small molecules in inducing C/EBPα
expression—thereby prompting the leukemic cells to differentiate. We observed that compound 78
causes differentiation at 3 µM concentration, while 1 induces differentiation at 10 µM concentration.
We also observed an increase in the expression of neutrophil differentiation marker CD11b upon
treatment with 78. Both the C/EBPα and C/EBPε levels were found to be upregulated by treatment
with 78. These SAR findings are inspiration to develop further modified styryl quinazolinones, in the
path of this novel differentiation therapy, which can contribute to the care of patients with AML.

Keywords: myeloid differentiation; CCAAT/enhancer binding protein α

1. Introduction

Knowledge of the pathogenesis of acute myeloid leukemia (AML) has seen great progress due
to recent advances in genetic studies. However, the long-term survival of AML patients is still
unsatisfactory [1]. A block in differentiation is one of the characteristics of leukemia and is seen in
all AML subtypes. Currently, all-trans retinoic acid (ATRA) is the therapy of choice for the induction
of differentiation and the apoptosis of t(15;17)-positive acute promyelocytic leukemia (APL) cells [2].
While ATRA treatment induces remission and constitutes a cure in nearly 70% of APL patients, it
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has no effect on other myeloid leukemias [3]. Therefore, a novel differentiation therapy is sorely
needed. The CCAAT enhancer-binding protein α (C/EBPα) is an essential transcription factor
for the differentiation of cells in the liver, lung, adipose tissues, and bone marrow [4–7]. In the
hematopoietic system, C/EBPα is expressed in myeloid cells and is required for granulocytic and
monocytic differentiation [8]. We have previously reported that C/EBPα expression is necessary
and sufficient for neutrophil differentiation [9]. Therefore, when C/EBPα expression or function
is perturbed in myeloid progenitor cells, it can block differentiation and eventually lead to myeoid
leukemias. We demonstrated that C/EBPα somatic mutations are detected in approximately 7%
of AML patients [10,11]. These mutations result in either the premature termination of C/EBPα
translation or perturb DNA binding, thus supporting the notion that attenuated C/EBPα activation is
associated with AML.

The quinazolinone scaffold (Figure 1) is widely represented among bioactive molecules [12].
For example, raltitrexed, a thymidylate synthase inhibitor, has been used for colorectal cancer and
malignant mesothelioma [13]. Ispinesib and tempostatin are in development for treatment of various
cancers [14,15]. Several styryl quinazolinones specifically target methicillin-resistant staphylococcus
aureus infections [16,17]. Hamel et al. reported, in the L1210 leukemia model [18–20], 2-phenyl
quinazolinones and styryl quinazolinones to be inhibitors of tubulin polymerization and in vivo tumor
growth. Another report found styryl quinazolinones to cause the shortening of telomeres [21]. Based on
our hypothesis, that increased C/EBPα expression and/or activity in AML cells will stimulate the
differentiation of leukemic cells, we screened several libraries of compounds for C/EBPα induction
activity using a reporter assay [22]. We found that styryl quinazolinone analogue compound 1
(2-[(E)-2-(3,4-dihydroxyphenyl)vinyl]-3-(2-methoxyphenyl)-4(3H)-quinazolinone increased C/EBPα
activity, which in turn enhanced differentiation leading to growth arrest and the apoptosis of
leukemic cells.
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Figure 1. Quinazolinone compounds; (A) quinazolinone drugs in the market and in early 
development [13–15], (B) Styryl quinazolinones explored as tubulin polymerization inhibitors [18–
20], (C) Styryl quinazolinone 1, (ICCB-280) hit from small molecules C/EBPα inducer screens [22]. 

In this study, we screened a library of styryl quinazolinones to find more potent inducers of 
C/EBPα upregulation and differentiation. We also evaluated the structure-activity relationship (SAR) 
of the styryl quinazolinones in terms of their ability to upregulate C/EBPα and to induce granulocytic 
differentiation in human myeloid leukemia cells. 
  

Figure 1. Quinazolinone compounds; (A) quinazolinone drugs in the market and in early
development [13–15], (B) Styryl quinazolinones explored as tubulin polymerization inhibitors [18–20],
(C) Styryl quinazolinone 1, (ICCB-280) hit from small molecules C/EBPα inducer screens [22].

In this study, we screened a library of styryl quinazolinones to find more potent inducers of
C/EBPα upregulation and differentiation. We also evaluated the structure-activity relationship (SAR)
of the styryl quinazolinones in terms of their ability to upregulate C/EBPα and to induce granulocytic
differentiation in human myeloid leukemia cells.
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2. Results and Discussion

We have earlier identified styryl quinazolinone 1 as a granulocytic differentiation inducer in
myeloid leukemia [21]. In order to arrive at more detailed SAR on this scaffold, we evaluated a
library of 80 styryl quinazolinones (Scheme 1A) using various approaches, namely the Wright-Giemsa
staining, to assess changes in morphology, nitroblue tetrazolium (NBT) reduction assay to evaluate
granulocyte function, and trypan-blue staining to detect apoptosis. Granulocyte differentiation was
determined (Table S1) from the Wright Giemsa staining and the NTB reduction assay.
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Scheme 1. Styryl quinazolinones synthesis, structure, and activity. (A) General synthetic protocol for 
Styryl Quinazolinone synthesis. (B) SAR of styryl quinazolinones as granulocytic differentiation 
inducers. 

These general SAR trends are illustrated in Figure 2 with specific examples. Compound 2 with 
ortho-MeO at ring R2 and mono-OH at ring R3 was inactive, but activity was restored when ring 3 
was substituted with two OH groups in 1. Interestingly, retaining this motif and moving the methoxy 
on ring R2 from ortho to meta, decreased activity (12). Two other inactive analogs related to 1 were 7 
and 15. In 7, ring R2 was not substituted, and in 15, ring R3 was replaced with pyridyl. These marked 

Scheme 1. Styryl quinazolinones synthesis, structure, and activity. (A) General synthetic
protocol for Styryl Quinazolinone synthesis. (B) SAR of styryl quinazolinones as granulocytic
differentiation inducers.

The library of styryl quinazolinones was structurally differentiated at three parts of the scaffold,
namely the phenyl rings at R2 and R3, and the quinazolinone ring R1 (Scheme 1B). Granulocyte
differentiation was affected by the substitution of the heteroaryl ring R1. With the exception of the
6-fluoro substitution, other groups such as the iodo derivative, 32, dimethoxy derivatives 20, 42, 50,
54, 55, 58, and dichloro derivative 51 were generally not favored. There was a general preference for
hydrophobic groups at R2, such as 1 (2-methoxy Ph), 25 (3-methoxy Ph), 62 (3,4,5-trimethoxy Ph),
66 (4-carboxy methyl Ph), 68, and 79 (4-fluoro Ph). On the other hand, polar OH groups were preferred
at R3. Replacing phenyl R3 with a furan ring, preferably substituted with 2-nitro, improved activity.
The stereochemistry of the ethenyl linker, connecting ring R3 to the quinazolinone scaffold, was critical
and should be trans.

These general SAR trends are illustrated in Figure 2 with specific examples. Compound 2 with
ortho-MeO at ring R2 and mono-OH at ring R3 was inactive, but activity was restored when ring
3 was substituted with two OH groups in 1. Interestingly, retaining this motif and moving the
methoxy on ring R2 from ortho to meta, decreased activity (12). Two other inactive analogs related
to 1 were 7 and 15. In 7, ring R2 was not substituted, and in 15, ring R3 was replaced with pyridyl.
These marked changes in activity suggests, firstly, that the substitution on both rings R2 and R3 is
important, and secondly, that there is a critical dependency between the two substitution patterns that
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remains to be determined. Activities of the compounds 1, 12, and 25, provide further confirmation of
this inference. Keeping the seemingly favored ortho OMe on ring R2 of 25, while replacing the phenyl
ring R3 with furan, led to some loss in activity. Inserting a nitro substituent to the furan ring R3 of 25
resulted in potent analogues 66, 67, 78, and 79.
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Figure 2. Schematic showing the potent compound 78 and the structure-based variation in
differentiation of HL-60.

Compound 78, with 6-fluoro substitution at the quinazolinone ring R1, and leaving ring R2
unsubstituted (seen in 7 to be abolished activity), was found to be the most active analogue identified
from our screening efforts. Styryl quinazolinone 78 at 3 µM induced granulocytic differentiation in
HL-60 cells, upon treatment for seven days, as characterized by a decreased nucleus-cytoplasm ratio,
the presence of granules, and nuclear segmentation (Figure 3A). Similar granulocytic differentiation
was observed with 10 µM of 1, whereas the negative control Dimethyl Sulfoxide (DMSO) showed no
characteristic differentiation. In the NBT reduction assay to detect the production of superoxide anion,
55% were positive in 78 treated cells, compared to 0–5% in DMSO treated control cells (Figure 3B).
However, other potent analogues, 66, 67, and 79, lost activities at 3 µM (0–5%). Even with 6-fluoro
quinazolinone substitution, the derivatives 67, 70, 72, 75, 79, and 80 were found to be less active
towards inducing differentiation compared to 78.Molecules 2018, 23, x FOR PEER REVIEW  5 of 9 

 

 
Figure 3. Styryl quinazolinone derivatives induce granulocytic differentiation and are determined by 
(A) Wright-Giemsa staining for morphology, and (B) NBT assay for function. HL-60 cells were treated 
with 0.1% DMSO, 10 μM compound 1, or 3 μM compound 78 for seven days. Bars = 50 μm. 

Additionally, compound 78 increased the expression of the neutrophil differentiation surface 
marker CD11b (Figure 4A). Similar results were obtained using MOLM-14 cells, which were 
established from a patient with acute monocytic leukemia (M5a) (Supplementary Figure S1). We have 
reported that 1 and granulocyte-colony stimulating factor (G-CSF) synergistically enhance 
granulocytic differentiation in HL-60 cells [21]. As expected, G-CSF enhanced the expression of 
CD11b, which was induced by compound 78 (31.7% vs. 42.2%, Figure 3A). These results suggest that 
78 can upregulate G-CSF receptors, and render leukemic cells more sensitive to G-CSF stimulation. 

Further, we examined the gene expression levels of the C/EBPα gene (CEBPA) and the C/EBPε 
gene (CEBPE) [21]—one of the downstream target genes of C/EBPα. When HL-60 cells were treated 
with 78, mRNA expression levels of CEBPA and CEBPE were increased in a time-dependent manner 
(Figure 4B). We observed that 78 could induce the increase of C/EBPα (2.5-fold) and C/EBPε (10.3-
fold) by day seven. These results further demonstrate that 78 induces granulocytic differentiation in 
leukemia cell lines, which is mediated through upregulation of C/EBPα. 

Figure 3. Styryl quinazolinone derivatives induce granulocytic differentiation and are determined by
(A) Wright-Giemsa staining for morphology, and (B) NBT assay for function. HL-60 cells were treated
with 0.1% DMSO, 10 µM compound 1, or 3 µM compound 78 for seven days. Bars = 50 µm.
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Additionally, compound 78 increased the expression of the neutrophil differentiation surface
marker CD11b (Figure 4A). Similar results were obtained using MOLM-14 cells, which were established
from a patient with acute monocytic leukemia (M5a) (Supplementary Figure S1). We have reported
that 1 and granulocyte-colony stimulating factor (G-CSF) synergistically enhance granulocytic
differentiation in HL-60 cells [21]. As expected, G-CSF enhanced the expression of CD11b, which was
induced by compound 78 (31.7% vs. 42.2%, Figure 3A). These results suggest that 78 can upregulate
G-CSF receptors, and render leukemic cells more sensitive to G-CSF stimulation.Molecules 2018, 23, x FOR PEER REVIEW  6 of 9 
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Figure 4. Compound 78 induces the expression of the neutrophil differentiation surface marker CD11b
and upregulation of CEBPA and its downstream targets: (A) CD11b positive cells were evaluated by
flow cytometry analysis; and (B) expression of CEBPA and CEBPE was determined by quantitative real
time PCR analysis.

Further, we examined the gene expression levels of the C/EBPα gene (CEBPA) and the C/EBPε
gene (CEBPE) [21]—one of the downstream target genes of C/EBPα. When HL-60 cells were treated
with 78, mRNA expression levels of CEBPA and CEBPE were increased in a time-dependent manner
(Figure 4B). We observed that 78 could induce the increase of C/EBPα (2.5-fold) and C/EBPε (10.3-fold)
by day seven. These results further demonstrate that 78 induces granulocytic differentiation in
leukemia cell lines, which is mediated through upregulation of C/EBPα.

3. Conclusions

In this study we have identified the derivative 78 as a potent inducer of granulocytic differentiation
in HL-60 cells—apart from 1. The improvement in potency may be mainly due to the introduction of
the 5-nitro furan group at ring R3. This modification not only improves the granulocytic differentiation
ability of the styryl quinazolinones, but also replaces the Pan Assay Interference compounds (PAINS)
susceptible moiety 3,4-dihydroxy phenyl group in compound 1. The other factor influencing the
case of 78 can be the fluoro substitution of the quinazolinone scaffold. Overall, we have identified
a new and improved inducer for myeloid differentiation in HL-60 cells by suitably modifying the
3,4-dihydroxy phenyl part of 1, with the 5-nitrofuran group, which can be further developed as a
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potential drug targeting inducer of C/EBPα expression for leukemia treatment. To the best of our
knowledge, this is the first report describing the structure activity relations of styryl quinazolinones
relating to the induction of C/EBPα expression, and during the investigation we found a lead,
like molecule 78, with more promising activity (at 3 µM concentration) than our earlier lead, compound
1. We strongly believe that repurposing styryl quinazolnines, for inducing C/EBPα expression in AML,
would rejuvenate further research on these types of small molecules.

4. Materials and Methods

Reagents: All-trans retinoic acid (ATRA) was purchased from Sigma-Aldrich (R2625,
St Louis, MO, USA). Compounds 1 to 60 were purchased from the ICCB-Longwood Screening
Facility at Harvard Medical School. Compounds 61 to 80 were obtained from Indian
Institute of Chemical Technology and the synthesis of these compounds were reported
earlier [20]. 2-[E-2-(3,4-dihydroxyphenyl), vinyl]-3-(2-methoxyphenyl)-4(3H)-quinazolinone,
compound 1, and 6-fluoro-2-[(E)-2-(5-nitrofuran-2-yl)ethenyl]-3-phenylquinazolin-4(3H)-one (78) were
resynthesized (Scheme 1) at the National University of Singapore. Stock solutions for the compounds
were solved in DMSO and stored at −20 ◦C. These compounds were diluted in a fresh complete
medium before the experiment, and the final concentration of DMSO was 0.1%. Human G-SCF was
purchased from Miltenyl Biotec (130-096-345, Bergisch Gladbach, Germany). Human G-CSF was
prepared in 0.1% bovine serum albumin/PBS, and stored at −20 ◦C.

Cells: HL-60 (CCL-240) cells were purchased from American Type Culture Collection (ATCC,
Manassas, VA, USA). MOLM-14 cells were kindly provided by Dr. Gary Gililand. These cell lines were
maintained in RPMI 1640 with 10% fetal bovine serum at 37 ◦C with 5% CO2.

Morphological Analysis and Nitro Blue Tetrazolium Reduction Assay: HL-60 cells were treated
with 0.1% DMSO, 10 µM of 1, and 3 µM of 78 for 7 days and stained with Wright-Giemsa. Maximum
cell concentrations were adjusted lower than 100,000 /mL. These treated HL-60 cells were incubated
with 1.0 mg/mL nitroblue tetrazolium/PBS, and 0.36 µM Phorbol-12-myristate-13-acetate (PMA) at
37 ◦C for 30–40 min and stained with safranin O. Morphological differentiation and apoptosis were
evaluated as − (0–5%), + (5–30%), and ++ (more than 30%), as previously described [21].

Flow Cytometry: HL-60 cells were treated with 0.1% DMSO, 10 µM of 1, and 3 µM of 78 with or
without 60 ng/mL of human G-CSF for 7 days and were stained with APC anti-mouse/human CD11b
antibody from Biolegend (101211, San Diego, CA), and was analyzed by LSRII flow (BD Biosciences,
Franklin Lakes, NJ, USA). We used FlowJo (FLOWJO, LLC, Ashland, OR, USA) to analyze the data.

Quantitative Real-Time PCR (QT-PCR): Total RNA was isolated from HL-60 cells using
RNeasy Mini Kit (Qiagen, Valencia, CA, USA). Complementary DNA was synthesized using
SuperScript II (Thermo Fisher Scientific, Waltham, MA, USA). The mRNA levels of genes were
measured by QT-PCR using the Rotor Gene 6000 sequence detection system (Qiagen, Valencia, CA,
USA) with iTaq Universal SYBR Green Supermix (BIO-RAD, Hercules, CA, USA). The expression
levels of the glyceraldehyde 3-phosohate dehydrogenase (GAPDH) were used for normalization.
Reactions were performed in technical triplicates. The primers for qPCR, human C/EBPα sense
5′-TGTGCCTTGGAAATGCAAAC-3′, antisense 5′-CGGGAAGGAGGCAGGAAA-3′, human C/EBPε

sense 5′-GCGTTCTCAAGGCCCCTT-3′, antisense 5′-GGGAGGGCGCCTTCAG-3′, human GAPDH
sense 5′-CCACATCGCTCAGACACCAT-3′, and antisense 5′-CCAGGCGCCCAATACG-3′.

Statistical Analysis: Differences between the experimental groups were tested with Student’s
t-test. p-values of less than 0.05 were considered statistically significant.

Supplementary Materials: The following are available online, Table S1: Styryl quinazolinone derivatives
evaluated in this study. Figure S1: Compound 78 induces morphological changes in MOLM-14 cells.
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