New Naphthalene Derivatives from the Bulbs of *Eleutherine americana* with their protective effect on the injury of HUVECs

De-Li Chen ^{1†}, Mei-Geng Hu ^{2†}, Yang-Yang Liu ¹, Rong-Tao Li ¹, Meng Yu ^{1,2}, Xu-Dong Xu ², Guo-Xu Ma ^{1, 2,*}

- ¹ Hainan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medicinal Sciences & Peking Union Medical College (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Haikou 570311, China; chendeli9999@163.com (D.-L.C.); eadchris@163.com (Y.-Y.L.); lirt99@126.com (R.-T.L.); 18789087155@163.com (M.Y.)
- ² Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; humeigeng@outlook.com (M.-G.H.); xdxu2012@163.com (X.-D.X.)
- * Correspondence: mgxfl8785@163.com; Tel.: +86-010-5783-3296
- + Contributed equally to this work.

Received: 25 July 2018; Accepted: 19 August 2018; Published: date

Abstract: Five new naphthalene derivatives, named Eleutherols A-C (1-3) and eleuthinones B-C (4-5),, together with three known compounds were isolated from the bulbs of *Eleutherine americana*. Their structures were elucidated on the basis of spectroscopic analysis including HR-ESI-MS, 1D and 2D NMR techniques. These compounds exhibited a potent effect against the injury of human umbilical vein endothelial cell (HUVECs) induced by high concentrations of glucose in vitro.

Keywords: Eleutherine americana; Naphthalene derivatives; HUVECs

- Figure S1. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound 1
- Figure S2. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound 1
- Figure S3. HSQC spectrum of the new compound 1
- Figure S4. HMBC spectrum of the new compound 1
- Figure S5. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound **2**
- Figure S6. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound 2
- Figure S7. HSQC spectrum of the new compound 2
- Figure S8. HMBC spectrum of the new compound 2
- Figure S9. NOESY spectrum of the new compound 2
- Figure S10. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound **3**
- Figure S11. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound **3**
- Figure S12. HSQC spectrum of the new compound **3**
- Figure S13. HMBC spectrum of the new compound 3
- Figure S14. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound 4
- Figure S15. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound 4
- Figure S16. HSQC spectrum of the new compound 4
- Figure S17. HMBC spectrum of the new compound 4
- Figure S18. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound **5**
- Figure S19. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound **5**
- Figure S20. HSQC spectrum of the new compound 5
- Figure S21. HMBC spectrum of the new compound 5
- Figure S22. ¹H-¹H COSY spectrum of the new compound **5**
- Figure S23. NOESY spectrum of the new compound 5
- Figure S24. ECD spectrum of the new compound 1 in MeOH
- Figure S25. ECD spectrum of the new compound 2 in MeOH
- Figure S26. ECD spectrum of the new compound **3** in MeOH

Figure S1. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound 1

Figure S2. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound 1

Figure S3. HSQC spectrum of the new compound 1

Figure S4. HMBC spectrum of the new compound $\mathbf{1}$

Figure S5. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound 2

Figure S6. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound 2

Figure S7. HSQC spectrum of the new compound **2**

Figure S8. HMBC spectrum of the new compound ${\bf 2}$

Figure S9. NOESY spectrum of the new compound $\mathbf{2}$

Figure S10. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound **3**

Figure S11. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound **3**

Figure S12. HSQC spectrum of the new compound **3**

Figure S13. HMBC spectrum of the new compound $\mathbf{3}$

Figure S14. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound 4

Figure S15. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound 4

Figure S16. HSQC spectrum of the new compound 4

Figure S17. HMBC spectrum of the new compound 4

Figure S18. ¹H-NMR (600 MHz, CDCl₃) spectrum of the new compound 5

Figure S19. ¹³C-APT (150 MHz, CDCl₃) spectrum of the new compound 5

Figure S20. HSQC spectrum of the new compound 5

Figure S21. HMBC spectrum of the new compound **5**

Figure S22. ¹H-¹H COSY spectrum of the new compound **5**

Figure S23. NOESY spectrum of the new compound **5**

Figure S24. ECD spectrum of the new compound 1 in MeOH

Figure S25. ECD spectrum of the new compound 2 in MeOH

Figure S26. ECD spectrum of the new compound **3** in MeOH