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Abstract: A one-pot fluorination and organocatalytic Robinson annulation sequence has been
developed for asymmetric synthesis of 6-fluoroyclohex-2-en-1-ones and 4,6-difluorocyclohex-2-en-
1-ones. The reactions promoted by cinchona alkaloid amine afforded products bearing two or three
stereocenters in good to excellent yields with up to 99% ee and 20:1 dr.

Keywords: organocatalysis; fluorination; α-fluoro-β-keto ester; Michael addition; Robinson
annulation; cyclohexenone

1. Introduction

The development of new synthetic methods for organofluorine compounds is an active topic
in organic and medicinal chemistry. Introduction of fluorine atom(s) could have significant
impact on molecules’ biological activity, bioavailability, and metabolic property [1–4]. Shown in
Figure 1 are bioactive fluorinated cyclohexenones [5] including intermediate for antitumor agent
COTC (Figure 1A) [6], aromatase inhibitor (Figure 1B) [7], and retinal protein bacteriorhodopsin
(Figure 1C) [8].

  

Molecules 2018, 23, x; doi: www.mdpi.com/journal/molecules 

Communication 

One-pot Fluorination and Organocatalytic Robinson 
Annulation for Asymmetric Synthesis of Mono- and 
Difluorinated Cyclohexenones 
Xin Huang 1,*, Weizhao Zhao 1, Xiaofeng Zhang 2, Miao Liu 2, Stanley N. S. Vasconcelos 3 and  
Wei Zhang 2,* 

1 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; 
zhao792129582@163.com 

2 Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston,  
MA 02125, USA; Xiaofeng.Zhang002@umb.edu (X.Z.); liumiaomarcus@gmail.com (M.L.) 

3 Departamento de Farmácia, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580 São Paulo,  
SP 05508-000, Brazil; stanleynsv@gmail.com 

* Correspondence: xin.huang@zjnu.cn (X.H.); wei2.zhang@umb.edu (W.Z.);  
Tel.: +1-617-287-6147 (W.Z.); Fax: +1-617-287-6030 (W.Z.) 

Received: 4 August 2018; Accepted: 31 August 2018; Published: 4 September 2018 

Abstract: A one-pot fluorination and organocatalytic Robinson annulation sequence has been 
developed for asymmetric synthesis of 6-fluoroyclohex-2-en-1-ones and 4,6-difluorocyclohex-2-en-
1-ones. The reactions promoted by cinchona alkaloid amine afforded products bearing two or three 
stereocenters in good to excellent yields with up to 99% ee and 20:1 dr. 

Keywords: organocatalysis; fluorination; α-fluoro-β-keto ester; Michael addition; Robinson 
annulation; cyclohexenone 

 

1. Introduction 

The development of new synthetic methods for organofluorine compounds is an active topic in 
organic and medicinal chemistry. Introduction of fluorine atom(s) could have significant impact on 
molecules’ biological activity, bioavailability, and metabolic property [1–4]. Shown in Figure 1 are 
bioactive fluorinated cyclohexenones [5] including intermediate for antitumor agent COTC (Figure 
1A) [6], aromatase inhibitor (Figure 1B) [7], and retinal protein bacteriorhodopsin (Figure 1C) [8]. 

 
Figure 1. Bio-active fluorinated cyclohexenones. 
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monofluorinated nucleophiles [16–19] is an attractive topic. These nucleophiles have been used to 
react with nitroolefins [10,11,13,14,16,17], N-alkyl maleimides [12,15], chalcones [18], and α,β-
unsaturated aldehydes [19]. Beside the Michael addition reactions, some Michael addition-initiated 

Figure 1. Bio-active fluorinated cyclohexenones.

The β-ketoester scaffold is a versatile synthon for being both electrophilic and nucleophilic
sites [9]. The asymmetric Michael addition reactions of α-fluoro-β-keto esters [10–15] and other
monofluorinated nucleophiles [16–19] is an attractive topic. These nucleophiles have been used to react
with nitroolefins [10,11,13,14,16,17], N-alkyl maleimides [12,15], chalcones [18], and α,β-unsaturated
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aldehydes [19]. Beside the Michael addition reactions, some Michael addition-initiated reactions
involving α-fluoro-β-keto esters have also been reported [20–22]. Those reactions include
Michael/aldol (Robinson) [20], Michael/Michael/aldol [21], and Michael/aza-Henry/lactamization
sequences [22] for the construction of cyclohexenones, cyclohexanones, and 2-piperidinones bearing
multiple stereocenters.

As part of our recent effort on the synthesis of organofluorine compounds using α-fluoro-β-keto
esters [23–25], we have reported a one-pot fluorination/Robinson annulation sequence for fluorinated
cyclohexenones 1 (Scheme 1A) [23], Robinson annulation/dehydrofluorination/aromatization
sequence for phenols 2 (Scheme 1B) [24], and pyridines [25]. We envisioned that in the presence
of an organocatalyst, such as cinchona alkaloid primary amine cat-1, the one-pot asymmetric synthesis
could be developed for the preparation of monofluorocyclohexenones 3 and difluorocyclohexenones 4
(Scheme 1C).
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2. Results and Discussions

A number of six organocatalysts were screened for the asymmetric Robinson annulation reaction
of chalcone 6a and α-fluoro-β-ketoester 5a (Table 1, entries 1–6). It was found that the reaction with
20 mol% of cat-1 gave the desired product 3a in 79% yield with 5:1 dr and 99% ee (entry 1), while other
catalysts did not give good results. Acidity of the reaction system plays an important role in amine
catalysis for lowering the LUMO energy of iminium ions [26]. Thus, an investigation of the reactions in
the presence of different acids was carried out. The best result was achieved by adding CF3C6H4CO2H
to afford 3a in 89% yield with 9:1 dr and 99% ee (entry 10). We lowered the reaction temperature to
−20 ◦C which slightly increased the dr to 12:1, but significantly decreased the yield to 51% (entry 13).
Because we failed to get the crystal of 3 for X-ray structure analysis, the absolute configuration of 3a
was deduced based on the information reported in the literature [27]. The S-amine catalyst promoted a
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highly selective Re-face attack at the Michael acceptor. We believed that our reactions also catalyzed
by the S-amine cat-1 could have the same stereochemistry outcome.

Table 1. Screening of catalysts for the Robinson annulation a.
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The combination of fluorination and the Robinson annulation as a one-pot reaction for fluorinated
cyclohexenone 3a was then attempted (Table 2). The fluorination step does not need to be asymmetric
because both stereocenters were generated during the subsequential Michael addition. The fluorination
reaction of β-ketoester 8 with SelectFluor™ was conducted under microwave heating at 120 ◦C for 20
min without using a catalyst. After the completion of the fluorination, chalcone 6a, CF3C6H4CO2H
and catalyst cat-1 were added to the reaction mixture at 25 ◦C for the Robinson annulation. But this
one-pot fluorination/Robinson annulation only gave 3a in <10% yield probably due to the effect of the
acidic SelectFluor™ derivative in the reaction mixture. To address this issue, bases including Na2CO3,
K2CO3, and Cs2CO3 were used for the reaction. It was found that addition of 1.5 equiv. of Na2CO3

gave 3a in 82% yield with a good ee and dr (Table 2, entry 6).
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Table 2. One-pot synthesis of 6-fluorocyclohex-2-en-1-ones 3 a.
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1 None <10 - -
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With the optimized conditions in hand, the scope of the one-pot synthesis of
6-fluorocyclohexenones 3a–j using different Michael acceptor 6 was investigated (Scheme 2).
Substrates 6 with electron-donating (SMe, Ph) and electron-withdrawing (Br, CF3) groups on Ar1 gave
products 3b–f in 82–90% yields with >96% ee and >9:1 dr. Reaction of a chalcone bearing a thiophene
ring also gave product 3h in a good yield and ee. The introduction of substituents on Ar2 of 6 gave
products 3i and 3j with decreased ee, probably due to an unfavorable stereoelectronic effect.
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We have recently reported a one-pot Robinson annulation/dehydrofluorination/aromtization
sequence for fluorinated phenols 2 using α-fluoro-β-ketoesters and α-fluoro-α,β-unsaturated ketones
as substrates [24]. We envisioned that α-fluoro-α,β-unsaturated ketones 6 could be used for asymmetric
synthesis of 4,6-difluorocyclohexanones 4 under organocatalytic conditions. Indeed, one-pot reactions
of β-ketoester 8 went smoothly to afford 4a–c in 53–65% yields with 5:1-8:1 dr and 89–93% ee (Scheme 3).
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However, all of these reactions afforded 4a–c as decarboxylated products, even at low reaction
temperatures (−30–0 ◦C). No aromatization products were observed under the reaction temperature
without heating [24]. The products 4a–c were found not to be stable during the workup and rotary
vapor concentration of the crude product.
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