Supplementary Information

Molecular Recognition of Parallel G-quadruplex [d-(TTGGGGT)]₄ containing *Tetrahymena* Telomeric Repeat by Anticancer Drug Daunomycin: NMR based Structure and Thermal Stability

Ritu Barthwal,* Zia Tariq

Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India

*Corresponding author

Address for correspondence: Prof. Ritu Barthwal, Ph. D Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India. E-mail: ritubfbs@iitr.ac.in, barthwalritu.iitr@gmail.com Fax: +91-1332-273560; Phone: +91-1332-285807

Tables

Table S1 a) ¹H Chemical shift (ppm) of DNA protons in daunomycin-[d-(TTGGGGT)]₄ complex (δ_b) at various Daunomycin (D)/ Nucleic acid (N) ratios, D/N, in KBPES buffer containing 100 mM KCl (90% H₂O+10% D₂O) at 25 °C. $\Delta\delta$ refers to change in chemical shift due to binding.

DAI	RESIDUES	r	Г1	r	Т2	G	3	6	34	(15	G	6	1	. '7
D/IN -	PROTONS	$\delta_{\rm b}$	Δδ	$\delta_{\rm b}$	Δδ	δ_{b}	Δδ	δ_{b}	Δδ	δ_{b}	Δδ	δ_{b}	Δδ	$\delta_{\rm b}$	Δδ
	H8/H6	7.57	-0.02	7.53	-0.01	8.12	-0.02	7.78	-0.02	7.79	-0.05	7.72	0.01	7.59	0.25
	H1'	6.14	0.00	6.03	0.00	6.04	-0.03	6.05	-0.01	6.07	-0.01	6.30	0.06	6.18	0.13
	H2'	2.21	0.00	2.26	-0.01	2.64	-0.02	2.65	0.01	2.71	-0.01	2.26	0.00	2.28	0.11
	H2"	2.41	-0.01	2.58	-0.02	2.94	-0.02	2.91	-0.01	2.75	-0.02	2.66	-0.02	2.65	0.00
	Н3'	4.62	-0.03	4.91	0.01	5.04	-0.02	5.06	0.01	5.06	-0.03	5.08	0.04	5.03	0.07
1.0	H4'	4.26	-0.04	4.20	0.03	4.38	-0.02	4.29	-0.04	4.54	-0.04	4.52	-0.01	4.55	0.09
1.0	Н5'	4.08	0.01	4.06	0.00	4.14	-0.01	4.28	0.00	4.36	0.00	4.23	-0.02	4.15	0.02
	H5"	3.74	-0.03	4.02	-0.01	4.10	-0.01	4.23	0.00	4.28	-0.04	4.20	-0.01	4.08	0.01
	CH_3	1.63	-0.02	1.52	-0.01	-	-	-	-	-	-	-	-	1.80	0.17
	$\mathrm{NH_2^b}$	-	-	-	-	9.81	-0.03	9.10	-0.07	9.09	-0.08	7.46	0.00	-	-
	NH_2^{nb}	-		-	-	6.16	-0.14	6.13	-0.07	7.79	-0.03	6.76	0.00	-	-
	NH	-	-	-	-	11.47	-0.04	11.04	-0.04	10.87	-0.07	10.67	-0.22	-	-
	H8/H6	7.57	-0.02	7.54	0.00	8.11	-0.03	7.77	-0.03	7.77	-0.07	7.72	0.01	7.64	0.30
	H1'	6.15	0.01	6.05	0.02	6.04	-0.03	6.04	-0.02	6.04	-0.04	6.31	0.07	6.21	0.16
	H2'	2.23	0.02	2.24	-0.03	2.63	-0.03	2.66	0.02	2.70	-0.02	2.31	0.05	2.30	0.13
	H2"	2.44	0.02	2.57	-0.03	2.93	-0.03	2.85	-0.07	2.85	0.08	2.68	0.00	2.65	0.00
	Н3'	4.66	0.01	4.92	0.02	5.04	-0.02	5.07	0.02	5.07	-0.02	5.08	0.04	5.06	0.10
2.0	H4'	4.25	-0.05	4.19	0.02	4.38	-0.02	4.29	-0.04	-	-	4.54	0.01	4.57	0.11
2.0	Н5'	4.07	0.00	4.06	0.00	4.15	0.00	4.28	0.00	4.36	0.00	4.24	-0.01	4.16	0.03
	H5"	3.76	-0.01	4.02	-0.01	4.11	0.00	4.23	0.00	4.28	-0.04	4.20	-0.01	4.11	0.04
	CH ₃	1.61	-0.04	1.54	0.01	-	-	-	-	-	-	-	-	1.84	0.21
	$\mathrm{NH_2^b}$	-	-	-	-	9.78	-0.06	9.08	-0.09	9.09	-0.08	7.47	0.01	-	-
	NH_2^{nb}	-	-	-	-	6.18	-0.12	6.10	-0.10	7.76	-0.06	6.77	0.01	-	-
	NH	-	-	-	-	11.42	-0.09	11.01	-0.07	10.84	-0.10	10.59	-0.30	-	-

Table S1 b) ¹H Chemical shift (ppm) of DNA protons in daunomycin-[d-(TTGGGGT)]₄ complex (δ_b) at various D/N ratios in KBPES buffer containing

100 mM KCl (90% H₂O+10% D₂O) at 25 °C. Δδ refers to change in chemical shift due to binding.

		-									-	~	~		
D/N -	RESIDUES		ľ1		12	G	-3	(3 4	(3 5	G	6		17
D/IN	PROTONS	δ_{b}	Δδ	δ_{b}	Δδ	$\delta_{\rm b}$	Δδ	$\delta_{\rm b}$	Δδ	$\delta_{\rm b}$	Δδ	δ_{b}	Δδ	δ_{b}	Δδ
	H8/H6	7.57	-0.02	7.54	0.00	8.09	-0.05	7.75	-0.05	7.75	-0.09	7.70	-0.01	7.64	0.30
	H1'	6.17	0.03	6.06	0.03	6.04	-0.03	6.04	-0.02	6.04	-0.04	6.29	0.05	6.21	0.16
	Н2'	2.23	0.02	2.24	-0.03	2.62	-0.04	2.67	0.03	2.71	-0.01	2.36	0.10	2.31	0.14
	H2"	2.47	0.05	2.56	-0.04	2.91	-0.05	2.91	-0.01	2.76	-0.01	2.66	-0.02	2.63	-0.02
	Н3'	4.66	0.01	4.92	0.02	5.04	-0.02	5.05	0.00	5.05	-0.04	5.08	0.04	5.07	0.11
2.0	H4'	4.26	-0.04	4.17	0.00	4.37	-0.03	4.29	-0.04	-	-	4.54	0.01	4.56	0.10
5.0	Н5'	4.08	0.01	4.07	0.01	4.13	-0.02	4.28	0.00	4.36	0.00	4.25	0.00	4.15	0.02
	H5"	3.76	-0.01	4.03	0.00	4.10	-0.01	4.23	0.00	4.28	-0.04	4.21	0.00	4.10	0.03
	CH_3	1.60	-0.05	1.52	-0.01	-	-	-	-	-	-	-	-	1.83	0.20
	$\rm NH_2^b$	-	-	-	-	9.76	-0.08	9.06	-0.11	9.05	-0.12	7.46	0.00	-	-
	NH_2^{nb}	-	-	-	-	6.15	-0.15	6.07	-0.13	7.75	-0.07	6.76	0.00	-	-
	NH	-	-	-	-	11.37	-0.14	10.98	-0.10	10.82	-0.12	10.55	-0.34	-	-
4.0	H8/H6	7.57	-0.02	7.54	0.00	8.08	-0.06	7.74	-0.06	7.74	-0.10	7.69	-0.02	7.64	0.30

H1'	6.15	0.01	6.05	0.02	6.03	-0.04	6.02	-0.04	6.02	-0.06	6.27	0.03	6.20	0.15
H2'	2.23	0.02	2.22	-0.05	2.60	-0.06	2.67	0.03	2.67	-0.05	2.28	0.02	2.30	0.13
H2"	2.45	0.03	2.56	-0.04	2.90	-0.06	2.91	-0.01	2.79	0.02	2.65	-0.03	2.63	-0.02
Н3'	4.66	0.01	4.92	0.02	5.03	-0.03	5.05	0.00	5.05	-0.04	5.07	0.03	5.07	0.11
H4'	4.26	-0.04	4.18	0.01	4.38	-0.02	4.28	-0.05	4.58	0.00	4.54	0.01	4.56	0.10
Н5'	4.07	0.00	4.07	0.01	4.14	-0.01	4.28	0.00	4.36	0.00	4.24	-0.01	4.15	0.02
H5"	3.77	0.00	4.02	-0.01	4.10	-0.01	4.23	0.00	4.28	-0.04	4.20	-0.01	4.07	0.00
CH_3	1.60	-0.05	1.51	-0.02	-	-	-	-	-	-	-	-	1.84	0.21
NH ₂ ^b	-	-	-	-	9.73	-0.11	9.05	-0.12	9.05	-0.12	7.47	0.01	-	-
$\rm NH_2^{nb}$	-	-	-	-	6.14	-0.16	6.06	-0.14	7.75	-0.07	6.77	0.01	-	-
NH	-	-	-	-	11.36	-0.15	10.97	-0.11	10.82	-0.12	10.55	-0.34	-	-

Table S1 c) ¹H Chemical shift (ppm) of daunomycin protons in free daunomycin (δ_f) and in daunomycin-[d-(TTGGGGT)]₄ complex (δ_b) at various D/N ratios in KBPES buffer containing 100 mM KCl (90% H₂O+10% D₂O) at 25 °C. $\Delta\delta = \delta_b$ - δ_f , nd: not determined

Daunomycin	Free Daunomycin	D/N	=1.0	D/N	N=2.0	D/N	=3.0	D/N	=4.0
Protons	$\delta_{\rm f}$	δb	Δδ	δb	Δδ	δ _b	Δδ	δ _b	Δδ
2H	7.71	7.30	-0.41	7.26	-0.45	7.19	-0.52	7.20	-0.51
1H	7.53	7.21	-0.32	7.18	-0.35	7.09	-0.44	7.03	-0.50
3H	7.43	7.04	-0.39	7.02	-0.41	6.95	-0.48	6.93	-0.50
$4OCH_3$	3.94	3.70	-0.24	3.67	-0.27	3.62	-0.32	3.60	-0.34
1'H	5.49	nd	nd	4.92	-0.57	5.06	-0.43	5.11	-0.38
7H	4.82	nd	nd	4.57	-0.25	4.54	-0.28	4.55	-0.27
5'H	4.27	3.81	-0.46	3.91	-0.36	3.98	-0.29	4.05	-0.22
4'H	3.83	3.53	-0.3	3.60	-0.23	3.64	-0.19	3.68	-0.15
3'Н	3.70	3.33	-0.37	3.42	-0.28	3.48	-0.22	3.53	-0.17
5'CH3	1.30	0.74	-0.56	0.90	-0.4	1.02	-0.28	1.05	-0.25
9COCH ₃	2.45	2.43	-0.02	2.33	-0.12	2.28	-0.17	2.28	-0.17
2'eq	1.99	1.66	-0.33	1.77	-0.22	1.78	-0.21	1.81	-0.18
2'ax	1.99	1.56	-0.43	1.73	-0.26	1.73	-0.26	1.81	-0.18
8eq	2.23	2.08	-0.15	1.87	-0.36	1.91	-0.32	1.91	-0.32
8ax	2.13	1.72	-0.41	1.81	-0.32	1.85	-0.28	1.91	-0.22
10eq	2.94	2.64	-0.3	2.59	-0.35	2.56	-0.38	2.58	-0.36
10ax	2.70	2.56	-0.14	2.54	-0.16	2.53	-0.17	2.53	-0.17

Table S2 a) ¹H Chemical shift (ppm) of methyl and imino protons in free [d-(TTGGGGT)]₄ (δ_f) and daunomycin-[d-(TTGGGGT)]₄ complex (δ_b) at various D/N ratios in KBPES buffer containing 100 mM KCl (90% H₂O + 10% D₂O) at 25 °C. $\Delta\delta = \delta_b - \delta_f$

Ductors			Cl	H3			NH								
Protons]	[1	Т	2	Т	7	G	3	G	4	G	5	G	6	
Free DNA (δ_f)	1.	65	1.	53	1.	63	11.	51	11.	.08	10.	.94	10.	.89	
	δ_b	$\Delta\delta$													
D/N=0.2	1.65	0.00	1.53	0.00	1.66	0.03	11.50	-0.01	11.07	-0.01	10.93	-0.01	10.86	-0.03	
D/N=0.5	1.65	0.00	1.53	0.00	1.72	0.09	11.47	-0.04	11.06	-0.02	10.90	-0.04	10.80	-0.09	
D/N=0.8	1.65	0.00	1.53	0.00	1.78	0.15	11.48	-0.03	11.05	-0.03	10.88	-0.06	10.70	-0.19	
D/N=1.0	1.64	-0.01	1.53	0.00	1.80	0.17	11.47	-0.04	11.04	-0.04	10.87	-0.07	10.67	-0.22	
D/N=1.5	1.63	-0.02	1.52	-0.01	1.83	0.20	11.45	-0.06	11.02	-0.06	10.85	-0.09	10.62	-0.27	
D/N=2.0	1.62	-0.03	1.52	-0.01	1.84	0.21	11.42	-0.09	11.01	-0.07	10.84	-0.10	10.59	-0.30	
D/N=2.5	1.61	-0.04	1.52	-0.01	1.84	0.21	11.39	-0.12	11.00	-0.08	10.83	-0.11	10.58	-0.31	
D/N=3.0	1.61	-0.04	1.52	-0.01	1.84	0.21	11.37	-0.14	10.98	-0.10	10.82	-0.12	10.55	-0.34	
D/N=3.5	1.60	-0.05	1.52	-0.01	1.84	0.21	11.35	-0.16	10.97	-0.11	10.82	-0.12	10.55	-0.34	
D/N=4.0	1.60	-0.05	1.52	-0.01	1.84	0.21	11.36	-0.15	10.97	-0.11	10.82	-0.12	10.55	-0.34	

* Negative sign in $\Delta\delta$ denotes upfield shift

Table S2 b) ¹H Chemical shift (ppm) of base protons in free [d-(TTGGGGT)]₄ (δ_f) and daunomycin-[d-(TTGGGGT)]₄ complex (δ_b) at various D/N ratios in KBPES buffer containing 100 mM KCl (90% H₂O + 10% D₂O) at 25 °C. $\Delta\delta = \delta_b - \delta_f$

Destons							H8	/H6						
Protons]	Γ1	Г	2	(33	(G 4	(35	(G6	Т	7
Free DNA (δ_f)	7.	.59	7.	54	8	.14	7.	.80	7	.84	7.	.71	7.	34
	δ_b	Δδ	δ_b	Δδ	δ_b	$\Delta\delta$	δ_b	$\Delta\delta$	δ_b	Δδ	δ_b	$\Delta\delta$	δ_b	Δδ
D/N=0.2	7.57	-0.02	7.54	0.00	8.13	-0.01	7.80	0.00	7.83	-0.01	7.71	0.00	7.35	0.01
D/N=0.5	7.57	-0.02	7.54	0.00	8.13	-0.01	7.79	-0.01	7.82	-0.02	7.71	0.00	7.44	0.10
D/N=0.8	7.57	-0.02	7.54	0.00	8.12	-0.02	7.78	-0.02	7.8	-0.04	7.72	0.01	7.55	0.21
D/N=1.0	7.57	-0.02	7.53	-0.01	8.12	-0.02	7.78	-0.02	7.79	-0.05	7.72	0.01	7.59	0.25
D/N=1.5	7.57	-0.02	7.54	0.00	8.11	-0.03	7.78	-0.02	7.79	-0.05	7.72	0.01	7.63	0.29
D/N=2.0	7.57	-0.02	7.54	0.00	8.11	-0.03	7.77	-0.03	7.77	-0.07	7.72	0.01	7.64	0.30
D/N=2.5	7.57	-0.02	7.54	0.00	8.10	-0.04	7.76	-0.04	7.76	-0.08	7.71	0.00	7.65	0.31
D/N=3.0	7.57	-0.02	7.54	0.00	8.09	-0.05	7.75	-0.05	7.75	-0.09	7.70	-0.01	7.64	0.30
D/N=3.5	7.56	-0.03	7.54	0.00	8.07	-0.07	7.74	-0.06	7.74	-0.10	7.70	-0.01	7.64	0.30
D/N=4.0	7.57	-0.02	7.54	0.00	8.08	-0.06	7.74	-0.06	7.74	-0.10	7.69	-0.02	7.64	0.30

Table S2 (c) ¹H Chemical shift (ppm) of H1' sugar protons in free [d-(TTGGGGT)]₄ (δ_f) and daunomycin-[d-(TTGGGGT)]₄ complex (δ_b) at various D/N ratios in KBPES buffer containing 100 mM KCl (90% H₂O + 10% D₂O) at 25 °C. $\Delta\delta = \delta_b - \delta_f$

Ductors			H	1'		
Protons	1	[1	G	6	Т	7
Free DNA (δ_f)	6.	14	6.	24	6.	05
	δ_b	Δδ	δ_b	Δδ	δ_b	Δδ
D/N=0.2	6.14	0.00	6.25	0.01	6.06	0.01
D/N=0.5	6.13	-0.01	6.28	0.04	6.10	0.05
D/N=0.8	6.13	-0.01	6.29	0.05	6.17	0.12
D/N=1.0	6.14	0.00	6.30	0.06	6.18	0.13
D/N=1.5	6.15	0.01	6.30	0.06	6.21	0.16
D/N=2.0	6.15	0.01	6.31	0.07	6.21	0.16
D/N=2.5	6.16	0.02	6.30	0.06	6.21	0.16
D/N=3.0	6.17	0.03	6.29	0.05	6.21	0.16
D/N=3.5	6.16	0.02	6.28	0.04	6.20	0.15
D/N=4.0	6.15	0.01	6.27	0.03	6.20	0.15

Table S2 d) ¹H Chemical shift (ppm) of daunomycin protons in free state (δ_f) and in daunomycin-[d-(TTGGGGT)]₄ complex (δ_b) at various D/N ratios in KBPES buffer containing 100 mM KCl (90% H₂O + 10% D₂O) at 25 °C. $\Delta \delta = \delta_b - \delta_f$

Ductors				Dauno	mycin			
Protons	1	Н	2	Н	3	H	5'(CH3
Free Daunomycin (δ_f)	7.	.53	7.	71	7.	.43	1.	.30
	δ_b	Δδ	δ_b	Δδ	δ_b	Δδ	δ_b	Δδ
D/N=0.2	7.11	-0.42	7.20	-0.51	7.03	-0.40	0.69	-0.61
D/N=0.5	7.21	-0.32	7.30	-0.41	7.04	-0.39	0.70	-0.60
D/N=0.8	7.21	-0.32	7.30	-0.41	7.04	-0.39	0.72	-0.58
D/N=1.0	7.21	-0.32	7.30	-0.41	7.04	-0.39	0.74	-0.56
D/N=1.5	7.20	-0.33	7.29	-0.42	7.04	-0.39	0.81	-0.49
D/N=2.0	7.18	-0.35	7.26	-0.45	7.02	-0.41	0.90	-0.40
D/N=2.5	7.14	-0.39	7.22	-0.49	7.00	-0.43	0.97	-0.33
D/N=3.0	7.09	-0.44	7.19	-0.52	6.95	-0.48	1.00	-0.30
D/N=3.5	7.07	-0.46	7.17	-0.54	6.95	-0.48	1.05	-0.25
D/N=4.0	7.03	-0.50	7.16	-0.51	6.93	-0.50	1.05	-0.25

Table S3 Intra molecular distances (Å) and relative intensities of intra molecular NOE cross peaks of daunomycin protons in daunomycin-[d-(TTGGGGT)]₄ complex at D/N = 1.0, 2.0, 3.0 and 4.0 at τ_m = 250 ms at 25 °C. nd: not determined

S.No	Label	Intra molecular NOE correlations	Inter proton distance at D/N=2.0	Intensity of NOE cross peak at D/N=1.0	Intensity of NOE cross peak at D/N=2.0	Intensity of NOE cross peak at D/N=3.0	Intensity of NOE cross peak at D/N=4.0
1	D1	5'CH ₃ -5'H	2.70	S	S	S	S
2	D2	5'CH ₃ -4'H	2.74	S	S	S	S
3	D3	5'CH ₃ -3'H	3.58	W	m	W	nd
4	D4	2' _{eq} -4'H	2.95	m	m	m	nd
5	D5	2'eq-3'H	2.66	S	S	S	nd
6	D6	4OCH ₃ -2H	2.90	S	S	S	S
7	D7	4OCH ₃ -1H	3-4	m	m/broad	m/broad	m/broad
8	D8	4OCH ₃ -3H	2.20	S	S	S	S
9	D9	5'H-4'H	2.70	nd	S	nd	nd
10	D10	5'H-3'H	3.01	nd	m	m	nd
11	D11	8 _{ax} -5'H	2.72	S	S	S	nd

s - strong, m - medium, w - weak intensity; o- overlap

Table S4: Chemical shift (ppm) of phosphorus (³¹P) resonances in free [d-(TTGGGGT)]₄ (δ_f) and daunomycin-[d-(TTGGGGT)]₄ complex (δ_b) at various D/N ratios in KBPES buffer containing 100 mM KCl (90% H₂O + 10% D₂O) at 25 °C. $\Delta\delta = \delta_b - \delta_f$

	T1	pT2	T21	pG3		G3pG4		G4	pG5	G5	pG6	G6pT7
Free DNA (δ_f)	-0.	.44	-0	.69	-0	.78	-0	.90	-0.	.87	-	0.77
	δ_b	$\Delta\delta$										
D/N=0.2	-0.47	-0.03	-0.71	-0.02	-0.79	-0.01	-0.93	-0.03	-0.90	-0.03	-0.77	0.00
D/N=0.5	-0.50	-0.06	-0.74	-0.05	-0.81	-0.03	-0.97	-0.07	-0.94	-0.07	-0.75	0.02
D/N=0.8	-0.53	-0.09	-0.77	-0.08	-0.84	-0.06	-1.01	-0.11	-0.98	-0.11	-0.73	0.04
D/N=1.0	-0.55	-0.11	-0.79	-0.10	-0.86	-0.08	-1.03	-0.13	-1.01	-0.14	-0.72	0.05
D/N=1.5	-0.58	-0.14	-0.82	-0.13	-0.89	-0.11	-1.08	-0.18	-1.07	-0.20	-0.74	0.03
D/N=2.0	-0.60	-0.16	-0.84	-0.15	-0.93	-0.15	-1.13	-0.23	-1.11	-0.24	-0.77	0.00
D/N=2.5	-0.63	-0.19	-0.86	-0.17	-0.95	-0.17	-1.17	-0.27	-1.15	-0.28	-0.80	-0.03
D/N=3.0	-0.63	-0.19	-0.84	-0.15	-0.95	-0.17	-1.18	-0.28	-1.16	-0.29	-0.80	-0.03
D/N=3.5	-0.68	-0.24	-0.89	-0.20	-1.01	-0.23	-1.25	-0.35	-1.23	-0.36	-0.87	-0.10
D/N=4.0	-0.71	-0.27	-0.92	-0.23	-1.03	-0.25	-1.28	-0.38	-1.26	-0.39	-0.90	-0.13

Table S5 Melting temperature (T_m) of [d-(TTGGGGT)]₄ in free state and in daunomycin-[d-(TTGGGGT)]₄ complex at different D/N ratios obtained from Differential Scanning Calorimetry experiments. Change in melting temperature (ΔT_m) due to binding is also shown. nd: not determined

	T_{ml} (°C)	T_{m2} (°C	<u>(</u>)	T_{m3} (°C		$T_{m4}(^{\circ}\mathrm{C})$
Free DNA	46.2±0.	4	54.9±0	.7	72.9±0.	6	110.5±0.1
Complex		ΔT_{ml}		ΔT_{m2}		ΔT_{m3}	ΔT_{m4}
D/N=0.5	51.0±0.4	4.8	66.7±0.3	11.8	81.5±0.7	8.6	nd
D/N=1.0	52.4±4.8	6.2	65.1±3.3	10.2	82.0±2.9	9.1	nd
D/N=2.0	55.7±3.3	9.5	67.1±2.3	12.2	84.0±1.3	11.1	nd
D/N=3.0	55.1±1.3	8.9	69.0±1.1	14.1	85.2±0.8	12.3	nd
D/N=3.5	62.6±1.4	16.4	73.0±0.7	18.1	86.7±0.5	13.8	nd
D/N=4.0	60.8±1.6	14.6	72.6±0.4	17.7	87.3±0.5	14.4	nd

Figure S1 **a,b**) 1D ¹H NMR spectra of free [d-(TTGGGGT)]₄ in KBPES buffer containing 100 mM KCl (90% H₂O + 10% D₂O) at 25 °C. Expansion of ¹H-¹H 2D NOESY spectra of free [d-(TTGGGGT)]₄ showing sequential connectivity (black arrows) between c) imino protons d) adjacent imino and base protons e) base-sugar (H1') protons f) base-sugar (H2'/2'') protons at $\tau_m = 250$ ms in KBPES buffer (90% H₂O + 10% D₂O) at 25 °C.

Figure S2: 1D ¹H NMR spectrum of free daunomycin in water (90% H₂O + 10% D₂O) at 25 °C.

Figure S3 (a,b) 1D ¹H NMR spectrum of daunomycin-DNA [d-(TTGGGGT)]₄ complex at D/N = 2.0 in KBPES buffer containing 100 mM KCl (90% H₂O + 10% D₂O) at 25 °C. Daunomycin protons are represented by (#). Expansion of ¹H-¹H 2D NOESY spectra of daunomycin-DNA [d-(TTGGGGT)]₄ complex at D/N = 2.0 showing sequential connectivity (black arrows) between c) imino protons d) adjacent imino and base protons e) base-sugar (H1') protons f) base-sugar (H2'/2") protons at $\tau_m = 250$ ms in KBPES buffer (90% H₂O+10% D₂O) at 25 °C.

b

Figure S4 (a,d) Expansion of specific region of 2D ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC spectrum showing overlay of free daunomcin (red), free [d-(TTGGGGT)]₄ (green) and daunomycin-[d-(TTGGGGT)]₄ complex at D/N = 2.0 (blue) in KBPES buffer (90% H₂O + 10% D₂O) at 25 °C. 1D ${}^{1}\text{H}$ NMR spectrum at the top of HSQC spectra is daunomycin-DNA [d-(TTGGGGT)]₄ complex at D/N = 2.0.

Figure S5 Nonlinear fitted curve (red) for simultaneous binding at two different sites in daunomycin-[d(TTGGGGT)]₄ complex of protons (a) T7H6, (b) T7CH₃, (c) G6NH and (d) T1CH₃. Plot shows change in chemical shift ($\Delta\delta$) of protons at D/N = 0.2–4.0 as a function of daunomycin concentration (μ M) showing binding constants (K_b) at 25 °C.

Figure S6: 2D ¹H-³¹P HMBC spectra of a) free [d-(TTGGGGT)]₄ and b) daunomycin-[d-(TTGGGGT)]₄ complex at D/N = 2.0 complex in KBPES buffer (90% H₂O+10% D₂O) at 25 °C.

Figure S7: 2D ¹H-¹H NOESY spectra of daunomycin-[d-(TTGGGGT)]₄ complex at D/N = 2.0, mixing time (τ_m) = 250 ms at 25 °C. Expansion of specific region of NOESY spectra showing intra molecular NOE correlations between daunomycin protons 5'CH₃, 3'H, 4'H, 5'H, 2'_{ax}, and 8'_{ax}. Symbol # denotes daunomycin protons, D denote intra molecular daunomycin cross peaks (numbering of D done as per Table S3).

Figure S8: Differential Scanning Calorimetry (DSC) thermograms showing excess heat capacity as a function of temperature for daunomycin-[d-(TTGGGGT)]₄ complex at a-d) D/N = 0.5, 1.0, 3.0 and 4.0. All samples were prepared in phosphate buffer (KBPES) (pH 7.0) containing 100 mM KCl.