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Abstract: A versatile and practical “on-water” protocol was newly developed to synthesize
quinazolinones using o-bromobenzonitrile as a novel starting material. Studies have found
that air as well as water plays an important role in synthesis of quinazolinones. Further
investigation indicated that dihydroquinazolinones can be prepared with this protocol under
the protection of N2. The protocol can be extended to other substrates and various
quinazolinones and dihydroquinazolinones were obtained. o-Bromobenzamide, o-aminobenzonitrile,
and o-aminobenzamide were also evaluated as starting materials, and the results further proved the
versatility of this protocol, especially towards dihydroquinazolinones.
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1. Introduction

Quinazolinones and dihydroquinazolinons are important classes of nitrogen-containing
heterocycles with an array of biological activities such an antitumor [1,2], anti-inflammatory [3],
antibacterial [4,5], anticonvulsant [6], etc. As explicit examples, RVX-208 and balaglitazone, structurally
based on quinazolin-4(3H)-one (Figure 1), are now under phase III clinical trials. The compound of
RVX-208 is developed for the treatment of cardiovascular diseases and lipid metabolism disorders [7],
while balaglitazone is developed for the treatment of type 2 diabetes [8]. Recently, RVX-208 was found
effective to reactivate HIV-1 in latent reservoirs [9], which stimulated our interest to synthesize the
compounds bearing a quinazolione core.
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A variety of convenient methodologies have been developed for the synthesis of
quinazolinones [10–13]. o-Aminobenzamides [14–22] and o-bromobenzamides [12,23–31] are the
most frequently used starting materials by far, and o-Aminobenzoic acid [32], o-haloaniline [26,33],
and isatoic anhydride [34] were also introduced. Alternatively, o-aminobenzonitrile [35–37] was
applied to prepare quinazolinones by Wu and co-workers [35], considering that the variation of
o-aminobenzonitriles is much more available than o-aminobenzamides. Similarly, o-bromobenzonitriles
can also be transformed into o-bromobenzamides in situ, and as mentioned above, o-bromobenzamide
is one of the most studied starting materials (Scheme 1) to synthesize quinazolinones. From a
synthetic point of view, we strived to explore o-bromobenzonitriles as an alternative substrate to
access quinazolinones for following reasons: (1) with o-bromobenzonitrile as an alternative starting
material, the scope of substrates could be substantially extended, and thus increase the variety of
quinazolinones; (2) in our methodology, transforming o-bromobenzonitrile into quinazolinones in
one pot can save an extra step (benzonitrile into benzamide [38,39] thus the cost can be reduced;
and (3) to the best of our knowledge, the substituted o-bromobenzonitriles were usually cheaper than
the corresponding o-bromobenzamides.
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Meanwhile, most of these reactions using DMSO or DMA as solvent, suffered from unpleasant
smells in high temperature. In addition, it is hard to remove solvent after the reaction. Langer and
co-workers [36] provided a green protocol so that dihydroquinazolinons can be prepared in H2O
with good yields, whereas quinazolinones can only be obtained by adding oxidant TBHP(tert-butyl
hydroperoxide). In the context of green chemistry, water was widely explored as a solvent in
various reactions [40–43], not only due to its low cost, non-toxicity, easy availability, and eco-benign
features, but also because the theoretical and practical advantages of water substantially improved the
“on-water” reaction [44–46]. To date, water has never been used as media to synthesize quinazolinones
directly without adding any oxidant. Cognizant of these challenges, we tried to introduce water as
reaction media into the synthesis of quinazolinones. To our delight, we finally explored a versatile
and practical “on-water” protocol for the quinazolinone preparation from o-bromobenzonitriles with
comparable yields. Surprisingly, with this protocol, a dihydroquinazolinone skeleton could also be
built just under the protection of N2. Finally, we successfully synthesized 31 compounds including
quinazolinones and dihydroquinazolinons, and 10 (4aa, 4ee, 4eq, 4ff, 5aa, 5ea, 5eb, 5ee, 5eq, 5fe) of
them were novel compounds. Herein, we would like to present our research towards quinazolinones
synthesis in detail.

2. Discussion and Results

Preliminary investigation started with the reaction of o-bromobenzonitrile 1a (instead of
o-bromobenzamide) [27], benzaldehyde 2 and ammonia 3 under 100 ◦C in the present of CuBr,
L-proline, and Cs2CO3 for 24 h. The expected product 2-phenylquinazolin-4(3H)-one 4aa was obtained
(Entry 1, Table 1). The reaction conditions could further be optimized. The results collected in Table 1
showed that the reaction performed under 100 ◦C using Cs2CO3 as a base provided the highest yield
(Entries 1–8, Table 1). The further screening of the catalyst (Entries 9–15, Table 1) showed that copper
(Cu (II)) salts gave higher yields of product 4aa (Entries 12 and 14, Table 1) than Cu (I) in this case,
being totally different from the reported results [11,12,25,29,31].

With the catalyst CuCl2, solvent effects were examined (Entries 16–21, Table 1) and H2O was
successfully introduced. Without any oxidant, the “on-water” reaction provided compound 4aa with
yield of 75% (Entry 18, Table 1), much higher than using DMF and DMA media. Further attempts to
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increase the yield by adding DMSO or PEG (polyethylene glycol) in water as a co-solvent failed (Entries
19–20, Table 1). Additionally, air was found to be important for the fusion of quinazolinone core,
as only traces of the product formed when the transformation was conducted under the protection of
N2 (Entry 22, Table 1). Based on these results, we can conclude that air and H2O are vital to promote the
formation of quinazolinone. Therefore, we obtained the optimal reaction conditions (CuCl2 (0.1 mmol),
Cs2CO3 (2 mmol), L-proline (0.2 mmol), H2O (2 mL)) for the condensation of o-bromobenzonitriles,
aldehydes, and aqueous ammonia toward quinazolinones, which are highlighted in Table 1 (Entry 18).

Table 1. Conditional optimization for the condensation of o-bromobenzonitrile 1a with benzaldehyde
2a a.
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Entry Catal. (10 mol %) Base (2 eqv.) Solvent Temp (◦C) Yield (%) b

1 CuBr Cs2CO3 DMSO 100 54
2 CuBr Cs2CO3 DMSO 80 49
3 CuBr Cs2CO3 DMSO 120 42
4 CuBr - DMSO 100 38
5 CuBr K2CO3 DMSO 100 47
6 CuBr K3PO4 DMSO 100 51
7 CuBr NaOH DMSO 100 37
8 CuBr Et3N DMSO 100 21
9 CuCl Cs2CO3 DMSO 100 54

10 - Cs2CO3 DMSO 100 16
11 CuI Cs2CO3 DMSO 100 33
12 CuCl2 Cs2CO3 DMSO 100 62
13 FeCl3 Cs2CO3 DMSO 100 28
14 CuO Cs2CO3 DMSO 100 63
15 ZnCl2 Cs2CO3 DMSO 100 45
16 CuCl2 Cs2CO3 DMF 100 24
17 CuCl2 Cs2CO3 DMA 100 41
18 CuCl2 Cs2CO3 H2O 100 75
19 CuCl2 Cs2CO3 H2O/DMSO (4:1) 100 47
20 CuCl2 Cs2CO3 H2O/PEG400 (4:1) 100 55
21 CuCl2 Cs2CO3 DMSO 100 67
22 CuCl2 Cs2CO3 H2O 100 Trace c

a Reaction conditions: o-bromobenzonitrile 1a (1 mmol), benzaldehyde 2a (2 mmol), aqueous ammonia 3 (27%,
1 mL), catalyst (0.1 mmol), base (2 mmol), L-proline (0.2 mmol), and solvent (2 mL), heated, sealed, and stirred for
12 h, then refluxed under air for 12 h. b Isolated yield. c Reaction was conducted under protection of N2.

With such an eco-friendly protocol in hand, the workup procedure was simple on account of
water. Thereupon, it is necessary to investigate the scope and limitation to explore the versatility of
this protocol. Before that, other o-halobenzonitriles (Entries 2–4, Table 2) were tested and the results
collected in Table 2 showed that o-bromobenzonitrile is the most active substrate for this reaction.
Various aryl aldehydes 2 were firstly evaluated under standard reaction conditions (Table 2). Generally,
most of them were well tolerated and successfully transformed into the corresponding products with
moderate to good yields. The electro-donating groups (-Me, -OMe) made a positive influence for the
reaction and resulted in higher yields (4ad, 4ae, 4af, Table 2) than electro-withdrawing counterparts
(4ab, 4ac, 4ai, Table 2). It is noteworthy that almost no steric effect was observed for benzaldehyde,
and o-methoxybenzaldehyde 2f even gave a higher yield up to 83% (4af, Table 2) than p-methoxyone
(4ae, Table 2). Then we extended this protocol to substituted o-bromobenzonitriles.
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The electro-withdrawing group on o-bromobenzonitrile (Entries 20–23, Table 2) was beneficial
to the transformation and gave higher yields of corresponding products than those electro-donating
group on o-bromobenzonitrile (Entries 24–28, Table 2). Therefore, we got an excellent yield of 92%
(4ef, Table 2) when 2-bromo-5-fluorobenzonitrile reacted with 2-methoxylbenzaldehyde, which further
proved that electro-donating benzaldehydes, especially 2-methoxylbenzaldehyde, were more active
than electro-withdrawing benzaldehydes.

Table 2. The scope and limitation for the synthesis of 2-aryl quinazolin-4(3H)-one 4 a.
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Entry X R1 R2 Product Yield b

1 Br - C6H5 4aa 75%
2 F - C6H5 4aa 0
3 Cl - C6H5 4aa 21%
4 I - C6H5 4aa 17%
5 Br - 4-ClC6H5 4ab 44%
6 Br - 2-ClC6H5 4ac 41%
7 Br - 4-CH3C6H5 4ad 71%
8 Br - 4-MeOC6H5 4ae 73%
9 Br - 2-MeOC6H5 4af 83%

10 Br - 4-HOC6H5 4ag 42%
11 Br - 2-HOC6H5 4ah 0
12 Br - 4-CF3C6H5 4ai 27%
13 Br - 4-N(CH3)2C6H5 4aj 30%
14 Br - naphthalene 4ak 66%
15 Br - 4-Pyridine 4al 48%
16 Br - 2-Pyridine 4am 0
17 Br - 2-furan 4an 0
18 Br - 2-thiophene 4ao 0
19 Br - 2-pyrrole 4ap 27%
20 Br 5-F C6H5 4ea 60%
21 Br 5-F 4-MeOC6H5 4ee 73%
22 Br 5-F 2-MeOC6H5 4ef 92%
23 Br 5-F 3-MeO-4-HOC6H5 4eq 60%
24 Br 5-CH3 C6H5 4fa 63%
25 Br 5-CH3 4-ClC6H5 4fb 47%
26 Br 5-CH3 4-MeOC6H5 4fe 51%
27 Br 5-CH3 2-MeOC6H5 4ff 62%
28 Br 5-MeO 4-MeOC6H5 4ge 67%

a Reaction conditions: substituted o-halobenzonitrile 1 (1 mmol), aryl aldehyde 2 (2 mmol), aqueous ammonia 3
(27%, 1 mL), CuCl2 (0.1 mmol), Cs2CO3 (2 mmol), L-proline (0.2 mmol), and H2O (2 mL), heated, sealed, and stirred
for 12 h, then refluxed under air for 12 h. b Isolated yield.

Meanwhile, dihydroquinazolinones 5 were isolated as the side products in these reactions.
We then repeated the model reaction under the protection of N2 (Entry 22, Table 1), after
which it failed to produce the compound 4aa. 2,3-Dihydro-2-phenylquinazolin-4(1H)-one 5aa
was obtained and yielded 74%. This discovery suggested that 2-arylquinazolin-4(3H)-one 4 and
2,3-dihydro-2-arylquinazolin-4(1H)-one 5 can be selectively prepared from o-bromobenzonitrile by
controlling the air.

With this result, other substituted benzaldehydes were subsequently employed to prepare
2,3-dihydro-2-arylquinazolin-4(1H)-ones 5. The selected substituted benzaldehydes were
smoothly transformed into corresponding expected products with good to excellent yields
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(Table 3). Unexpectedly, an opposite result was observed compared to the synthesis of
2-arylquinazolin-4(3H)-ones 4. The electro-withdrawing group (4-Cl) helped to improve the
yield up to 96% (5ab), while the electro-donated group substituted benzaldehyde gave relatively
lower yields (5ae, 5af, Table 3). Especially, o-methoxylbenzaldehyde 2f, which have provided
2-(2-methoxyphenyl)quinazolin-4(3H)-one 4af in high yield up to 83%, resulted in the lowest
yield of 2,3-dihydro-2-(2-methoxyphenyl)-quinazolin-4(1H)-one 5af (54%) under N2 in this case.
This interesting observation partially manifested that the electron-rich benzaldehyde is good
to form 2-arylquinazolin-4(3H)-ones 4, while electron-deficient benzaldehyde tends to produce
2,3-dihydro-2-aryl quinazolin-4(1H)-ones 5.

Therefore, 2-bromo-5-fluorobenzonitrile as well as 2-bromo-5-methylbenzonitrile was treated
with benzaldehydes and aqueous ammonia under the the protection of N2 with standard reaction
conditions (5ea–5fe, Table 3). Most of them were smoothly transformed into the expected dihydroxyl-
products in good yields.

Table 3. The scope and limitation for the synthesis of 2,3-dihydro-2-aryl quinazolin-4(1H)-one 5 a.
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Entry R1 R2 Product Yield b

1 - C6H5 5aa 74%
2 - 4-ClC6H5 5ab 96%
3 - 4-MeOC6H5 5ae 71%
4 - 2-MeOC6H5 5af 54%
5 5-F C6H5 5ea 39%
6 5-F 4-ClC6H5 5eb 27%
7 5-F 4-MeOC6H5 5ee 53%
8 5-F 2-MeOC6H5 5eq 53%
9 5-CH3 C6H5 5fa 77%
10 5-CH3 4-ClC6H5 5fb 0
11 5-CH3 4-MeOC6H5 5fe 50%

a Reaction conditions: substituted o-bromobenzonitrile 1a (1 mmol), aryl aldehyde 2 (2 mmol), aqueous ammonia 3
(27%, 1 mL), CuCl2 (0.1 mmol), Cs2CO3 (2 mmol), L-proline (0.2 mmol), and H2O (2 mL), heated, sealed, and stirred
under protection of N2 for 24 h. b Isolated yield.

According to the results and similar reactions [12,13,24,32], a possible mechanism was proposed
and outlined in Scheme 2. In the presence of Cs2CO3, the coordination of L-proline with CuCl2
helped to promote the subsequent Ullmann-type reaction to form 2-amino, while oxidation from -CN
to -CONH2 occurred simultaneously in the presence of CuCl2, base, and H2O, so that intermediate
2-aminobenzamide was generated. Actually, 2-aminobenzamide was detected as intermediate during
the reaction, andthen condensation and addition occurred on 2-aminobenzamide and benzaldehyde.
2,3-Dihydro-2-aryl quinazolin-4(1H)-one 5 was produced under the protection of N2, and when the
reaction was exposed to air after the starting materials were stirred in sealed tubes at 100 ◦C for 12 h,
oxidation occurred further to afford products 2-aryl quinazolin-4(3H)-one 4.
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Scheme 2. Proposed mechanism.

Although at the outset of this work we only expected to develop an “on-water” protocol
towards quinazolinones from o-bromobenzonitrile 1a, the explicit outcome above proved the
versatility of this protocol. Then other commonly used substrates were evaluated for this protocol.
o-Bromobenzamide 1h was first reacted with p-methoxylbenzaldehyde and ammonia under the
standard conditions. As outlined in Scheme 3, 2-(4-methoxyphenyl)-quinazolin-4(3H)-one 4ae and
2,3-dihydro-2-phenylquinazolin-4(1H)-one 5ae were produced smoothly at 74% and 68%, respectively,
almost having the same yields with o-bromobenzonitrile (73% for 4ae in Table 2, and 71% for 5ae in
Table 3).
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Subsequently, o-aminobenzonitrile 1i was tested and the results in Scheme 4 showed that
the yield of 2-phenylquinazolin-4(3H)-one 4aa was only 43%, while o-bromobenzonitrile 1a
yielded in 75% (4aa, Table 2). But, when under the protection of N2, 76% of the yield of
2,3-dihydro-2-phenylquinazolin-4(1H)-one 5aa was obtained, almost the same with the result
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from o-bromobenzonitrile 1a (5aa, Table 3). Obviously, o-aminobenzonitrile 1i was less active
than o-bromobenzonitrile 1a for the synthesis of quinazolin-4(3H)-one, which explained why
2,3-dihydro-quinazolin-4(1H)-ones were the only products listed in the literature reported by Langer
and co-workers [36], wherein oxidant TBHP had to be added in addition to help the formation of
quinazolin-4(3H)-one.
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This interesting finding prompted us to undertake the reaction starting from o-aminobenzamide
1j immediately, as shown in Scheme 5. Unexpectedly, oxidized product 2-phenylquinazolin-4(3H)-one
4aa failed to produce, while 2,3-dihydro-2-phenylquinazolin-4(1H)-one 5aa yielded up to 95%
without the protection of N2. It implies that o-aminobenzamide 1j tends to be transformed into
2,3-dihydro-quinazolin-4(1H)-ones 5 with this protocol.
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Scheme 5. “On-water” reaction starting from o-aminobenzamide.

With these results from the extended substrates, we found the newly developed “on-water”
protocol was much more flexible for the construction of 2,3-dihydro-quinazolin-4(1H)-ones 5 than its
oxidized products quinazolin-4(3H)-ones 4. In addition, for the preparation of quinazolin-4(3H)-ones
4, the priority of the commonly used substrates is: o-bromobenzonitrile 1a or o-bromobenzamide 1h >
o-amino- benzonitrile 1i > o-aminobenzamide 1j.
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3. Conclusions

In summary, we have newly developed a versatile and practical “on-water” protocol towards
compounds containing a quinazolinone core, and o-bromobenzonitrile was explored as an alternative
starting material. Water and air were found to be of importance for the formation of oxidized
products quinazolin-4(3H)-ones 4, and various aryl aldehydes as well as several substituted
o-bromobenzonitriles were successfully applied to this protocol and provided the expected
quinazolin-4(3H)-ones 4. Moreover, we found that 2,3-dihydro-quinazolin-4(1H)-ones 5 could also
be obtained when the reaction was carried out under the protection of N2, and the subsequent scope
investigation resulted in the successful synthesis of various 2,3-dihydro-quinazolin-4(1H)-ones 5.
Therefore, we can selectively produce the compounds 2,3-dihydro-quinazolin-4(1H)-ones 5 or their
oxidized products 4 from o-bromobenzonitrile by controlling air. In addition, o-bromobenzonitrile,
o-aminobenzonitrile, and o-aminobenzamide were evaluated and all of them could be transformed
into 2,3-dihydro-quinazolin-4(1H)-ones 5 with good to excellent yields, but o-bromobenzonitrile or
o-bromobenzamide was proved to be the best substrate for the synthesis of the oxidized products
quinazolin-4(3H)-ones compared with o-aminobenzonitrile and o-aminobenzamide. With these new
findings in mind, further work involving the synthesis of RVX-208 and related structural modifications
are ongoing in our group.

4. Materials and Methods

4.1. General

All chemicals were purchased from commercial suppliers Shanghai Energy Chemical Co., Ltd.
(Shanghai, China), Adamas Reagent, Ltd. (Shanghai, China), TCI Industry Co., Ltd. (Shanghai, China),
without further purification. All reactions were monitored by TLC (thin-layer chromatography)
which was performed on GF254 silica gel glass plates (Qingdao Haiyang Chemical Co. Ltd.,
Qingdao, Shandong, China). Column chromatography was performed with silica gel (200–300
mesh). All unknown compounds were structurally verified by 1H-NMR, 13C-NMR and MS, and 1H-,
and 13C-NMR spectra were recorded on a Bruker Advance drx 400 spectrometer (Bruker Bioscience,
Billerica, MA, USA) operating at 400 MHz and 100 MHz, respectively. The chemical shifts were
reported in ppm and the coupling constant in Hz. Mass Spectrometry analysed for the known
compounds by Waters HPLC/ZQ 4000 Thermo Fisher Scientific (Waltham, MA, USA).

4.2. General Procedure for the Synthesis of 2-Phenylquinazolin-4(3H)-one (4aa)

To a mixture of 2-Bromobenzonitrile (183.4 mg, 1 mmol), benzaldehyde (210.5 mg, 2 mmol),
CuCl2 (17.2 mg, 0.1 mmol), Cs2CO3 (652.2 mg, 2 mmol), and L-proline (23.2 mg, 0.2 mmol) in H2O
(2 mL) was added 27% aqueous ammonia (1 mL) in a tube under air atmosphere. Then the tube
was sealed, and the mixture was stirred at 100 ◦C for 12 h. Next, the tube was opened to air and the
mixture was stirred at 100 ◦C for another 12 h. After being cooled to room temperature, the resulting
mixture was quenched with NH4Cl solution and extracted with ethyl acetate. The combined organic
layer was washed with brine, and then dried over anhydrous Na2SO4. The solvent was evaporated
under reduced pressure and the crude product was purified by chromatography on silica-gel to afford
2-phenylquinazolin-4(3H)-one (4aa) in 75% isolated yield. 1H-NMR (400 MHz, Chloroform-d) δ11.24
(s, 1H, -NH-), 8.27 (d, J = 7.8 Hz, 1H, Ar-H), 8.16 (dd, J = 6.6, 3.0 Hz, 2H, Ar-H), 7.82–7.71 (m, 2H,
Ar-H), 7.57–7.49 (m, 3H, Ar-H), 7.48–7.41 (m, 1H, Ar-H). 13C-NMR (100 MHz, Chloroform-d) δ151.60,
134.87, 132.77, 131.64, 129.05, 127.97, 127.25, 126.79, 126.34, 120.84. HRMS (ESI) calcd for C14H11N2O
[M + H]+: 223.0866. Found: 223.0865.

4.3. General Procedure for the Synthesis of 2-Phenyl-2,3-dihydroquinazolin-4(1H)-one (5aa)

2-bromobenzonitrile (182.3 mg, 1 mmol), benzaldehyde (213.6 mg, 2 mmol), CuCl2 (17.1 mg,
0.1 mmol), Cs2CO3 (651.3 mg, 2 mmol) and L-proline 23.4 mg, 0.2 mmol) in H2O (2 mL) were added
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into a tube and stirred. Remove the air inside the tube under the reduced pressure and flush with N2,
and protected the starting materials under N2. 27 % aqueous ammonia (1 mL) was added into the
reaction mixture. The tube was then sealed and the mixture stirred at 100 ◦C for 24 h. After cooling
to room temperature, the resulting mixture was quenched with NH4Cl solution and extracted with
ethyl acetate. The combined organic layers were washed with brine and then dried over anhydrous
Na2SO4. The solvent was evaporated under reduced pressure and the crude product was purified by
chromatography on silica-gel to afford 2-phenyl-2,3-dihydroquinazolin-4(1H)-one(5aa) in 74% isolated
yield. 1H-NMR (400 MHz, Chloroform-d) δ 7.97 (d, J = 7.8 Hz, 1H, Ar-H), 7.67–7.56 (m, 2H, Ar-H),
7.55–7.41 (m, 3H, Ar-H), 7.36 (t, J = 7.7 Hz, 1H, Ar-H), 6.93 (t, J = 7.5 Hz, 1H, Ar-H), 6.70 (d, J = 8.0 Hz,
1H, Ar-H), 5.93 (s, 1H, -CH-), 5.80 (s, 1H, -NH-), 4.42 (s, 1H, -NH-). 13C-NMR (101 MHz, DMSO) δ

163.98, 148.27, 142.04, 133.70, 128.85, 128.72, 127.75, 127.26, 117.51, 115.36, 114.80, 66.96. HRMS (ESI)
calcd for C14H13N2O [M + H]+: 225.1022. Found: 225.1021.

4.4. General Procedure for the Synthesis of 2-Phenylquinazolin-4(3H)-one (4aa) with Scheme 3

o-Aminobenzanitrile (119.8 mg, 1 mmol), benzaldehyde (217.8 mg, 2 mmol), CuCl2 (17.6 mg,
0.1 mmol), Cs2CO3 (652.3 mg, 2 mmol), and L-proline 23.6 mg, 0.2 mmol) in H2O (2 mL) was added
in a 5 mL reaction bottle. Then the mixture was stirred at 100 ◦C for 48 h. After cooling to room
temperature, the resulting mixture was quenched with NH4Cl solution and extracted with ethyl
acetate. The combined organic layers were washed with brine and then dried over anhydrous
Na2SO4. The solvent was evaporated under reduced pressure and the crude product was purified by
chromatography on silica-gel to afford 2-phenylquinazolin-4(3H)-one (4aa) in 43% isolated yield.

4.5. General Procedure for the Synthesis of 2-Phenyl-2,3-dihydroquinazolin-4(1H)-one (5aa) with Scheme 3

o-Aminobenzanitrile (120.8 mg, 1 mmol), benzaldehyde (216.7 mg, 2 mmol), CuCl2 (17.3 mg,
0.1 mmol), Cs2CO3 (653.7 mg, 2 mmol), and L-proline 23.3 mg, 0.2 mmol) in H2O (2 mL) was added in
a 5 mL reaction bottle under nitrogen. Then the mixture was stirred at 100 ◦C for 24 h. After cooling
to room temperature, the resulting mixture was quenched with NH4Cl solution and extracted with
ethyl acetate. The combined organic layers were washed with brine and then dried over anhydrous
Na2SO4. The solvent was evaporated under reduced pressure and the crude product was purified
by chromatography on silica-gel to afford 2-phenyl-2,3-dihydroquinazolin-4(1H)-one (5aa) in 76%
isolated yield.

4.6. General Procedure for the Synthesis of 2-Phenyl-2,3-dihydroquinazolin-4(1H)-one (5aa) with Scheme 4

o-Aminobenzamide (139.1 mg, 1 mmol), benzaldehyde (209.9 mg, 2 mmol), CuCl2 (17.6 mg,
0.1 mmol), Cs2CO3 (657.0 mg, 2 mmol) and L-proline 23.6 mg, 0.2 mmol) in H2O (2 mL) was added
in a 5 mL reaction bottle. Then the mixture was stirred at 100 ◦C for 14 h. After cooling to room
temperature, the resulting mixture was quenched with NH4Cl solution and extracted with ethyl
acetate. The combined organic layers were washed with brine and then dried over anhydrous
Na2SO4. The solvent was evaporated under reduced pressure and the crude product was purified
by chromatography on silica-gel to afford 2-phenyl-2,3-dihydroquinazolin-4(1H)-one (5aa) in 95%
isolated yield.

Experimental procedures and analytical data of all compounds (1H NMR and 13C NMR), copy of
the 1H NMR and 13C NMR and data are available in the Supplementary Materials.

Supplementary Materials: The experiment procedure, spectral and analytical data, characterization data
including 1H-, 13C-, and 19F-NMR spectra of compounds 1–31 are available online.
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