

Figure S1. The high performance liquid chromatogram of fraction E2. Compound 1 (34 mg) and 2 (7 mg) were finally purified from the active fraction E2 (44 mg) with a LC-6AD HPLC system (Shimadzu, Kyoto, Japan) equipped with a Polaris C18-A column (21.2 × 250 mm, 10 μ m; Agilent, Santa Clara, CA). The column was eluted with a linear gradient (80–100% for 50 min) of aqueous methanol at a flow rate of 5 mL/min. The effluent was monitored with the SPD-M10Avp photodiode array detector (Shimadzu).

Figure S2. The ESIMS spectrum of compound 1 (m/z 331 [M + H]⁺)

Figure S3. The HREIMS spectrum of compound 2 (observed m/z 332.1985 M⁺)

Figure S4. The ¹H NMR spectrum of compound 1 (500/125 MHz, CDCl₃)

Figure S5. The ¹³C NMR spectrum of compound 1 (500/125 MHz, CDCl₃)

Figure S6. The ¹H NMR spectrum of compound 2 (500/125 MHz, CDCl₃)

Figure S7. The ¹H NMR spectrum of compound 2 (500/125 MHz, CD₃CN)

Figure S8. The ¹³C NMR spectrum of compound 2 (500/125 MHz, CD₃CN)

Figure S9. The HSQC spectrum of compound 2 (500/125 MHz, CD₃CN)

Figure S10. The HMBC spectrum of compound 2 (500/125 MHz, CD₃CN)

Figure S11. The ROESY spectrum of compound 2 (500 MHz, CD_3CN)

Position	δ _C , Ту ре
1	37.8, CH ₂
2	41.9, CH
3	145.5, C
4	196.0, CO
5	58.4, CH
6	77.8, C
7	50.0, C
8	214.7, CO
9	84.7, CH
10	53.8, C
11	62.2, C
12	32.7, CH ₂
13	23.1, CH ₂
14	51.8, CH
15	28.2, CH
16	19.6, CH ₃
17	24.8, CH ₃
18	123.5, CH ₂
19	15.2, CH ₃
20	16.2, CH ₃

Table S1. The ¹³C NMR spectroscopic data (δ values in ppm; 500 MHz) for crinipellin A (compound 1) in CDCl₃.

Phytopathogonic bacteria	MIC (µg/mL)	
Phytopathogenic bacteria	1	2
Acidovorax avenae subsp. cattleyae	31	>250
Agrobacterium tumefaciens	>250	>250
Burkholderia glumae	>250	>250
Pectobacterium carotovorum subsp. carotovorum	>250	>250
Dickeya chrysanthemi	>250	>250
Pseudomonas syringae pv. lachrymans	>250	>250
Xanthomonas arboricola pv. pruni	>250	>250
Pseudomonas syringae pv. actinidiae	>250	>250
Ralstonia solanacearum	>250	>250

Table S2. Minimum inhibitory concentration (MIC) of crinipellin A (1) and crinipellin I (2) against phytopathogenic bacteria

^a Minimum inhibitory concentration (MIC) values of crinipellins against plant pathogenic bacteria were determined by broth microdilution assay using two-fold serial dilutions starting with 250 μ g/mL as described by the modified CLSI M38-A method. Bacteria suspepnsions (1 × 10⁴ cells/mL) were used as inocula, tryptic soy broth (BD Biosciences) was used to culture bacteria. Controls containing 1% methanol without the chemical were also included. The microtiter plates were incubated for 2–3 days and MIC was defined as the lowest concentration of crinipellins with no visible bacterial growth.