
  

 

S0. Obtaining molecular EDTMs from those of isolated chromophores in a binary system.  

Molecular EDTM for the transition from ground,  0, to a certain electronic excited state with 

 a wavefunction is defined by equation (S0.1). Assuming that, in a binary system made up of two 

chromophores, wavefunctions of both ground electronic and excited electronic state ( or ) (a 9 can 

be approached by zero-order wavefunctions, as given by equations (4), (12), and (13), gives rise to 

expressions (S0.2) and (S0.3) for EDTMs to  and  states. The electric dipole moment operator can 

be split into two parts, the first affecting exclusively to the electrons contained in chromophore 1, 

and the second to those of chromophore 2, as shown in (S0.4).  This leads to equations (S0.5) and 

(S0.6). 
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Finally, introducing EDTM for each chrompohore j (S0.7), (S0.5) and (S0.6) turn into expressions (20) 

and (21). 
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S1. Excited state splitting for C4 geometries.  

The wave function for the electronic ground state is given, within the zero-order approximation 

by equation (S1.1) and belongs to the totally symmetric irreducible representation A. The functions 

shown in (S1.2) allow expanding the four independent C4 SALCs for the first excited level in this 

approach: two of them are pseudodegenerate and belong to the E irreducible symmetry species, 

whereas the other are of A and B symmetry (equations S1.3 to S1.6, respectively). The transitions 

from the totally symmetric ground state are only orbitally-allowed to excited states which have the 

same symmetry of, at least, one of the components of the dipole moment operator. Therefore, the 

transition to the B state is forbidden, whereas those to A, E1, and E2 are allowed.  
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Application of the first order perturbation theory, when the potential energy is given by (27), 

gives rise to identical corrections for the energy of E1 and E2 states, given by (S1.7), whereas that of 

the A excited state is represented by (S1.8). 
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S2. Excited state splitting for D4 geometries.  

The wave function for the electronic ground state displays, within the zero-order 

approximation, the same expression shown above for C4 symmetry (S1.1), and belongs to the totally 

symmetric irreducible representation A1. The functions shown in (S1.2) allow expanding the four 

independent D4 SALCs for the first excited level in this approach. In this case, as it happens with 

D3-symmetry, it is necessary two distinguish two possibilities: i) chromophores symmetric for C2’ 

rotations; and ii) chromophores antisymmetric for C2’ rotations, which can be, respectively 

exemplified by  and  chromophores. The reducible representation for case i) contains A1, B1 and E 

representations, whereas for case ii) contains A2, B2 and E. As a consequence, D4 symmetry structures 

with  chromophores display a single orbitally-allowed electronic transition to the first set of excited 

states. In contrast, when the chromophores are  the single transition is replaced by two bands, 

representing the transitions from the A1 ground level to A2 and E states, whose wave functions are, 

represented by equation (S2.1) (A1) and any linear combination of (S2.2) and (S2.3) (E). 
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Application of the first order perturbation theory, when the potential energy is given by (27), gives 

rise to a correction for the energy of E states, given by (S2.4), whereas that of the A1 is represented by 

(S2.5).  
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S3. Deriving the relationship between 
tp


 and 
t


 vectors.  

Simple relations of operators algebra outlined below (equations (S3.1) to (S3.3)) allow to replace 
t

jp


 by the EDTM of the isolated chromophore,
t

j


, through expressions involving the wave number 

for the transition, 
t . 
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